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Abstract—This paper addresses the application of the Agent-

Based Model (ABM) to simulate the evolution of Multiple Input 

Multiple Output (MIMO) eco-industrial parks to gain insight 
into their behavior. ABM technique has proven to be an effective 

tool that can be used to express the evolution of eco-industrial 

parks. The ABM represents autonomous entities, each with 

dynamic behavior. The agents within the eco-industrial park are 

factories, market buyers, and market sellers. The results showed 

that the Réseau agent-based model allowed the investigation of 

the behaviors exhibited by different agents in exchange for 
materials in the industrial park. 
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I. INTRODUCTION  

In the last two decades, attention for Eco-Industrial Park 
(EIP) development projects has grown enormously among 
national and regional governments and industries [1]. National 
Industrial Symbiosis Program (NISP) in the UK is an example 
of numerous industrial ecosystems [2, 4]. It is believed that a 
well-planned, functioning EIP has the potential to benefit the 
economy and to substantially relieve environmental pressure in 
and near the location of its development [1, 5-7]. It is intuitive 
that the utilization of a previously unused (e.g. in the case of 
released steam) or discarded (e.g. sludge to landfill) resources 
can typically offer financial savings to both the utilizing 
company and the provider while reducing the use of raw 
materials, energy or water, and avoiding disposal to landfill. 
The benefits of Industrial Symbiosis (IS) include but are not 
limited to social benefits (may include job creation), emission 
reduction (e.g. gaseous pollution or dust), and aesthetic 
improvements (e.g. reduction of waste piles). 

The aim of the present work is to apply an agent-based 
model to simulate the evolution of a Multiple Input Multiple 
Output (MIMO) EIP. Agents are described in detailed standard 
protocol [8] for describing individual-based and agent-based 
models. Due to the short fall in the initially developed model, 
which only accommodates Single Input Single Output (SISO) 
agents the model is modified to allow many MIMO agents (in 

the range of thousands). The simulation of an MIMO EIP 
system using ABM is the novelty of this work.  

II. RELATED WORK 

Since the emergence of industrial ecology in the 1950s and 
its take-off during the 1990s, much progress, in theory, policy, 
and practice has been achieved for designing fruitful and 
sustainable EIPs. Almost all research into IS/EIP systems 
involves either proposing a frame work [9] or a mathematical 
model [10-11] for the IS/EIP design. System modeling and 
computer-based simulation techniques have been applied to 
different problem areas [12] and are more flexible in predicting 
complex phenomena due to their dynamic behavior. There are 
a few works [13-15] that focus on the simulation of IS to 
understand its complexity. Authors in [16] proposed a 
theoretical model for the emergence of eco-industrial parks at 
different levels, but they did not implement it into a simulation 
model. There is still progress to be made in the area of 
computational modeling of the actions and interactions of the 
autonomous agents that form an EIP. Major problems in 
unraveling the complexity of IS-based on demand response 
[17] include but are not limited to price, profit, and supply-
demand fluctuations. Also, part of the problem that exist in the 
design of EIP systems is the mismatch between the supplying 
and demanding agents at any time resulting in the occurrence 
of periods of excess supply (supply greater than demand) and 
shortage (demand exceeds supply). This paper intends to fill 
these gaps. Agent-based models have been used when there is 
the need to model the dynamics of circular economies and IS 
networks [17-18]. In an agent-based model, actors (or agents) 
interact using prescribed rules, and the emergent behavior of 
the system is observed [18-20]. ABM, also known as bottom-
up modeling, [21], has proven to be a promising tool to 
simulate the evolution of EIPs [15, 22].   

After an up-to-date literature review and to the best of our 
knowledge, this is the first attempt of simulating MIMO 
industrial ecosystems to forecast supply and demand time 
series using ABM integrated with an input-output model. We 
focus on the application of an agent-based model to the design 
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of EIP in which price fluctuation and demand variability are 
emergent properties of the interaction among the agents. 
Réseau agent-based model [23], is used to simulate the 
industrial ecosystem and generate demand and supply profiles. 
We analyze IS considering materials and energy flows and the 
related supply-demand match for each output products 
(finished goods, by-products, useful waste) becoming primary 
input for entirely new processes that are co-located or within 
the same vicinity. We simulate the effect of price, demand and 
supply fluctuations to express the dynamics of IS/EIP systems.  

III. ABM BASICS 

ABM is a class of computational modeling methods that 
simulate individuals making decisions according to 
programmable rules. Those rules are set by the modeler to 
represent key elements of real world decisions, including the 
individuals’ own characteristics and their social and physical 
environment. An agent, in a logistics context, might represent a 
machine, the order handling process, inventory handling and 
further production planning and scheduling. The definition of 
an intelligent agent suggests the following properties to be 
inherent: 

• Autonomous: functions without the need for user 
intervention. 

• Proactive: operates independently towards a goal. 

• Reactive: responds to changes in the environment and 
changes in the course of action. 

• Social: interacts with other agents in order to exchange 
required information. 

A. Why ABM for Modeling Industrial Ecosystems? 

In the last 5 years, the majority of the research works 
focused on the use of input-output models and ABMs 
separately to promote IS. However, this is not sufficient to 
reveal the complexity of the concept. Authors in [24] designed 
IS using input-output approach. Even though their work 
introduces the concept of perfect symbiosis to enhance the 
future production area, it lacks in promoting the drivers (e.g. 
price, demand and supply) that enhance cooperation decision of 
the participating factories. Since input-output model and ABM 
are promising tools, we explore the possibility of combining 
these two methods together for the modeling of the ecosystem. 
Majorly, the input-output model is embedded in the production 
chain of the factories in the IS/IES while ABM is used for the 
entire IS components. 

B. Validation of ABMs 

One of the main valuable aspects of a simulation model is 
its validity. Validation is the process of determining whether 
the programming implementation of the conceptual model is 
correct. Simulation validation is often considered using 
Zeigler’s hierarchy of model validity [8, 25], that is, replicative, 
predictive, and structural. There are different variations on this 
calcification [26, 27], but for the purposes of ABM validation, 
Klügl used the validity along two dimensions [28] using only 
two levels: (1) Face validation and (2) Empirical validation. 
Face validity shows that the simulation processes and the 

output conform to human judgment within the frame of 
theoretic basis and implicit knowledge of experts while 
validation through empirical means is done by using statistical 
measures and tests to compare key figures produced by model 
with numbers gathered from the reference system. 

IV. MODEL SUMMARY AND IMPLEMENTATION 

ABM is extensively used within the complexity theory and 
springs from object-oriented programming and distributed 
artificial intelligence. The agent formulations used in this work 
extend the basic formulation of [29]. The Overview, Design 
concepts and Details (ODD) protocol proposed by [30, 31] is 
used for the model’s description. It was designed in a way that 
ABM publications would be more complete, quick and easy to 
understand, and organized in a manner that allows presenting 
information in a consistent order [30]. The model is an 
integrated agent-based model with input-output approach and 
was developed with Python, which is a general-purpose 
programming language. Following the ODD protocol for 
describing individual-based and agent-based models, this 
section describes the elements of ODD as related to the 
proposed Réseau-EIP ABM.  

A. Overview 

The overview of the ODD consists of three elements, the 
model purpose, state variables and scales, and process 
overview and scheduling. These are explained below. 

B. Model Purpose 

The Réseau-EIP ABM is constructed as a decision making 
tool for understanding the emergence behavior that favours the 
design of EIPs. The model is intended to be used in assessing 
the sustainability of an EIP and by improving its economic, 
environmental, and social performance. The model is used to 
simulate the effects of price and supply and demand 
fluctuations to express the dynamics of the EIP system. In the 
future, the model will be improved to estimate the impact of the 
energy storage system in the design of the EIP, will incorporate 
“what-if” scenarios”, generate hypotheses and test policy ideas 
related to the EIP development policy. 

C. Entities, State Variables and Scales 

The model consists of two core entities called market and 
factory agents. The factory agents represent industrial plants 
within a network and links, which represent the exchange of 
resources, while the market agents on the other hand do not 
produce anything but only buy finished goods or sell raw 
materials. As indicated earlier, EIP involves sustainable 
exchange of resources among partners within the park. 
Therefore, a raw material to a plant can be an output of another 
plant. The factory agents are characterized by state variables: 
factory agent identification number (ID), raw materials type, 
raw materials stock, raw materials usage, products (finished, 
by-product and waste) name, product price, price variance, 
output capacity of a product type (product target), net worth 
and the location (x and y co-ordinates) of the factory agent 
within the EIP network. There are two market agents: the 
selling agent and the buying agent. The selling agent is 
characterized by the state variables: selling agent ID, product 
(goods) name, selling price, price variance product type 



Engineering, Technology & Applied Science Research Vol. 10, No. 4, 2020, 6092-6101 6094 

 

www.etasr.com Ajisegiri & Muller: Multiple Input Multiple Output (MIMO) Model of an Industrial Ecosystem: An … 

 

(product target), net worth balance, and location. The buying 
agent is characterized by: buying agent ID, raw material type, 
demand quantity, net worth, and location. In the model, all the 
agents (factory, selling and buying) interact with each other. 
The factory agent at a time step fulfills its input requirement 
(based on product demand) by initiating a contract with a 
selling agent. After getting the input materials, the factory 
agents begin to produce, determine product prices, and sell to 
the buying agents. Since the factory agents buy raw materials 
and sell the output, they can compete with the market agents. A 
monthly time step is chosen for this work but any time step 
(daily, weekly etc.) can be chosen. The model is grid-based and 
there is no specific dimension used. Each agent has its x and y 
coordinates to indicate its location on the grid. The grid served 
as the Réseau-EIP boundary. No interface or visualization is 
built in with the model and the output of the simulation is 
exported to an excel file and necessary analysis is performed 
thereafter. 

D. Process Overview and Scheduling 

The Réseau–EIP ABM runs with monthly time steps. 
Within each month or time step, six different submodels run in 
succession. Each of these submodels is discussed briefly here 
and a full discussion of each submodel can be seen in the Detail 
section. At the beginning of the simulation and for each time 
step, the factory, buyer, and seller modules load their variables 
and parameters from an external file, predict production 
(factory agent) and determine prices. While the interaction of 
the three agents from these modules evolves in a time step, the 
transaction module begins and handles the contract between 
buyers and sellers. The history module runs next and records 
the history of each of the agents. The reporting module runs 
last and reports all the outputs of all the agents in an external 
file. 

E. Design Concepts 

1) Interactions 

Factory agents interact with each other and with the market 
agents (they buy input materials, and they sell output goods). 
The primary interaction between agents is the exchange of 
resources. In the buying and selling submodels, a buyer 
(factory or market buying agents) establishes contract with 
sellers (factory or market selling agent) through the transaction 
submodel, in which, based on the quantity of available goods 
and the price, the buyer enters a contract with the sellers and 
purchases its raw materials from the best seller (cheapest 
price). The agents also interact by imitating each other’s 
attributes. 

2) Sensing 

All agents are assumed to know their own attributes. It is 
also assumed that agents are also aware of their environment. 
This information agent informs factory, buying, and selling 
agents to make decisions at any time. 

3) Emergence 

The dynamics of the park and resource exchange 
demonstrate emergence based on the lower level interactions 
and decisions of the factory and the market (buying and 
selling). Therefore, the important thing from the model is the 

emergence of the net worth value of each agent based on the 
agent’s interaction with the other agents. 

4) Adaptation 

Adaptation is modeled explicitly in the Réseau–EIP ABM 
model. Agents adapt to supply and demand requests by finding 
new partners to exchange goods with. Each factory agent 
always looks for raw materials to purchase either from another 
factory’s agents or from market selling agents in order to 
produce its output and sell it to waiting buyers (factory or 
market buying agents). 

5) Learning 

Each agent in the core entities of this model learns from its 
history by using a learning procedure to make decisions at 
every time step. An example is the history of the prices of 
goods in the market. The agents always check the previous 
price and based on the Weibull distribution function make a 
decision either to change (increase or reduce) or maintain the 
price for the next time step. 

6) Prediction 

At present, the agents in the Réseau–EIP ABM model do 
not use any prediction models to make decisions. 

7) Stochasticity 

Stochasticity plays a vital role in the Réseau–EIP ABM 
model. At the beginning, each agent loads its parameters from 
an input file and some random distributions add an element of 
stochasticity into all subsequent runs. 

8) Objectives 

All agents in the model do not only seek to collectively 
maximize their “purpose”, but instead make decisions to buy, 
sell, produce goods, and determine price as autonomous 
entities. At each decision period, agents make decisions in 
accordance with the sensed data and with a set of random 
techniques. 

F. Details 

1) Initialization 

The Réseau–EIP ABM model is initialized by using data 
obtained from the relevant literature. There are three different 
agents (factory, buying, and selling). The variables with their 
parameters for each agent are organized in an external excel 
file and the agents pre-load their data. Based on this, users can 
therefore run different scenarios by varying the input 
parameters and observing their impact on the output. 

2) Input Data 

The input data are Excel-ased and are specific for each 
agent. Apart from the initialization data, no other data are 
required to run the model. The input file is user friendly and 
users can easily change the parameters to suit the problem in 
question. 

3) Submodels 

a) Parameter Loading 

Each agent loads its parameters from an input file. The 
parameters are agent specific with a unique identifier. 
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b) Requirement Prediction 

This method is used by all the agents to predict their 
requirements at every time step. This method is based on the 
Gaussian distribution. The market agent demand is equivalent 
to the requirement predicted while the factory agent has two 
variables to determine at the beginning of each time step. These 
are the sales quantity and price. These two variables are also 
modeled using the Gaussian distribution. The market selling 
agents only predict the selling price of all its goods. 

c) Production Step 

Since the buying and selling agents do not produce 
anything, they are only associated with selling agents with 
readily available goods to be sold. In contrary, the factory 
agents produce goods therefore a production method is 
included in the factory class as an input-output ratio 
formulation. 

d) Purchasing Method 

Only the buying agents (factory and market agents) buy 
goods/raw materials. Therefore, this method is only associated 
with these two agents. For each time step, each buyer checks 
all the prospective sellers and makes contact with all the sellers 
that have the sufficient quantity of goods. The sellers are 
appended in a list and the buyers buy from the cheapest seller 
until their requirements are fulfilled. 

V. CASE STUDY 

Figure 1 shows the potential structure of the studied MIMO 
industrial ecosystem. It includes three different kinds of 
factories: (1) bio-refinery plants (BIOs), (2) combined heat and 
power plants (CHPs), and 3) anaerobic digestion plants (ADs). 
The AD plants convert organic waste to biogas and generate 
some residual waste. They use process steam and electricity to 
heat up the digester. CHP plants can use biogas as a 
replacement for coal, while generating electricity and process 
steam. It should be noted that fuel switching (i.e. biogas as a 
replacement for coal) cannot be undertaken easily and is 
beyond the scope of this work. The BIOs’ main output is 
ethanol while they generate lignin pellet and waste water as by-
products. These three candidate plants form the internal 
environment of the industrial ecosystem while the market 
sellers and buyers come from the external environment of the 
park where raw materials can be purchased or finished goods 
can be absorbed without any capacity limitation. The internal 
environment consists of three different stages. Each stage is 
made up of three different firms that produce the same output 
but use different input raw materials. Stage A includes three 
different AD plants that produce biogas as their main product. 
To produce biogas, the plants require either cattle feedlot 
manure or food and bio-solids [11, 32]. Stage B consists of 
three different CHP plants that produce electricity and process 
steam (heat). Lastly, stage C is made up of BIO plants that 
generate ethanol as their main output. Each firm and market 
seller exhibit a stochastic demand over time, distributed 
according to the Gaussian distribution with a given mean and 
standard deviation. The Réseau is used to simulate the 
interaction between companies, market buyers and sellers in 
the IES in order to understand the dynamic behavior of the 
participants in the park and particularly the process plants. The 

initial data for the AD and CHP plants were obtained from 
[11]. The three CHP plants separately have a capacity for 
biogas (methane) ranging from 80,000 – 500,000m

3
 per month 

while the AD plants utilize food and bio-solid wastes in the 
range of 0.3 million tons and required energy within 30 – 
65MWh. 

 

 
Fig. 1 Configuration of the MIMO industrial ecosystem. 

VI. SIMULATION RESULTS AND DISCUSSION 

This section focuses on the results obtained by the 
simulations of the IES with MIMO factory agents shown in 
Figure 1. The simulation output of the case study demonstrates 
the effectiveness of the proposed method. The simulation was 
carried out in two different ways. Firstly, the simulation was 
done to determine the behavior and the way each factory makes 
decisions operating in standalone mode, in which each factory 
only buys from the market or sells to the market agents while 
the other factory agents are absent. The second simulation was 
carried out with the presence of all factory agents in the IES. 
Thereby possible symbiotic relationships can occur between 
the agents and/or the market agents. 

A. Demand and Supply Response 

The results of a single simulation run for the generation of 
demand/supply for the factory agents in the industrial 
ecosystem are shown in Figures 2 and 3. Each of the Figures, is 
divided into four subfigures. The division shows the different 
demand/supply curves for the different decision strategy types 
used during the simulation. Note that one simulation cycle 
stands for a time period of one month. As stated above, two 
different decision rules from the buyer and seller agents are 
used. For the buyer agent, random and risk based decision 
strategies were considered while random and best price were 
used as the decision making strategies for the sellers. The 
combination of the decisions gives different simulation results. 
As seen in Table I, there are four (I – IV) decision Strategy 
Types (STs) that are used to assess the behavior of the agents in 
the IES. 

TABLE I.  BUYER/SELLER DECISION STRATEGY TYPES  

 
Seller 

SDS1 SDS2 

Buyer 
BDS1 ST I ST II 

BDS2 ST IV ST III 

 

For example, using ST I, the buyer enters into the market, 
purchases randomly (random price of materials) while the 
sellers change their prices randomly according to the market 
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price history. The figure can explain the synergy that occurs in 
the ecosystem when the agents freely interact with each other 
to exchange resources. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 2 Average biogas demand/supply time series: (a) ST I, (b) ST II, (c) 

ST III, (d) ST IV. 

Figure 6 shows the symbiotic relationship that exists 
between the three combined heat and power plants as buyers 
(CHP1, CHP2, CHP3) and the anaerobic digesters as sellers 
(AD1, AD2 and AD3). Figure 2 shows the biogas consumption 

(volume) of the three combined heat and power plants (agents) 
in the IES. It can be seen that the average demand and supply 
for the three CHP plants is 2.6×106MMBtu over the period. 
When the simulation starts, the biogas usage for the three CHP 
plants is approximately the same for the four different decision 
strategy types by the buyer-seller agents. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3 Average electricity demand/supply time series: (a) ST I, (b) ST II, 

(c) ST III, (d) ST IV.  
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This happens because the initial input parameters are the 
same at the beginning of the simulation runs. After some 
simulation cycles, it can be seen that biogas usage reaches its 
maximum point and afterwards it declines. The fluctuation in 
the total usage of biogas is linked to the saturation in the biogas 
usage in the IES and it is also being affected by the decision 
strategy type the agents are using during the market transaction. 
In comparison to the contribution of the selling agents in the 
IES, agent AD2 supplies are the highest over the period except 
in Figure 2Error! Reference source not found.(b) where AD3 
supplies more from the 40th simulation cycle onward. 

The average supply of biogas in the IES is 2.25×106, 
2.3×106, and 2.5×106MMBtu over the period for agents AD1, 
AD3, and AD2 respectively. The assumptions made under the 
BIO plant configuration, suggest that BIO plants have the 
potential to synergize with both the AD and CHP plant agents. 
The demand/supply curves between the three BIO plants as 
seller agents (BIO1, BIO2, BIO3) and the AD plants (AD1, 
AD2 and AD3) and CHP plants (CHP1, CHP2, CHP3) as the 
buying agents were also simulated. The results show the 
Distilled Dry Grain (DDG) sold out per month by BIO agents 
to the AD agents. Agent BIO2 supplied the least DDG for the 
four different decision making rules. This is a result of the 
agent BIO2 having the lowest production capacity compared to 
the other two BIO agents. Apart from this, the input/output 
ratio for BIO2 is also comparably low. On average, about 
2.7×108lb of DDG is sold in the market over the entire period. 
The BIO2 sales of DDG are stable throughout the simulation 
period. For the other two BIO agents, the supply of DDG 
fluctuates but the peaks are considerably lower at any given 
interval. BIO agents have a strong symbiotic link with CHP 
plants. The lignin pellet average demand/supply for the three 
CHP plants is 0.5×106tons over a period. The fluctuation in the 
total usage of lignin pellet is linked to saturation in its usage in 
the IES and it is also being affected by the decision strategy 
type the agents are using during the market transaction. The 
average supply of lignin pellet in the IES is 0.6×106, 0.53×106, 
0.52×106tons over a period for bio-refinery agents BIO1, 
BIO2, and BIO3 respectively. From the above, it can be 
concluded that there is a strong SRF in selling by-products 
between the BIO agents as sellers and CHP and AD agents as 
buyers in the IES. This is in line with the conclusions in [11]. 
The CHP plant agents have the potential to synergize with BIO, 
AD and market buyer agents. Figure 3 shows the average 
electricity sold to the BIO agents by the three CHP agents 
during the transaction. The impact of the CHP plants on the 
supply of electricity and process steam to the BIO plants is 
highly depended on the symbiotic index shown in Figure 6. 
Based on the synergy that occurs internally in the IES, it 
suggests that the BIO agent will transfer more with the external 
agents if the CHP plants are not part of the agents in the 
internal part of the IES. As shown in Figure 3, the supply is 
randomly distributed and the maximum supply is 0.85MWh by 
CHP1, except in Figure 3(d) where CHP2 supply reaches 
0.73MWh while the minimum supply is about 0.6MWh in all 
the four figures. The average process steam supplied by agent 
CHP3 is the highest throughout the simulation period except 
when CHP2 supplied more to the BIO agents. However, in all 

the decision strategy types, agent CHP1 supplies the least and 
this is a result of the low output of the generated steam. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 4 Biogas price variation under different seller-buyer decision 

strategy types: (a) ST I, (b) ST II, (c) ST III, (d) ST IV.  

B. Price Evolution of Agents in the Industrial Ecosystem 

To showcase the evolution of prices over time, simulation 
results for two different organizations, i.e. biogas and CHPs, 
are presented here. Figures 4-5 present the price evolution of 
the material exchange in the IES for each of the factory agents. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5 Electricity price variation under different seller-buyer decision 

strategy types: (a) ST I, (b) ST II, (c) ST III, (d) ST IV. 

Again, each Figure is divided into four subfigures, one for 
each different decision strategy type used in the simulation. As 
shown in Figures 4-5, we carried out 100 runs for ST I and ST 
IV while 500 runs were carried out for ST II and ST III. The 
reason for this difference was the need to show the price 
converge to a point in ST II and ST III after a time period. 
Sellers can change prices either randomly or after a strategy, 
while five different decision making strategies have been 

proposed for the buyers, although only two (random and best 
price) are used in this case study. 

In Figures 4(a) and 4(d), the biogas price fluctuates and 
reaches £14/MMBtu. In reality, this cannot be used for decision 
making by business owners. Figure 4(b) and 4(c) on the other 
hand, can be linked to what happens in real life. At the 
beginning of the simulation runs the price changes and over 
time it moves towards equilibrium. The price of biogas flattens 
out at the160

th
 period in both cases and remains the same until 

the end of the simulation run. This flattening happens as a 
result of the decision strategy used by the sellers (risk based) 
that forced the market price to move towards equilibrium when 
any change will mean fewer sales for the selling agent. 
However, there is little difference between the ST II and ST III. 
For the ST III, the equilibrium price shifts towards the agent 
with the lowest price in the IES, while there is a random shift at 
every period before equilibrium is reached in the ST II. The 
possible materials that the BIO can exchange are lignin pellet 
and DDG while process steam and electricity are the exchange 
materials for the CHP plants. Figure 5 shows the price variation 
for electricity and process steam under four different decision 
strategy types by the sellers and buyers. In this case, the CHP 
plants are the selling agents while the BIO and AD plants are 
the buying agents in the IES. The ST I and ST IV decision 
rules as pointed earlier are not realistic and this is indicated in 
the graph. The minimum average price of electricity as can be 
seen is approximately £0/MWh and the maximum reaches as 
high as £0.09/MWh in Figure 5(a) while the maximum value in 
Figure 5(d) is £0.08/MWh. As can be seen, the price of all the 
selling agents did conform to the average price recorded from 
the market history. 

From the simulation results, the sellers (BIO plants), act as 
offensive players while the buyers act as defensive players. 
When the decision strategy is either ST I or ST IV, the price of 
DDG fluctuates vividly. In the other two decision rules, the 
price reaches a peak as high as £0.18/lb before converging and 
then the price (£0.082/lb) is maintained throughout the 
simulation. In case of the lignin pellet price variation, the 
average price fluctuates and reaches a maximum value of 
£24/ton, which is close to reality. For ST II and ST III, the 
price of lignin pellet is almost the same from after the 140th 
period. The value in the case of ST II is £6.2/ton while it is 
£6.16/ton for the ST III. 

C. Buyer-Seller Symbiotic Relationship 

In order to identify changes of symbiosis in an IES, Figure 
6 shows the Symbiotic Relationship Index (SRI) for each of the 
decision strategy types. As expected during the beginning of 
the simulation, the SRI value is close to 0.2, which indicates 
the absence of symbiosis in the IES. This can be seen at the 
beginning of each of the simulation runs. While the simulations 
run, the SRI value grows significantly which indicates an 
increase in the transaction relationship between the different 
factories. It can be seen that the symbiotic relationship grows 
considerably from the 10th period and fourth, and this trend 
was maintained until the end of the simulation. The maximum 
value of the index is about 0.62 in Figure 6(a) and 6(d). These 
values indicate that there is a considerable symbiotic 
relationship for all the factory agents in the IES. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 6 SRI of the IES: (a) ST I, (b) ST II, (c) ST III, (d) ST IV. 

D. Sensitivity Analysis 

In order to gain some insight to the behavior of the factory 
agents in the IES, this section conducts the following 
sensitivity analyses regarding selling price increase on the SRI: 
(1) the effect of the increase by the factory agents and (2) the 
effect of the increase by market sellers.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 7 Sensitivity analysis on the effect of high/low price: (a) SRI 

decreases between factory agents and buyers, (b) SRI increases between market 

sellers and buyers, (c) SRI increases between factory agents and buyers, and 

(d) SRI decreases between market sellers and buyers. 

Sensitivity analysis is conducted to determine the effect of 
higher product prices from the factories in comparison to the 
market sellers. At the start of the simulation, the input values 
for the price of biogas, steam, and electricity were changed for 
only the factory agents and simulation was conducted using ST 
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III. An increase in the range of 5%–10% was added to the 
initial input value, thus making the factory agent price higher 
than the market seller agents’ while the other parameters 
remained the same. In Figures 7(a)-(b) it is seen that SRI 
decreases (average of 0.37) while it increases for the market 
sellers (average of 0.77), i.e. the buyers tend to form synergy 
with the market sellers than with the factory agents. In another 
sensitivity analysis, the market sellers had the high selling price 
at the start of the simulation while the other input parameters 
remained unchanged. Figures 7(c)-(d) show the impact of 
market sellers selling at higher price throughout the simulation 
run. The effects of this on the IES are that the factory agents’ 
SRI to the buyers increases to 0.72 on average while the SRI 
for the market sellers to the buyers decreases to 0.40. This 
behavior is similar to a self-sufficient system that does not 
require external source of supply but in reality this cannot 
happen because waste will always be generated. In summary, 
the results show that price variation has considerable impact on 
the configuration of the IES. It also suggests that in order to 
improve the existing relationships between the various parties 
in the IES, there must be some price regulation and this is one 
of the reasons why agents are able to learn from their history 
and the market’s history. 

VII. CONCLUSION 

As the sensitivity analysis carried out in this work showed, 
agent-based modeling technique is an effective tool that can be 
used to express the evolution of eco-industrial systems. With 
this modeling technique we can predict or simulate the price 
variation or forecast the demand and supply time series, which 
are difficult to be determined with supply and demand 
deterministic calculations. Increasing the product categories, 
extending industrial chains, and creating new industrial chains 
through utilizing wastes and by-products can create a 
comprehensive factory symbiotic community of higher 
sustainability. The results demonstrate that the Réseau agent-
based model allowed the investigation of the different 
behaviors exhibited by the various agents in exchange of 
materials in an industrial park. This complex case study 
demonstrated realistic demand time series generated for 
decision strategies ST II and ST III, although the price curves 
for such strategies are not so realistic as they converge to a 
single value. In all, it was observed that the risk based seller 
decision strategy developed in this work provides significantly 
more realistic demand and supply time series, independent on 
whether the buyer chooses the seller randomly or according to 
the best price. This is the result of the risk-based price being 
linked to the market average only. In reality, it will also depend 
on manufacturing costs. 

In conclusion, the findings of this work suggest that agent-
based modeling is a promising tool that can be used to simulate 
industrial ecosystems in order to examine the behavior of 
agents in response to demand and supply variations. 
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