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Abstract-Most systems in science and engineering can be 

described in the form of ordinary differential equations, but only 

a limited number of these equations can be solved analytically. 

For that reason, numerical methods have been used to get the 
approximate solutions of differential equations. Among these 

methods, the most famous is the Euler method. In this paper, a 

new proposed control strategy utilizing the Euler and the 

gradient method based on Radial Basis Function Neural Network 

(RBFNN) model have been used to control the activated sludge 

process of wastewater treatment. The aim was to maintain the 
Dissolved Oxygen (DO) level in the aerated tank and have the 

substrate concentration Chemical Oxygen Demand (COD5) 

within the standard limits. The simulation results of DO show the 

robustness of the proposed control method compared to the 

classical method. The proposed method can be applied in 
wastewater treatment systems. 

Keywords-activated sludge process; Euler method; gradient 

method; nonlinear system; RBF neural network; wastewater 

treatment 

I. INTRODUCTION  

Various industrial processes often generate large quantities 
of wastewater that must be treated in the safest and least 
expensive way, according to the discharge regulations. This 
water, prior to its discharge, is treated through a primary and a 
secondary process, which increase production cost. Therefore, 
modern industries seek ways to reduce the use of water during 
the production process and/or means for a more efficient and 
low-cost secondary treatment. The primary treatment consists 
of an operation that separates solid particulate materials and 
coarse contaminants, by previous decanting. The secondary 
treatment is after the decanting and consists in the biological 
removal of dissolved contaminant material by the use of active 
sludge consisting of microorganisms that metabolize the 
dissolved organic matter in aerobic conditions [1, 2]. Dissolved 

Oxygen (DO) level has a direct influence on the activity of the 
microorganisms. Insufficient supply of DO worsens the quality 
of the treated wastewater, and for that reason the control of the 
DO concentration became the most studied control in activated 
sludge process [3]. Many control strategies have been proposed 
for activated sludge process of wastewater treatment, starting 
from classical controllers such as the Proportional- Integral- 
Derivative (PID) controller to keep the process at a set-point [4, 
5] and fuzzy logic control to improve the operational 
performance of the system [6, 7]. Some modern controllers 
based on the process model have been also used for the 
activated sludge process. Model Predictive Control (MPC) 
methods have been applied on the distinct activated sludge 
process [8-10]. An adaptive fuzzy control strategy for DO 
concentration was used to control the activated sludge process 
in [11]. The controller manipulates the flow control valves 
supplying air to the bioreactor. In [12], Takagi-Sugeno fuzzy PI 
control has been applied for managing DO concentration. 
Authors considered the dilution rate, influent DO and influent 
substrate concentration as the disturbance. Two control 
strategies which as a gain scheduling PI control and a Model 
Predictive Control (MPC) were used to maintain substrate 
concentration in the effluent within the standard limits by 
controlling the DO concentration in [13]. Authors in [14], 
employed a fuzzy model-based predictive controller for 
activated sludge process. The objective was to maintain the DO 
concentration. Authors in [15] used a Takagi Sugeno (TS) 
Fuzzy Inference System (FIS) to approximate the feedback 
linearization law for controlling the DO concentration in the 
bioreactor. The purpose was to obtain the chemical oxygen 
demand (COD5) limited in the effluent. Piotrowski proposed 
nonlinear fuzzy control for tracking the DO reference trajectory 
in activated sludge process via the aeration system [16]. 
Sequencing batch reactor and aeration system are modeled as 
plant control performed by the cascade nonlinear adaptive 
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control system extended by an anti-windup filter in [17]. 
Authors in [18] developed an adaptive neural technique using a 
disturbance observer to solve the DO concentration control 
problem. 

In this paper, a nonlinear control strategy based on Euler 
and gradient method to control the DO in wastewater treatment 
process via aeration rate is proposed. The performance of the 
proposed control strategy laws is illustrated with numerical 
simulations and their results are compared with a conventional 
PI controller’s. 

II. EULER METHOD 

Let us consider the following differential equation: 
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( ) 00, yyu u =ℜ∈∀ is the initial condition, t : time, u: input 

control, uy : output system. 

Considering both control inputs ( ) 0utu = , and ( ) 1utu = , 
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Figure 1 shows the curves of (2) and (3). 

 

 
Fig. 1.  Curve of equations (2) and (3). 

The numerical solution of the differential equation (2) is 
defined to be a set of points ( )kk yt ,  and each point is an 

approximation to the corresponding points ( )( )kk tyt , . We begin 
by discretizing the variable t  into N equal subintervals such as

htttttt nn =−==−=− −11201 ... , the parameter h  is the step 
size. The principal of Euler's method is to approximate the 
solutions of (2). We begin by integrating the two parts of (2) 
between 0t  and 1t (we begin by choosing a step size

htt =− 01 ). The system equation can be written as follows: 
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By using the Euler method, (4) can be written as: 
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For 0≥k : 

( ) ( ) ( )( ) ,,. 01 000
utytfhtyty kukkuku +=+     (6) 

The objective of the proposed algorithm is to control the 
system output ( )10 +ku ty  in order to track a desired reference

( )1+ktr  via the input controlu . For that reason, we have to find 

at every instant kt  the value of ku  that makes the system 

output 
0u

y track the reference r . 

III. GRADIENT DESCENT ALGORITHM FOR CONTROLLING OF 
NONLINEAR SYSTEM 

Gradient descent is an iterative minimization method. In 
this paper, the gradient descent method is employed to control 
a nonlinear system. From (6), we have: 

( ) ( ) ( )( )
0 0 01 0 0 0 0. , ,u u uy t y t h f t y t u= +     (7) 

Firstly, at time 1t , we have to find 1u  where ( ) ( )110
trtyu = . 

( ) ( ) ( )( )10001 ,,.
001

utytfhtyty uuu +=     (8) 

The input control ku  is adjusted by using the gradient 
descent algorithm by minimizing the objective function with 
respect to 0u . The objective function in this case is the squared 

error ( )1tE  between ( )11
tyu  and ( )10

tyu . 
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The input control 1u  is updated by using the gradient 
descent algorithm: 
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whereλ is the learning rate parameter.  
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The RBF neural network will be used to determine
( )

0 1

0

u
y t

u

∂

∂
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IV. RBFNN ALGORITHM 

The Radial Basis Function Neural Network (RBFNN) is 
introduced in [19]. The RBFNN has three layers: an input layer, 
a nonlinear hidden layer that uses Gaussian function as 
activation function, and a linear output layer [20-22]. RBFNNs 
have many uses, including function approximation, 
classification, and system control. They have the advantage of 
fast learning speed and are able to avoid the problem of local 
minimum. The structure of the RBF neural network is 
illustrated in Figure 2. 

 

 
Fig. 2.  RBF neural network structure. 

The output of the jth  hidden neuron with center Ci,j and 
width parameter bj  is:  
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where [ ]TnxxxX ,...,, 21=  is the input vector of the RBF 
network. 

The RBFNN output can be described in the following 
equation: 
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where Wl,j is the weight between the hidden layer and the 
output layer. The center Ci,j, the basis width parameter bj  and 
the weights Wl,j of the RBFNN are adjusted by using the 
gradient descent algorithm to minimize the sum of  square error 

RBFE  (the error between the system output 
0u

y  and the 

RBFNN output ym (Figure 3)) by using the following equations: 
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The expression of ERBF is given as: 
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The corresponding modifier formulas are: 
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where a is momentum factor, and η is the learning rate. 

Generally, it is difficult or impossible to find 
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0
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u
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∂
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therefore the RBFNN is used to approximate it. If the RBFNN 
output nny  is equal to the system output 

0u
y , we can use the 

RBFNN output to find 
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. The RBFNN output nny  will 

approach the system output [23], then 
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y  could be written as: 
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Fig. 3.  Schema of RBFNN. 

Substituting in (16), we get the control law in (24): 
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For k≥0: 
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We replace the found value of 1+ku  in (6): 

( ) ( ) ( )( )11 ,,.
000 ++ += kkukkuku utytfhtyty     (26) 

According to this, we can obtain: ( ) ( )110 ++ = kku trty . The 

structure of the proposed method is illustrated in Figure 4. 

 

 
Fig. 4.  Schema of the proposed control strategy. 

V. MATHEMATICAL MODEL OF THE WASTEWATER 
TREATMENT PROCESS 

The activated sludge process is a biological treatment that 
uses microorganisms (biomass) to remove organic matter, 
nitrogen, and phosphorus. The organic and nitrogen removal 
are the most used in wastewater treatment. The schema of the 
wastewater treatment process is illustrated in Figure 5. 

 

 
Fig. 5.  Schema of activated sludge process. 

The process consists of a biological reactor (aeration tank) 
where the microorganism (biomass) population is developed 

aiming to remove the substrate from the reactor, and a settler. 
In the settler tank, the solids are separated from the wastewater. 
A part of the removed sludge is recycled back to the aeration 
tank. The mathematical model considered in this paper contains 
four differential equations: the biomass concentration X, the 
substrate concentration S, the DO concentration DO and the 
recycled biomass concentration Xr. The model is given by the 
following equations [24, 25]: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 , , , ,

. . 1 . . .

r

r

X t
f t X t S t DO t X t

t

t X t D r X t r D X tµ

∂
= =

∂
− + +

    (27) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 , , , ,

1
. . 1 . .

r

in

S t
f t X t S t DO t X t

t

t X t D r S t D S
Y
µ

∂
= =

∂

− − + +

    (28) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )( )

3

0

max

, , , ,

. . 1 .

. .

r

in

DO t
f t X t S t DO t X t

t

K
t X t D r DO t

Y

KLa DO DO t D DO

µ

∂
= =

∂

− − + +

− +

    (29) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

4 , , , ,

. 1 . . .

r

r

r

X t
f t X t S t DO t X t

t

D r X t D r X tβ

∂
= =

∂
+ − +

    (30) 

with: 
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( )kWKLa .α= . 
where W is the air flow rate, which will be considered as the 
input control to maintain the oxygen concentration level in the 
aeration tank. The used step size is h=0.5. More details about 
the model parameters can be found in the appendix. 

VI. RESULTS AND DISCUSSION 

The proposed method has been used to control the organic 
COD5 in the aeration tank through concentration control. 
Figures 6 and 7 show the DO and substrate concentration in 
open loop (without control). We can see clearly that the 
substrate concentration is above the standard limit of 20mg/l 
the control of substrate became a necessity. In order to test the 
effectiveness and the performance of the proposed method, the 
used set-point of the dissolved oxygen concentration changes 
immediately from 5mg/l to 5.5mg/l and from 5.5mg/l to 
6.5mg/l and from 6mg/l to 7mg/l. For comparison, two 
controllers have been used: the PI controller with parameters: 
kp=3, ki=0.9 and the PSO-PI with the optimized  parameters: 
kp=7.3618 and ki=8.8304. At the beginning the dilution rate and 
the influent substrate concentration are considered constants 
(D=0.04h-1 and Sin=200mg/l). 
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Fig. 6.  Dissolved oxygen concentration. 

 
Fig. 7.  Chemical oxygen demand COD5. 

(a) 

 

(b) 

 

Fig. 8.  a) Dissolved oxygen concentration with constant dilution rate 
D=0.04h-1, b) zoomed view. 

 
Fig. 9.  Aeration rate (control variable). 

DO concentration with constant dilution rate is depicted in 
Figure 8. From the simulations results it can be seen that the 
proposed controllers are able to control the DO level to track 
the desired set-point DOref, contrary of the PI controller that 
doesn't track the desired reference DOref. Initially the set-point 
for DO level DOref  is 5mg/l and the control variable or aeration 
rate W is at 40m3/l (Figure 9). After a while, when the DO level 
DOref  suddenly changed to 5.5mg/l the aeration rate W 
increased to 45m3/l to satisfy the augmented demand for 
oxygen (the DO level changes to track the set-point level 
DOref). So, W depends on the demand of oxygen (when W 
increases the DO level increases, and vice versa). The dilution 
rate and the influent substrate concentration are considered 
variables (in real wastewater treatment systems). In Figure 10, 
different values of dilution rate were considered to cover the 
work domain (the water flow entering the reactor is not 
constant throughout the operation). Figure 11 shows the 
influent substrate concentration Sin with different values to 
assure a real study of the wastewater system. 

 

 
Fig. 10.  Dilution rate. 

When the influent substrate concentration increases from 
200mg/l to 300mg/l, the PI controller from Figure 12 is 
strongly affected by this change and it is not able to track the 
set-point reference, in contrast with the proposed method that 
rejects the disturbance generated by the influent substrate 
concentration while the DO concentration has a good tracking 
of the set-point reference. The evolution of the aeration rate 
obtained by the control methods under different values of 
dilution rate and influent substrate concentration are depicted in 
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Figure 13. It can be seen that the power signal (control variable) 
of the proposed method is higher compared with the PI 
controller and PSO-PI controller respectively.  

 

 
Fig. 11.  Influent substrate concentration. 

(a) 

 

(b) 

 

Fig. 12.  a) Dissolved oxygen concentration with modified dilution rate and 
influent substrate, b) zoomed view. 

In Figure 14 we can see that the chemical oxygen demand 
COD5 is biologically degraded below 20mg/l (the legislation 
limit on wastewater treatment) and the wanted objective is 
established in the case of variable set-point of the dissolved 
oxygen concentration. In order to compare the different control 
strategies, their performance should be assessed by the Integral 
of Absolute Error (IAE) and the Integral of Square Error (ISE). 
These criteria are computed as: 

( )dtteIAE ∫
∞

=
0

    (32) 

( ) dtteISE ∫
∞

=
0

2     (33) 

 
Fig. 13.  Aeration rate (control variable). 

 
Fig. 14.   Chemical oxygen demand COD5. 

TABLE I.  SIMULATED IAE AND ISE OF THE CONTROLLERS 

Used control methods IAE ISE 

PI controller 0.0498 0.0259 
PSO-PI controller 0.0309 0.0135 

Gradient method based on RBFNN 0.0048 0.0010 
 

VII. CONCLUSION  

Wastewater treatment processes are very marked nonlinear 
systems because of the limited measurement data available on 
biological processes, a fact that complicates the control task 
when using the classical methods. In this paper, the proposed 
control method based on Euler and gradient has been 
established to control the chemical oxygen demand COD5 via 
the control of the DO concentration in an activated sludge 
process of wastewater treatment (no measurements of the 
substrate concentration are needed). The effectiveness of the 
proposed method was evaluated through a comparison with the 
classic PI controller. A variable set-point reference for the DO 
concentration has been designed. Based on the above results, it 

S
in
 (
m
g
/L
)

W

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

time h

S
 (
m
g
/L
)

Substrate concentration

 

 

Limit of substrate concentration: 20 mg/L



Engineering, Technology & Applied Science Research Vol. 10, No. 4, 2020, 6080-6086 6086 
 

www.etasr.com Lemita et al.: Gradient Descent Optimization Control of an Activated Sludge Process based on Radial … 

 

can be seen that the proposed controller is proven to be the 
better choice in terms of performance, required time for 
establishment, and process overshoot. 

APPENDIX 

MODEL PARAMETERS 

Description Parameters Units Values 

Biomass yield factor  hY  - 0.65 

Maximum specific growth rate maxµ  1−h  0.15 

Half-saturation coefficient for 
micro-organisms Sk  1. −lmg  100 

Oxygen half-saturation coefficient 
for micro-organisms DOk  1. −lmg  2 

Maximum DO concentration maxDO  1. −lmg  10 

Model constant 0K  - 0.5 

Oxygen transfer rate α  - 0.018 
Ratio of recycled r  - 0.6 

Ratio of waste flow β  - 0.2 

Influent substrate concentration inS  1. −lmg  200 

Influent DO concentration inDO  1. −lmg  0.5 

Oxygen mass transfer coefficient KLa  1−h  - 

Aeration rate W  13 . −hm  - 

Dilution rate D  1−h  - 

INITIAL VALUES 

Variable concentration Symbols Units Values 

Substrate concentration SS  1. −lmg  88 

Biomass concentration X  
1. −lmg  20 

Dissolved oxygen  concentration DO  1. −lmg  2 

Recycle biomass concentration rX  1. −lmg  320 
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