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Abstract—This paper presents a subproblem approach with h-
conformal magnetostatic finite element formulations for treating 

the errors of magnetic shell approximation, by replacing volume 

thin regions by surfaces with interface conditions. These 

approximations seem to neglect the curvature effects in the 

vicinity of corners and edges. The process from the surface-to-

volume correction problem is presented as a sequence of several 
subdomains, which can be composed to the full domain, including 

inductors and thin magnetic regions. Each step of the process will 

be separately performed on its own subdomain and submesh 

instead of solving the problem in the full domain. This allows 
reducing the size of matrix and time computation.  
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I. INTRODUCTION  

The local fields in magnetic shells are approximated by a 
priori 1-D analytical distributions across the shell thicknesses 
[1, 2]. This means that the interior of volume thin regions is not 
meshed and is introduced by surfaces with impedance-type 
Interface Conditions (ICs) linked to the inner-analytical 
distributions. This leads to negligible edges and corners of 
magnetic shells, increasing with thickness. In order to 
overcome this disadvantage, the Sub-Problem Method (SPM) 
for the magnetodynamic problem with dual formulation has 
been proposed for one-way coupling [3-10]. In this 
development, a subdomain technique based on the SPM is 
extended for the h- conformal magnetostatic finite element 
formulation in order to improve the local fields (magnetic 
scalar potential, magnetic flux density and magnetic field) 
appearing around the edges and corners of magnetic shells. The 
idea of the method is to perform subdomain solving in three 
steps (Figure 1): 

• Step 1: A lower subdomain attending with stranded 
inductors is first considered on a simplified mesh without 
any magnetic shells.  

• Step 2: A shell with the very coarse mesh that does not 

contain stranded inductors anymore is then added. 

• Step 3: A volume correction replacing the magnetic shell 
Finite Element (FE) by an actual thin region is introduced 
to improve shell inaccuracies. 

 

 
Fig. 1.  Devision of a full domain into three steps. 

The relation between steps is constrained by Volume 
Source (VS) expressed changes of the material propoerties or 
Surface Sources (SS) presented changes of ICs. In each step, 
the problem is independently solved in an individual sub-mesh 
and its surrounding without depending on other meshes, which 
allow to distinct mesh refinements. The method is applied on a 
practical problem. 

II. MAGNETOSTATIC PROBLEMS 

A canonical magnetostatic problem q presented at step q is 
solved in a domain Ω�, with boundary �Ω� � Γ� � Γ�,� ∪ Γ	,�. 

Maxwell's equations, constitutive laws and boundary 
conditions (BCs) of the problem q give [3-11]: 

curl	�� � �� , div�� � 0	    (1a-b) 

�� � ���� �	��,�    (2) 
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� ∙ ��|Г�,� = 0, 			�� ∙ �� !�
= �",�    (3a-b) 

where �� is the magnetic field (A/m), �� is the magnetic flux 

density (T), ��  is the electric current density (A/m
2), ��  is the 

magnetic permeability (H/m) and � is the unit normal exterior 
to Ω� . The source field ��,�  in (2) is a VS that accounts for 

volume changes of permeability (��) from the current problem 
to the next problem �$ (q =p), i.e.: 

��,$ = %�$ −	��'�� .    (4) 

The notation [∙]!� = |!�
+ − |!�

,  is the discontinuity of a 

quantity across the negative and positive sides of any interface 
-� in Ω�. The field �",�  is a SS between subdomains [3-10]. In 

addition, the magnetic field �� in (1a) is split in two parts ��,� 

and �.,� , i.e. �� = ��,� + �.,�, where �.,�  is the reaction field 

and ��,� is a source magnetic field due to the imposed current 

density ��,�	(curl	��,� = ��,�). 

III. SEQUENCE OF FE WEAK FORMULATIONS 

A. Weak Formulation for Inductor Model - Step 1 (SP q) 

The magnetostatic weak formulation (�� − /)	 for Step 1 
(SP q) is obtained via the magnetic Gauss's law (1b), i.e. [1, 2]:  

−%����,�, grad/�
2'

3�
+ %��grad/� , grad/�

2'
3�
 

+< � ∙ �� ,/�
2 >Г�,�6!�

+< −�� ∙ �� !�
, /�

2 >!�
= 0,	 (5) 

	∀/�
2 ∈ 9�,�

:; %<�' 

where 9�,�
:; %<�' is a function space presented in <� including 

the basis functions for /� as well as for the test function /�
2. 

Notations of (. , . )>�  and  〈. , . 〉A�  are respectively the volume 

integral in <� the surface integral on Γ�, of the product of their 

vector field arguments. The surface term < � ∙ �� ,/�
2 >Г�,�,B�

 

in (5) is considered as a natural BC of type (3a), usually zero. 

B. Weak Formulation for Magetnic Shell Model - Step 2 (SP 

p) 

The shell model (SP p) is defined via the last term in (5). 
The weak form of SP p, is [1, 2]: 

%�$grad/$, grad/$
2'

3C
+< � ∙ �$, /$

2 >Г�,C6!C
 

+< �� ∙ �$ !C
, /$

2 >!C
= 0, ∀/$

2 ∈ 9�,�
:; %<�'    (6) 

The trace discontinuity term < �� ∙ �$ !C
, /$

2 >!C
 in (6) is 

given as [4]: 

< �� ∙ �$ !C
,/$

2 >!C=									 

< �� ∙ �$ !C
, /D,$

2 >!C +	< � ∙ �$|!C
+ , /E,$

2 >!C
+    (7) 

In addition, the term < �� ∙ �$ !F,$
, /D,$

2 >!F,$	  in (7) is 

obtained from [1, 2]: 

< �� ∙ �$ !C
, /D,$

2 >!C	=	−< �$G$��,$, grad/$
2 >!C

 

+< �$G$grad/$, grad/$
2 >!C

    (8) 

The remaining term < � ∙ �$|!C
+ , /E,$

2 >!C
+ in (7) is weakly 

presented via the surface source integral term, i.e.: 

< � ∙ �$|!C
+ , /E,$

2 >!C
+= −< � ∙ ��|!C

+, /E,$
2 >!C

+= 
(��grad/� , grad/E,$

2 )3C
+H!C

+ 	+ (����,�, grad/E,$
2 )3C

+H!C
+ 

=	−�",�    (9) 

The volume integrals in (9) are also limited to a single layer 
of FEs on the positive side of <$

I  touching -$
I  [4-10]. By 

substituting (9) and (8) into (6), the weak form of SP p is 
rewritten as: 

(�$grad/$, grad/$
2)3C

−< �$G$��,$, grad/$
2 >ГJ,C

+	<
�$G$grad/$, grad/$

2 >ГJ,C− (��grad/�, grad/E,$
2 )3C

+   

+(����,�, grad/E,$
2 )3C

+ 	 = 0,					∀/$
2 ∈ 9�,$

:; %<$'    (10) 

At the discrete mesh, the source fields /� and ��,�, initially 
in mesh of SP q, have to be transferred to the mesh of SP p via 
a projection method [15-17]. 

C. Weak Formulation for Volume Correction - Step 3 (SP k) 

The weak form of SP k is finally established via a VS given 
by (2): 

(�Kgrad/K , grad/K
2 )3L

− ((�K − �$)grad/$, grad/K
2 )3L

 

+(�K − �$)((��,$ − grad/K
2 ), grad/K

2 )3L
+ 

< � ∙ �K, /K
2 >Г�,L6!L

+< [� ∙ �K]!L
,/K

2 >!L
= 0 

∀/K
2 ∈ 9�,K

:; (<K)    (11) 

At the discrete mesh, the source quantities /$ and ��,$ in 

(11), defined in previous meshes (SP q and SP p) are also 
projected to the mesh of SP k via a projection method (see 
Section D). In addition, the discontinuity of SP p in SP k has to 
be removed by fixing as: 

< [� ∙ �K]!L
, /K

2 >!L
= −< [� ∙ �$]!L

, /K
2 >!L

    (12) 

D. Transformation of Solutions between Sub-meshes 

As presented above, the source fields /�	and ��  obtained 

from the previous meshes of SPi (e.g. SP q) are transferred to 
the mesh of SP p, i.e. [15-17]: 

(��,$6$.MN , �2)3O,C = (��, �2)3O,C ,			∀�2 ∈ 9�,$
: %<�,$'    (13) 

where 	∀�2 ∈ 9�,$
: %<�,$' is a curl-conform function space for 

the p-projected source ��,$6$.MN  (the projection of ��,$6$.MN  on 

mesh of SP p) and the test function �2 defined on <�,$.   

In the same way, the magnetic scalar potential /$,	 can 
project the grad of /� in the mesh of SP q to the mesh of SP p, 

i.e. [9]: 

(grad/�,$6$.MN , grad/2)3O,C
= (grad	/� , grad/2)3O,C

  

∀/2 ∈ 9�,$
:; %<$'    (14) 

where /2 ∈ 9�,$
:; %<$'	is the grad-conform function space for 

the p-projected source /�,$6$.MN  (the projection of /� on mesh 

of SP p) and the test function /2 defined on <�,$. 
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IV. APPLICATION TEST 

The practical test is a shielded problem. It consists of a 
plate located in the middle of two stranded inductors carrying a 
magnetomovetive force of 1000 ampere-turns (Figure 2). The 
magnetic shields (screen up and down) cover the plate and the 
stranded inductors, for �. ,��P	QE=1 and �.,$QRF	=200. The test is 

performed in the 2-D case. As a sequence, the test at hand is 
performed in three steps. The solutions on the magnetic scalar 
potential / of each subdomain are illustrated in Figure 3. An 
initial problem SP q including the stranded inductors alone is 
solved in a sub-domain without the shielding plate and screens 
up and down (Figure 3(a), /�).  

 

Fig. 2.  Geometry of a 2-D shielding problem (d=3÷7.5mm, Lpl=2m, 
Ls=2m+2d, Hs=0.4m, Hy=0.14m, Cdx=0.8m, Cdy=0.01m, Cy=0.2m, Cx=0.05m). 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.  Distribution of magnetic scalar potentials for (a) the stranded 

inductors alone SP q (/� ), (b) addition of TS solution SP p (/$ ), and (c) 

volume correction SP k (/K) for thickness d=5mm). 

The shell approximation SP p that does not include the 
stranded inductors anymore is then added (Figure 3(b), /$). 
The volume improvements covering the shielding plate and 
screen up and down are finally introduced to overcome the 
shell approximations [1, 2], for d=5mm, �.,��P	QE =1 and 

�.,$QRF	 =200 (Figure 3(c), /K ). In a similar way, the 

distribution of magnetic flux density for each subdomain 
obtained in each step is shown in detail in Figure 4. The 
sequence from Step 1 (SP q) → Step 2 (SP p) → Step 3 (SP k) 
is pointed out from  top to bottom, for thickness d=5mm. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 4.  Distribution of magnetic flux densities � = �(�� − grad	/#	  for  
(a) stranded inductors alone SP q, (b) addition of the shell model SP p, and (c) 
volume correction SP k for thickness d=5mm. 

The significant errors on the magnetic flux densities of the 
shell approximation solution (SP p) along the plate are 
corrected by the volume correction (SP k) indicated in Figure 5. 
The error reaches approximately 35% near the middle of the 
plate, for d=5mm (�. ,��P	QE=1 and �.,QRF	=200). The volume 
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solution is then checked to be similar to the reference solution 
in the computation from the traditional finite element method 
(FEM) [12-14]. 

 

 
Fig. 5.  Magnetic flux density on the shell solution, volume correction and 
reference solution along the plate, for d=5mm. 

(a) 

 

(b) 

 

Fig. 6.  TS inaccuracy on the magnetic flux density along the shielding 

plate (a) before making a correction and (b) after the correction for different 
values d. 

 
Fig. 7.  Relative (improvement) correction of the magnetic flux density 
along the screen up for different values of d. 

The relative inaccuracy on the magnetic flux densities 
before making corrections is presented in Figure 6 for various 
thicknesses. The error can reach 90% at the end regions of the 
plate, for d=7.5 mm, and 75% for smaller thickness d=3 mm 
for �.,��P	QE=1 and �.,$QRF	=200. Accurate local improvement 

with volume correction SP k after improving are less than 15% 
for d=7.5mm near the plate end, or 10% for d=3 mm. It is 
worth noting that the error is less than 1% in the middle of the 
plate for both cases. The relative improvement (correction) of 
the TS magnetic flux along the screen up is presented in Figure 
7 for different screen thicknesses. It can reach a percentage up 
to 47% near the edge of the screen up, for d=7.5mm. It reduces 
to about 40% for d=5 mm, or 30% for d=3mm, with �.,��P	QE=1 
and �.,$QRF	=200. 

V. DISCUSSION AND CONCLUSION 

In this research, a subdomain technique for coupling thin 
magnetic shells has been successfully developed with h-
conformal magnetostatic finite element formulations for 
improving the errors of the magnetic scalar potential, magnetic 
flux density, and magnetic flux around the edges and corners 
appearing from the magnetic shell approximation [1, 2]. The 
obtained results of the method were found to be quite similar to 
the reference solution in the computation of the traditional 
FEM [12-14]. The proposed technique has been successfully 
carried out with a three step sequence. In the future, it could be 
extended to the case of multilayer-TS with different 
characteristics. 

The source-code of the method has been extended from the 
one subproblem method that was developed by the author with 
the help of Patrick Dular and Christophe Geuzaine at the 
Deparment of Electrical Engineering and Computer Science, 
University of Liege, Belgium. It will be ran in the background 
of the Getdp and Gmsh (http://getdp.info and http://gmsh.info) 
as open source code. 
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