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Abstract-Ensuring security for lightweight cryptosystems in 

mobile cloud computing is challenging. Encryption speed and 

battery consumption must be maintained while securing mobile 

devices, the server, and the communication channel. This study 

proposes a lightweight security protocol called FEATHER which 

implements MICKEY 2.0 to generate keystream in the cloud 

server and to perform mobile device decryption and encryption. 

FEATHER can be used to implement secure parameters and 

lightweight mechanisms for communication among mobile 

devices and between them and a cloud server. FEATHER is 
faster than the existing CLOAK protocol and consumes less 

battery power. FEATHER also allows more mobile devices to 

communicate at the same time during very short time periods, 

maintain security for more applications with minimum 

computation ability. FEATHER meets mobile cloud computing 

requirements of speed, identity, and confidentiality assurances, 

compatibility with mobile devices, and effective communication 
between cloud servers and mobile devices using an unsafe 
communication channel. 

Keywords-mobile cloud computing; lightweight encryption; 

battery consumption; offloading tasks; MICKEY 2.0 

I. INTRODUCTION  

Data transfer between two mobile devices and from a 
mobile device to the cloud should be done securely, through 
multiple different communication channels, such as Wi-Fi, 4G 
and 5G. A secure protocol for data transfer through unsecure 
communication methods is required. As mobile devices have 
limited computation power, it can be difficult to address all 
security cryptosystem tasks. Authors in [1] proposed a mobile 
cloud computing enterprise that consists of mobile devices, a 
wireless core, Wi-Fi access points, and regional information 
centres. In addition to the limited computational capabilities of 
mobile devices, battery consumption due to heavy 
computations adds another challenge. Authors in [2] showed 
that mobile computing could save energy, such as battery life 
and wireless energy, by offloading some tasks to a cloud 
server, which is used to transfer the data in some applications, 
however some applications are not energy efficient. 

To meet security challenges, as well as the demand for a 
lighter security protocol to save time and address computation 

power, device hardware limitations, and battery consumption, 
the research questions to answer are: 

• How can MICKEY 2.0 be implemented efficiently to 
secure communication between mobile devices in mobile 
cloud computing? 

• How can the performance of a new security protocol be 
evaluated against the existing protocols? 

• How can the claim that the proposed protocol is immune 
from attack be justified? 

The aims of this research are: 

• To implement MICKEY 2.0 efficiently to secure 
communication between mobile devices in mobile cloud 
computing. 

• To evaluate the performance of the new security protocol 
against the existing protocols. 

• To provide a clear justification that the new security 
protocol is immune from possible attacks. 

This paper proposes a new protocol, FEATHER, to better 
meet the security and energy needs of mobile cloud computing 
and mobile devices than existing protocols.  

II. BACKGROUND 

A. Mobile Computing 

Mobile cloud computing serves important applications, 
such as mobile learning, mobile commerce, mobile gaming, 
eHealth applications, and web searching, [3] and is growing at 
a fast rate, with 4.78 billion mobile devices globally predicted 
by the end of 2020 [4]. With many devices connected to each 
other via large networks, there is a vulnerability to attacks that 
requires the use of reliable security protocols. Encryption 
systems suitable for these devices on insecure communication 
channels are needed. A secure communication protocol must 
meet the following requirements: speed, identity protection, 
confidentiality, compatibility with mobile devices, and 
effective communication between cloud servers and mobile 
devices through a communication channel that is not safe. 
Many cryptosystems meet the demand for private and secure 
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transfer of confidential information. However, some require a 
large computation capability. The Advanced Encryption 
System (AES) is widely used because it is a very strong and 
secure cryptosystem [5]. However, it is a “heavy” system that 
requires large computational resources, has high power 
consumption, and is therefore not suitable for mobile devices 
with limited computation capacity. Some researchers have 
introduced lightweight versions of AES for small devices, such 
as ALE [6], to reduce the demand on resources, such as Central 
Processing Units (CPUs) and memory, used to generate the 
keystream. Some components in cloud computing such as 
embedded systems on cloud computing with 32-bit, 16-bit, and 
8-bit microcontrollers cannot meet real time demands for 
conventional methods of cryptography [7]. Therefore, AES is a 
poor solution for many embedded devices in cloud computing 
that have low computation ability. 

B. Cloud Computing 

For a lighter encryption method in cloud computing, 
lightweight stream ciphers can be implemented to provide the 
required security. Lightweight stream ciphers include a 
decryption function and an encryption function to handle 
messages of arbitrary length. Thus, they are better than block 
ciphers, such as AES, that only handle inputs of a fixed length. 
Due to their functionalities, they are well adapted to low 
bandwidth or noisy communications and thus are appropriate 
for cloud computing. Speed, memory, number of CPUs, and 
cost efficiency are also important factors [8]. In [9], a 
MICKEY 2.0 variant, MICKEY 2.0.85, was proposed as the 
preferred choice over other lightweight stream ciphers. It is 
lighter and has lower energy consumption, which means it is 
more cost efficient [10]. However, the protocol can be adapted 
to implement other lightweight ciphers, such as Trivium or 
Grain. Al-Omari [11] proposed a lightweight block cipher-
based encryption mechanism and tested a faster algorithm by 
comparing it to an AES cipher in terms of speed. Ali et al. [12] 
focused on a cloud-based file distribution and management 
model, and showed that the ability of cloud computing to adapt 
is important for users, and not only in terms of data storage. 
The study also addressed the problem of offloading tasks to the 
server by using multiple servers and demonstrated how this 
method provides more security when sharing data. Hassan et al. 
[13] discussed cloud computing applications using machine 
learning approaches as a useful direction for predicting loading 
using statistical analysis, as well as for ensuring service level 
agreements. 

III. LITERATURE REVIEW  

Bahrami and Singhal [14] studied the adequacy of using 
AES in mobile cloud computing and explained that, due to 
cost, cryptosystems such as AES are not suitable for mobile 
devices, because mobile devices have limited resources, such 
as limited power energy, low speed processors, and tiny RAM 
capacity. AES is not the appropriate encryption technique, 
since offload and download is done for every single transferred 
file. They introduced lightweight methods, such as pseudo-
random permutation, based on chaos systems. Another solution 
is using lightweight security methods that provide a balance 
between energy efficiency and security. A lightweight security 
technique can be considered an easy operation (i.e. a 

permutation) instead of using complicated and expensive 
operations when using secret key or public key encryptions 
[15-17]. 

A. The Advantage of using Stream Ciphers in Small Devices 

A stream cipher is a symmetric cryptosystem that uses the 
same key for encryption and decryption. Stream ciphers can 
transform data faster than other ciphers, such as block ciphers, 
and also faster than ciphers in an asymmetric cryptosystem [18, 
19]. Stream ciphers are less secure than other, symmetric and 
block cipher, types of cryptosystems, such as AES which is one 
of the most secure ciphers. The encryption process in AES 
involves permutations and a substitution process and requires a 
number of rounds, which increases the power and storage 
requirements. On the other hand, lightweight stream ciphers 
such as MICKEY 2.0, Trivium, and Grain [20] need much less 
power and memory. Widely used lightweight stream ciphers 
for small applications include E0 (Bluetooth), RC4 (Web), and 
the A5 family (GMS) [21]. Stream ciphers have advantages 
due to their high throughput property and low computational 
complexity. Lightweight stream ciphers [22] are a better choice 
than block ciphers because they need less memory and less 
hardware complexity 

B. Using Lightweight Stream Ciphers in Cloud Computing 

and Mobile Cloud Computing 

Lightweight stream ciphers have several advantages for 
cloud computing. They provide fast encryption by generating a 
secure keystream faster than other popular ciphers, such as 
AES. They need fewer computation facilities, such as CPUs 
and memory from the cloud, which reduces cost and power 
consumption significantly. Additionally, they include faster 
encryption, the consumption of less battery power, and lower 
bandwidth requirements.  

C. AES and CLOAK Protocols 

CLOAK is a lightweight protocol based on the AES cipher 
that enables two mobile devices to communicate, while leaving 
the keystream generation on an external server [23]. As 
CLOAK can get the keystream from either trusted or untrusted 
external servers, the main security concern is to protect the 
keystream. Security can be compromised by fetching the 
keystream from an external server and from communication 
media. Lightweight stream ciphers that can be used in mobiles 
include Trivium [24], Grain [25], and MICKEY 2.0 [26]. 
MICKEY 2.0 cipher is more resistant to statistical attacks [27-
29] and it can produce large throughput. The lightweight 
protocol developed in this study does not rely on the server to 
be secure and will not be compromised as in the CLOAK 
protocol, which assumes the security of the server relies on the 
server provider [23]. Using MICKEY 2.0 in this lightweight 
protocol to provide a secure keystream is significantly faster 
than using AES. For example, the time needed by the server to 
generate the keystream is reduced, which in turn reduces the 
time to transfer the data between the server and the mobile.  

Adithya et al. [30] introduced another enhancement for the 
CLOAK security, which is compared to the proposed 
FEATHER protocol in this study in Figure 3, and discussed in 
Section VIII. 
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IV. THE LIGHTWEIGHT PROTOCOL FEATHER 

A. Overview 

The study designed a MICKEY 2.0 cipher based protocol 
called FEATHER to strengthen confidentiality and protection 
during messaging between mobile devices, as well as 
communication between devices and the cloud server (see 
Figure 1). The MICKEY 2.0 cipher produced a secure 
keystream in the external server to reduce reliance on mobile 
devices that have limited computing power and memory. The 
role of mobile devices is only encryption and decryption, which 
allows mobile devices to compute and reduce the amount of 
energy consumed by the device battery. 

 

 
Fig. 1.  Mobile cloud basic communication.  

A lightweight secure protocol is introduced for 
communication between devices and the external server over 
the cloud, as well as design applications on mobile devices for 
the process of verification and encryption and decryption. The 
proposed protocol is faster and can move larger files than the 
CLOAK cipher [23]. The protocol also maintains a high level 
of security. The protocol was designed to achieve security 
through the application of the MICKEY 2.0 cipher with 
additional protection systems for identity verification, such as 
hash functions, time stamps, and out-of-band passwords. A 
lightweight stream cipher is needed to generate the keystream 
faster and use fewer resources, so more secure applications can 
take advantage of advances in mobile cloud computing. If the 
keystream generated in the server is faster, it will allow more 
mobiles to get it from the cloud compared to a heavy 
encryption system like AES. Thus, it will be more efficient and 
will reduce cost. Using MICKEY 2.0 meets most of these 
needs. 

B. Design Principles 

There are ten design principles for a lightweight protocol: 

1) Avoid Implementing a Heavy Encryption Method 

As some popular encryption algorithms, such as AES, 
require considerable resources in terms of CPU time and/or 
memory usage, the protocol should offload the more 
computing-intensive steps to a server in the cloud while 
simplifying the steps carried out on the mobile device. 
Therefore, a lightweight protocol can offload generation and 

storage of the keystream to a server using the MICKEY 2.0 
algorithm. 

2) Avoid Relying Entirely on the Server 

It is important to avoid relying entirely on the server to 
ensure communication security. Then, even if an adversary 
compromises the server, it cannot easily use the captured 
keystream data to decrypt messages directly. Although the 
client receives a keystream from the server, the client does not 
use it directly. Instead, the client selects a few random values 
using primitive polynomials to apply the keystream to the 
plaintext to compute the encrypted data. 

3) Send Messages between Client and Server over the 

Internet 

The protocol must assume an adversary may intercept 
messages or an impostor may try to insert invalid messages in 
the client–server communication. One popular approach is to 
use a key-exchange algorithm, such as Diffie–Hellman (which 
is vulnerable to a man-in-the-middle attack), or a more 
sophisticated Station-to-Station protocol [31], which avoids 
this vulnerability. The significant computation of these 
approaches may not be appropriate for simple mobile or 
microcontroller devices. The protocol needs to assume the 
ability to send brief out-of-band messages using a different 
communication medium. For example, if the protocol is 
implemented on top of the HTTP protocol, a secret out-of-band 
message may be sent by email or SMS. In this protocol, an out-
of-band message is sent from the server to the client to convey 
a one-time-pad, and from one client to another to convey a file 
token and the secret values (using primitive polynomials) used 
to step through the keystream. 

4) Focus on Authentication on Unique Security Parameters 

For authentication, this protocol uses a “bring something, 
know something” technique. The protocol assumes that each 
mobile device (or microcontroller device) has a Universally 
Unique Identifier (UUID). It also allows each user to select a 
username that is not necessarily unique. These are combined 
using a hash function to generate a Unique Identifier (UID) for 
each user. At the initiation of the protocol, each user registers 
its UID and then communicates an encrypted copy of its secret 
password to the server. For subsequent communication, all 
messages between the client and the server are validated using 
a digital signature based on hashing the message and the secret 
password. In this case, the “bring something” refers to the 
device and its UUID and the “know something” refers to the 
user’s secret password. Since an adversary does not know the 
secret password, it cannot generate a valid signature, so the 
client and server can reject messages with invalid signatures. 

5) Secure the Communication between the Client and the 

Cloud Server 

Client-server communication security relies on a shared 
keystream. This shared keystream is first generated by the 
server when the client sends a message to register the user. In 
its response to the client, the server sends the shared keystream, 
encrypted with the one-time-pad, to prevent an adversary from 
capturing the keystream. 
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6) Offload the Keystream Generation to the Cloud Server 

The server implementation may use any reasonable 
technique for keystream generation. In practice, a method is 
needed that is computationally efficient and still provides a 
reasonable level of security. To generate a new keystream for 
each user, the server must first create an initial key (or key+IV 
pair). 

7) Ensure Client Request for the Keystream from the Cloud 

Authentications 

When the client submits a request to generate a new 
keystream, it includes a token and expiry time. There are two 
possible implementations. The server may simply generate and 
store a key, and then generate the actual keystream “on the fly” 
whenever requested. Alternatively, the server may generate the 
keystream right away and store it as a file to be retrieved later 
when the client submits the corresponding token. The expiry 
time allows the client to limit the time the keystream is stored 
on the server. This reduces the availability of the keystream if 
an adversary tries to compromise the server.  

8) Ensure There Are Possible and Flexible Variations for 

Secure Data Transfer 

To enhance the security of the protocol, the server never 
has access to the unencrypted data. The data are encrypted by 
the client, using a modified version of the keystream, and this 
modification is unknown to the server. When transferring 
encrypted data from one client to another, there are three main 
options available. 

• In one variation, since the data are securely encrypted, the 
file can be uploaded to any simple file server. This may 
provide an increased level of security since it introduces a 
separation from the keystream server and the file server. In 
fact, clients would be free to use a variety of different file 
servers to transfer encrypted data files, as long as these are 
communicated between the sender and receiver. 

• In a simpler implementation, the clients can upload or 
download the encrypted data to the server and are being 
identified by a unique token which can be pseudo-randomly 
generated. Any other client can download the encrypted 
file, asynchronously, once it receives the appropriate token 
from the first client. Some efficiency can be gained if the 
file upload and download is implemented on the keystream 
server, since the same protocol mechanism can be used to 
download a keystream (given a token) or to download 
encrypted data (given a token). In fact, once a keystream is 
generated and stored as a file, the keys used to generate the 
keystream could be deleted, reducing the vulnerability of 
the protocol. 

• In the third option, the encrypted data could also be 
transferred directly and synchronously from one client to 
another. This approach could make sense when a pair of 
clients wants to send and receive a number of smaller 
messages, as in a secure chat session. This can be 
accomplished first by generating and downloading a 
keystream and then sending encrypted messages back and 
forth without requiring an intermediate file server. 

9) Modify the Keystream to Further Enhance Security 

For efficiency, the client uses a keystream generated by the 
remote server, but for security, the keystream is modified in a 
way unknown to the server. In particular, the client randomly 
selects a few parameters that describe a particular pseudo-
random permutation of keystream values. By sharing these 
secret permutation parameters with the other client through an 
out-of-band communication, the other client will be able to 
decrypt the encrypted file. 

10) Ensure Data in the Cloud Server are Tied to Expiry Time 

The security of the protocol is enhanced by reducing how 
long information is retained before being deleted. The 
keystream and the encrypted files have an associated expiry 
time, after which the server deletes them. This reduces the 
information that is exposed if the server is compromised. 

C. Algorithmic Demonstration of the FEATHER Protocol  

1) Channels 

1. Insecure channel e.g Internet HTTP 

2. Out-of-band channel e.g SMS 

2) Algorithm 1: Mobile Device 

Step 1: Register mobile with server 
i. Pick a unique username 
ii. Create UID: Hash (username, device ID) 
iv. Get the timestamp t 
v. Send register action (via channel 1) with payload [mobile 

phone number, UID, t] 
vi. Wait for response 
vii. If OK status received, go to step 2. Otherwise, ERROR 

status received, go to step 1 (ii). 
 
Step 2: Update password with server 
i. Wait for one-time-pad, OTP 
ii. Provide a password 
iii. Create hashed password, pass: Hash (password, UID) 
iii. Create an encryption d: XOR (pass, OTP) 
iv. Get the timestamp t 
v. Create the payload, x: Hash (UID, d, t) 
vi. Send update action with payload 
vii. Wait for response 
viii. If OK status received, go to step 3. Otherwise, ERROR 

status received, go to step 2 (ii). 
 
Step 3: Validate password with server, if the first time 
i. Send validate action with payload x 
ii. Go to step 4. 
 
Step 4: Generate keystream from server 
i. Provide a unique 32-byte token 
ii. Send generate action with no payload 
iii. Wait for keystream response, with bytes size n 
iv. Go to step 5. 
 
Step 5: Share keystream with another mobile 
i. Specify expiry time, e 
ii. Get the timestamp t 
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iii. Create a unique token: Hash (UID, e, t) 
iv. Create an encryption f: XOR (token, keystream) 
v. Create the payload, x: Hash (message, pass, UID, e, t, f, 

n) 
vi. Send payload x (via channel 2) 
vii. Go to step 6. 
 
Step 6: Upload to server 
i. Provide a 32-byte file-id 
ii. Create a file: Hash (UID, file-id, e, t) 
iii. Create an encryption f: XOR (file, keystream) 
iv. Create an encryption d: XOR (file-contents, token, 

keystream) 
v. Send upload action with payload [UID, f, d]. 
 
Step 7: Request from server 
i. If token + keystream, create an encryption f: XOR (token, 

keystream). Otherwise: an encryption f: XOR (file-id, 
keystream) 

ii. Get the timestamp t 
iii. Create the payload x: Hash (pass, UID, f, t) 
iv. Send request action with payload x. 
 

3) Algorithm 2: Server 

Step 1: Wait for registration request from mobile 
i. Receive registration action with UID: 
ii. Get the timestamp t 
iii. If no account with the UID exists: 
 a. Create a new account 
 b. Respond with [OK status, t] 
 c. Send one-time-pad (via channel 2) 
 d. Go to step 2 
 Otherwise, account with UID exists: 
 a. Respond with [ERROR status, error code, t] 
 b. Go to step 1. 
 
Step 2: Wait for update request from mobile 
i. Receive update action with encrypted payload, d, and 

signature 
ii. Recompute the signature 
iii. Decrypt the hashed password, pass 
iv. Validate the message 
v. If message is valid: 
 a. Respond with [OK status] 
 b. Go to step 3. Otherwise: 
 a. Respond with [ERROR status] 
 b. Go to step 2 
 
Step 3: If process validate request received (only first time) 
i. Go to step 2 (ii). Otherwise, go to step 4. 
 
Step 4: Wait for generate request from mobile 
i. If no payload, generate keystream: 
 a. Generate random MICKEY 2.0 keystream 
 b. Respond with the key 
 c. Go to step 4. Otherwise, payload received: 
 a. Create hashed payload: Hash (payload, keystream) 
 b. Store hashed payload 
 c. Go to step 5. 

Step 5: Wait for upload request from mobile 
i. Receive upload action with encrypted file payload 
ii. Store the file 
iii. Respond with [OK status]. Otherwise something goes 

wrong, respond with [ERROR status]. 
 
Step 6: Wait for ‘request’ request from mobile: 
i. Receive request action with encrypted token or file-id 
ii. Lookup the token and create the requested data d: XOR 

(token + keystream). Otherwise d: XOR (file-contents, 
keystream) 

iii. Get the timestamp t 
iv. Create the payload x: Hash (pass, d, t, OK status) 
v. Respond with payload x 

V. PROTOCOL IMPLEMENTATION 

The FEATHER communication protocol enables mobile 
devices with limited computational resources to share 
encrypted files with the help of an external server that has 
greater computing, storage, and bandwidth resources. The 
protocol uses two communication channels. The first channel is 
assumed to be insecure, such as the Internet using HTTP to 
transport messages between the mobile devices and the 
external server. The second channel carrying “out-of-band” 
messages is assumed to be secure and could be implemented 
using SMS messages to mobile devices, or possibly email. The 
first channel allows mobile devices to initiate six actions by 
sending a message to the external server and receiving a 
response. The second out-of-band channel is used to send and 
receive three kinds of secret information: 

• A one-time-pad, which could use a more secure parameter 
instead of justification. 

• A file id. 

• A token id (and some additional parameters). 

The protocol also uses a cryptographic hash function, such 
as SHA-256, which outputs a 32-byte hash value. For distinct 
pairs of strings, s and t, H(s)≠H(t) (with very high probability). 
Messages in the protocol are simply concatenated key = value 
pairs of parameters. Each of the 11 possible parameters is 
identified by a unique character: 

a = action 
s = status 
c = code (error code) 
u = uid 
p = phone 
f = token or file 
d = data 
n = number 
e = expire 
t = timestamp 
x = signature 

The timestamp is Unix time in seconds, and can help 
prevent “replay attacks”. The cryptographic signature is a hash 
of the entire message string (before the signature is added) and 
is used to authenticate messages. The six actions and messages 
are: REGISTER, UPDATE, VALIDATE, GENERATE, 
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UPLOAD, and REQUEST. Figure 2 illustrates the secure 
communication between the basic components, server, mobile 
devices and communication channel. 

 

 
Fig. 2.  FEATHER protocol message communications between the mobile 

devices and the cloud server. 

A. REGISTER 

The person using the mobile device app provides a 
username (e.g. “Jason”). The device hardware is also assumed 
to have a unique hardware identifier (e.g. Device ID). The 
mobile app combines these strings using a hash function to get 
a unique id that can be sent to the external server without 
revealing any private information. 

uid = H(device ID, username); 32-byte value. 

The mobile device also has a telephone number at which it 
can receive an out-of-band message via SMS. The person 
registers an account on the external server by sending a 
message: 

a = register 
u = uid 
p = phone 
t = timestamp 

When the external server receives this message, if no 
account exists for that uid, a new account is created, and this 
message is sent back: 

s = OK 
t = timestamp 

If an account already exists for that uid the server responds: 

s = ERROR 
c = code (indicating type or error) 
t = timestamp 

If an account already exists for the given uid, the person 
needs to pick a new username to create a different uid: 

 ONE-TIME-PAD via SMS 

Following a successful REGISTER message, the external 
server sends a one-time-pad to the mobile device via an out-of-

band channel using SMS to the phone number provided. The 
person would need to cut-and-paste this string into the mobile 
device app to be stored. 

B. UPDATE 

In the mobile device app, the person also provides a 
password (e.g. “MySecret”), which provides a type of “bring 
something, know something” security (bring something = 
mobile device, know something = username, password). The 
user’s simple password is combined with the uid to create a 
“hashed password”, which will be sent to the external server. 

pass = H(uid, password) 

The hashed password is encrypted using XOR with the 
secret one-time-pad. The entire message (before the signature) 
is hashed to create a cryptographic signature for authentication. 

a = update 
u = uid 
d = XOR(pass, OTP(One-Time-Pad)) 
t = time 
x = H(message) 

The external server confirms the validity of the message by 
recomputing the signature, and then decrypts and stores the 
hashed password in the account. The response is either OK or 
ERROR. 

C. VALIDATE 

This message is optional but useful for debugging purposes 
when implementing this protocol for the first time. The mobile 
device sends the following message asking the external server 
to confirm that the hashed password and signature are valid. 

a = validate 
u = uid 
d = XOR(pass, OTP) 
t = time 
x = H(message, pass) 

The external server decodes the hashed password, 
recomputes the signature, and responds with either OK or 
ERROR. 

D. GENERATE 

The mobile device provides a unique 32-byte token and 
asks the external server to generate a new encryption key that 
will be used to generate a keystream of “number” bytes that 
will be stored until a given “expire” time. The unique token is 
created by hashing the uid, expire, and timestamp: 

token = H(uid, expire, timestamp) 

The token is XOR-encrypted with the shared-keystream. 
The message sent to the server has these parameters: 

a = generate 
u = uid 
f = XOR(token, shared-keystream) 
n = number (of bytes in the keystream) 
e = expire 
t = timestamp 
x = H(message, pass) 



Engineering, Technology & Applied Science Research Vol. 10, No. 4, 2020, 6116-6125 6122 
 

www.etasr.com Alamer & Soh: FEATHER: A Proposed Lightweight Protocol for Mobile Cloud Computing Security 

 

The external server generates a random MICKEY 2.0 key 
(20 bytes of key+IV). There are two implementation-dependent 
choices: 

• The server can simply store the 20-byte in association with 
the token and generate the keystream on-the-fly when 
requested, or 

• The server can generate and store the keystream and then 
discard the 20-byte key. With this option, the token 
becomes equivalent to a file-id, and the keystream becomes 
equivalent to the file contents. 

E. UPLOAD 

The mobile device asks the external server to store a file by 
providing a 32-byte file-id, the encrypted contents of the file, 
and an expiration time, after which the file will be deleted. The 
unique file-id is created by hashing the uid, filename, expire, 
and timestamp: 

file = H(uid, filename, expire, timestamp) 

The file-id is XOR-encrypted with the shared-keystream. 
The mobile device sends a message with these parameters: 

a = upload 
u = uid 
f = XOR(file, shared-keystream) 
d = XOR(file-contents, token-keystream) 

The external server stores the file and responds with OK or 
else ERROR if something goes wrong. 

F. REQUEST 

A mobile device can request a token-keystream or 
encrypted file contents by providing the appropriate 32-byte 
token or file-id. The message has these parameters: 

a = request 
u = uid 
f = XOR(token, shared-keystream) 
or f = XOR(file, shared-keystream) 
t = timestamp 
x = H(message, pass) 

The external server uses the token (or file-id) to look up the 
requested data and sends it back to the mobile device. 

s = OK 
d = XOR(token-keystream, shared-keystream) 
or d = XOR(file-contents, shared-keystream) 
t = timestamp 
x = H(message, pass) 

The protocol assumes the first mobile device (the sender) is 
able to communicate the “token” and “file” to the second 
mobile device (the receiver) through a secure out-of-band 
channel, here assumed to be via an SMS message. It is 
important that the communication remains secure even if the 
external server is compromised by an adversary. Therefore, the 
token-keystream is not used directly to encrypt the file 
contents, since someone with access to the server could easily 
decrypt the file. Instead, the first mobile device must pick 
several random numbers R1, R2, R3, ... that are used to walk 

through the bytes of the token-keystream in a deterministic but 
difficult to predict order. These sets of random numbers must 
also be communicated to the second mobile device through a 
secure out-of-band channel. For example, for a token-
keystream with length N=2k-1, which is a prime number, the 
index of the next byte to be used could be calculated as: 

index(i) = R1 mod N 
index(i+1) = (R2 * index(i) + R1) mod N 

The mobile app was designed in Android Studio and then 
the app was transferred as a file to be converted into a mobile 
local app. The code was written in Java on the Android studio 
platform, which works on all major operating systems (i.e. 
Windows, MacOS and Linux).  

VI. RESULTS AND ANALYSIS 

The performance of FEATHER protocol is measured on 
two items: the overall speed and battery consumption. 

A. Speed Performance 

Five different mobile devices with Android-based operating 
systems, shown in Table I, were used to test the protocol 
performance. The total time from downloading the keystream, 
encryption, and writing to storage was measured. Tables II–V 
show the computations in five different Android-based devices. 

TABLE I.  SPECIFICATIONS OF THE USED MOBILE DEVICES  

 D-1 D-2 D-3 D-4 D-5 

Model 

name 
LG V20 

Huawei 

Nova 3e 

Samsung 

Galaxy S9+ 

Samsung 

Galaxy A6+ 

Lenovo M10 

Tablet 

OS 
Android 7.0 

Nougat 

Android 

8.1 with 

EMUI 8.0 

Android 9.0 

P 

Android 8.0 

Oreo 

Android 8.0 

Oreo 

API 

level 
24 26 28 26 27 

CPU 

Quad-core 

2.15GHz + 

1.6GHz 

Quad-core 

2.36GHz 

Octa-core 

(4×2.7GHz & 

4×1.7GHz) 

Octa-core 

1.8Ghz 

Octa-core 

1.8GHz 

Chipset 

Qualcomm 

Snapdragon 

820 

HiSilicon 

Kirin 659 

Qualcomm 

Snapdragon 

845 

Qualcomm 

Snapdragon 

450 

Qualcomm 

Snapdragon 

450 

RAM 4GB 4GB 6GB 4GB 3GB 

GPU Adreno 530 
Mali-T830 

MP2 
Adreno 630 Adreno 506 Adreno 506 

Battery 
3200mAh, 

Li-Ion 

3000mAh, 

Li-Polymer 

3500mAh, 

Li-Ion 

3500mAh, 

Li-Ion 

4,850mAh, 

Li-Ion 

Polymer 

 

Table II shows the total time average for the five different 
devices. The LG V20 device was the slowest at 18.44169s. 
However, it was very fast for 8MB file size. The Samsung 
Galaxy S9+ device had the fastest total time average (for 
Download, Decode and Write) at 10.3438s. The total time for 
all five devices was 71.6456s and the average was 14.3291s. In 
the experiments, 15 different file sizes from 1KB to 16MB 
were used to measure the overall performance, as shown in 
Tables III-V. It is clear that FEATHER can handle large files, 
and 16MB file size is sufficient to transfer documents and 
photos. These calculations use the Samsung Galaxy S9+, and a 
16MB file only needs about 19.0s overall time which includes 
downloading the encrypted file from the external server, 
decryption time and storing it to the device (write). 
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TABLE II.  RUNNING 8MB FILE 60 TIMES AND AVERAGE TIME (S)  

 D-1 D-2 D-3 D-4 D-5 

Down 

load 
18.0833 11.594383 10.162450 17.28501 13.083 

Decode 0.13299 0.090583 0.0872030 0.151201 0.1143 

Write 0.22536 0.12371666 0.0941666 0.2327666 0.1841 

Total 

time 
18.44169 11.80868266 10.3438196 17.668978 13.382 

TABLE III.  RUNNING 3 TO 512KB FILES AND CALCULATING TIME (S) 

File size 32KB 64KB 128KB 256KB 512KB 

Download 0.324 0.38 0.424 0.743 1.001 

Decode 0.00102 0.0015886 0.0023127 0.0085227 0.01105 

Write 0.085 0.066 0.068 0.057 0.052 

Total time 0.41002 0.4475886 0.4943127 0.8085227 1.0640 

TABLE IV.  RUNNING 1 TO 16MB FILES AND CALCULATING TIME (S) 

File size 1MB 2MB 4MB 8MB 16MB 

Download 1.684 2.957 5.439 9.625 18.664 

Decode 0.036893 0.02132 0.0324316 0.0836791 0.1598017 

Write 0.057 0.085 0.092 0.106 0.19 

Total time 1.777893 3.06332 5.5634316 9.8146791 19.013801 

 

B. Power Consumption 

An Android-based application, GSam Battery Monitor [32] 
was used to measure the overall battery power consumption of 
FEATHER using a Samsung Galaxy S9+ with a 3500mAh Li-
ion battery. After running GSam and the mobile app for 
FEATHER, the results showed that performing the operations 
on 10 files varying in size from 2 to 16MB consumed less than 
1% of all apps running in the background, which consumed 1% 
of battery power, so FEATHER consumes only 0.0001% of 
battery power.  

C. . FEATHER vs. CLOAK  

The proposed FEATHER protocol is lighter than CLOAK 
and is much faster. Comparing the performance for file sizes of 
1, 2, 4, and 8MB shows that FEATHER is faster. For example, 
in Table VI, the total time for 8MB file size is 110s for 
CLOAK and about 9.8s for FEATHER. Therefore, FEATHER 
is even more practical if multiple devices need to communicate 
at the same time. In addition, FEATHER consumes 80% less 
battery power than CLOAK. Adithya et al. [30] presented 
another secure application of CLOAK protocol in Apache 
server, using a Graphical User Interface to provide more 
security, however it takes 1 to 2s for users to enter the digits. 
FEATHER, CLOAK and [30] are compared in Figure 3. 

TABLE V.  CLOAK AND FEATHER PROTOCOLS: TOTAL SPEED TIME 

FOR DIFFERENT FILE SIZES 

File size 

(MB) 

Total time (s) 

CLOAK FEATHER 

1 20 1.77789342 

2 30 3.06332185 

4 60 5.56343165 

8 110 9.81467915 
 

VII. ATTACK ANALYSIS 

This section provides an analysis of common attacks and 
shows how FEATHER is resistant to these types of attacks. 

A. Man in the Middle Attacks 

The attacker can interrupt data, inject information, and 
redirect the traffic. This can be between the two devices or 
between the devices and the external server, thus it works on 
the communication channel. This can be prevented by 
providing strong mutual authentication and end point 
authentication, as the FEATHER protocol does, and by using 
hashing for messages, so as all messages are wrapped in hash 
functions. Thus, FEATHER is immune from man in the middle 
attacks. 

 
Fig. 3.  CLOAK, FEATHER and Adithya et al. [30] speed performance 

comparison. 

B. Insider Attacks 

On the server side, if an insider can gain access to the 
information they only gain access to the keystream. However, 
the message will be included in a hash function, as well as the 
one-time-pad, and another secure parameter such as the 
timestamp or a random number only known by the mobile 
device users. On the mobile side, the mobile will validate the 
messages received from the server and other mobiles. 

C. Denial of Service Attacks 

The FEATHER protocol has steps in the external server to 
authenticate users before accessing the service by: 1) 
authentication of users’ credentials, 2) updating the accessing 
parameters, and 3) validating the users’ messages and hash 
functions. As verification by the server and devices is mutual, a 
denial of service attack is not applicable. 

D. Chosen IV-Attacks 

The keystream is generated by using MICKEY 2.0 and 
(key, IV) as the initial input. In FEATHER, the IV is not used 
more than once with the same key, thus FEATHER eliminates 
this threat by preventing the reuse of the IV, as well as by 
including the IV in the hash function, so an attacker choosing 
the IV will not result in the key being revealed. 

E. Two-time Pad Attacks 

Assuming there are two messages m1 and m2, if the same 
key (k) is used (called two-time pad), and there are two 
ciphertexts (c1, c2) then: 
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m1⊕ k that results in c1 and 

m2⊕ k that results in c2. 

Therefore, it is easy for the attacker to perform the XOR 
operation for ciphertexts in order to reveal the plaintext as: 

c1 ⊕ c2 

that is, using statistical frequency analysis leads to m1 ⊕ m2. In 
the FEATHER protocol, each file is encrypted by a different 
keystream as well as a different one-time-pad for every session 
and time timestamp. Thus, this attack is not applicable. 

F. Impersonation Attacks 

This kind of attack occurs when the attacker gains access to 
a mobile device and requests a response from the server. The 
server will validate and authenticate the request. As mobile 
users will be using a hash function, including a one-time-pad 
(as discussed in the protocol implementation), the server also 
will hash the keystream with a one-time-pad among other user 
credentials, meaning this attack is not feasible with FEATHER. 

G. Brute Force attacks 

As the complexity of a brute force attack in key=80bit in 
general is 280, the FEATHER protocol used a hash function. 
For example, using D-3 (a user may choose other stronger hash 
functions, and that will not affect the speed performance as the 
slower part is the downloading time), the computation power 
relies on the implementation, and adding other secure 
parameters such as using OTP, that is similar to the one-time-
pad cipher, which substantially raises the computation power 
needed to break the protocol. 

VIII. DISCUSSION 

In FEATHER, downloading is the most time-consuming 
task compared to the CLOAK protocol. If it is required for 
more than two mobile devices to communicate at the same 
time, the external server generating the keystream in the 
FEATHER protocol is much faster than CLOAK. This will 
reduce the overall time as the decoding time is just performing 
XOR on messages with the keystream, which is fast. The 
mobile battery lifetime is also longer. The proposed lightweight 
security protocol FEATHER provides confidentiality, 
authorisation, and security for users in mobile cloud computing 
technology and IoT technology. It also helps reducing power 
consumption, which will improve the overall performance of 
mobile applications. The proposed protocol was analyzed 
against possible known attacks, which showed that it is secure 
for implementation. The MICKEY 2.0 cipher was used as a 
pseudo-random number generator. However, the FEATHER 
protocol can be adapted to use other IV-based lightweight 
synchronous stream ciphers. The proposed MICKEY 2.0.85 [9] 
which is 23% faster in generating pseudo-random numbers, can 
also be used, however, even using MICKEY 2.0 in FEATHER 
is fast enough. MICKEY 2.0.85 is useful for other smaller 
applications. The FEATHER protocol offers a secure 
contribution to mobile cloud computation. The comparison in 
Figure 3 shows that FEATHER is much faster than the recent 
CLOAK and [30] protocols, and it also provides more security.  

The limitations of this study include the testing on five 
devices, although the CLOAK protocol [23] was also tested on 
five devices. Future work could involve further testing of the 
performance of FEATHER on a wider range of devices, and 
compare it to a wider range of existing protocols. Another 
important direction for future research is adapting other 
lightweight ciphers such as Trivium, Grain, and other 
lightweight block ciphers to generate the keystream in the 
server, and then implementing FEATHER and calculating the 
overall execution time. 

IX. CONCLUSION 

Ensuring security in mobile cloud computing is critical but 
challenging. The proposed lightweight security protocol, 
FEATHER, will reduce cost and time used in the external 
server. Therefore, it can increase the number of devices 
communicating at the same time and enhance mobile cloud 
computing applications. The FEATHER protocol has better 
performance than existing protocols and can help meet the 
requirements for secure mobile cloud computing with Internet 
connectivity.  
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