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Abstract-Signal estimation at the antenna is a major challenge of 

the antenna array structure because the received signals have 

different directions. Therefore, in this paper, a Genetic 

Algorithm (GA) is applied to the uniform circular array for the 

optimization of array structure in regard to its geometry. On the 

optimized array structure, four different algorithms (Estimation 
of Signal Parameter via Rotational Invariance Technique – 

ESPRIT, First Order Forward Prediction - FOFP, Beamscan, 

and Multiple Signal Classification - MUSIC) have been 

implemented in order to estimate the signal direction accurately 

with quick estimation time. The accuracy has been calculated 

with Root Mean Square Error (RMSE) indices. From the 

experimental analysis, it has been found that the performance of 

the ESPRIT algorithm is better than the others in terms of 
accuracy and estimation time. 

Keywords-computational complexity; FOFP; genetic algorithm; 

RMSE; uniform circular array  

I. INTRODUCTION  

When an incoming signal wave is detected and measured at 
a sensor array, it is processed and information is extracted from 
it (e.g.: Direction Of Arrival - DOA). The algorithms that are 
used to find DOA in the antenna array are generally used in 
wireless communication systems to increase the system 
capacity and the throughput of the wireless network. The 
antenna array consists of several antennas for finding the 
direction of incident waves and suppressing interference 
signals. The estimation problem is of significant importance in 
the array signal processing. Parameter estimation is an area 
where research is conducted for performance improvement. A 
major topic of interest is the accurate discovery of the signal 
direction. Sensor array field processing is an area for research 
focused in accurate signal estimation. As improvements in the 
geometry of the antenna array occur, the DOA estimation 
approach will become an important part of smart antenna 
systems. The antenna array collects data from all the elements 
and then combines them for spatial information and detects the 
incoming signal direction based on signal processing 
algorithms.  

The main aim of the antenna array is to find the signal 
directions from signals that come from different directions. The 
estimation of the signal may be obtained with the help of the 
array’s geometry and DOA algorithms. DOA estimation is an 

interesting field and many DOA algorithms were proposed 
including spatial spectrum estimation. The first method based 
on the spatial spectrum was proposed in [1]. This method is 
used for estimating the direction of the incoming signal by 
computing and observing the spatial spectrum. After that, a 
local maxima point is decided. Author in [2] presented a new 
method based on Minimum Variance Distortionless Response 
(MVDR). This MVDR is used to conduct spectrum estimation 
with the help of Maximum Likelihood (ML) method [3] which 
maximizes the log-likelihood function among a set of arrays. In 
[4] a subspace based algorithm was proposed which scans all 
the angles between the signal subspace and noise subspace. 
Author in [5] improves the solution ability of the MUSIC 
algorithm and gives good estimation results by introducing a 
variant of MUSIC algorithm. Authors in [6] propose a new 
algorithm named ESPRIT which has higher computation 
efficiency. Authors in [7-8] proposed the weighted subspace 
fitting method for better estimation results. Authors in [9] 
proposed a new method for the signal estimation in two 
dimensions. Authors in [10] improved the MUSIC algorithm. 
Authors in [11] gave an improvement in the static performance 
of the MUSIC algorithm. Authors in [12] proposed a new 
scheme for the increase of resolution ability of the MUSIC 
algorithm. Authors in [13] gave advancement in the ESPRIT 
algorithm for two dimensions. Table I gives the detailed 
description of the existing DOA algorithms. These algorithms 
are based on spectral search and subspace methods.  

TABLE I.  DIFFERENT DOA ALGORITHMS 

Algorithm Comments 

Bartlett [1] 
Estimate DOA by computing spatial spectrum and 

finalizing local maxima. The noise signal is excluded. 

MVDR [2] Spectrum estimation with maximum likelihood method. 

MUSIC [4] Scans all the angles from signal and noise subspace. 

ESPRIT [6] 
Increased computation efficiency with the help of two 

identical sub arrays. 

Weighted subspace 

fitting [7-8] 
Unified approach for signal estimation. 

MUSIC [14] 
Discussion on maximum likelihood and Cramor Rao 

bound 

MUSIC [9] A method for signal detection on two dimensions. 

MUSIC [11] Static performance of MUSIC algorithm. 

MUSIC [12] Improved the resolution ability of MUSIC algorithm 

Root MUSIC [5] 
Does not find the spectral peaks, it solves the rooting 

problem of a polynomial with good resolution ability. 
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II. ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL 

INVARIANCE TECHNIQUES 

Authors in [6] proposed an algorithm named Estimation of 
Signal Parameter via Rotational Invariance Technique 
(ESPRIT) for DOA estimation. In ESPRIT, array doublets are 
used and formed by N/2 pairs which further form a 
displacement vector, where N is the number of array elements. 
The starting two elements of the doublet are separated and 
grouped to make two N/2 sub arrays. The vectors x and y are 
the data vectors corresponding to each of the sub arrays. The 
output of the sub arrays x and y can be expressed as: 
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where similar notation has been used and δ is the displacement 
magnitude in wavelengths. The estimated angle by ESPRIT 
algorithm is relative to the displacement vector. The output of 
sub arrays, x and y, in matrix form is given as: 
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n n nx As v= +     (3) 

( )y
n n ny A s vϕ= +     (4) 

The matrix φ is a diagonal r×r matrix where the diagonal 
elements are: 
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The phase delay may be represented by the complex 
exponentials between the r signals and the doublet pair. The 
data vectors may be concatenated from sub arrays to make a 
single 2N-2 data vector like: 
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The columns of Ab occupy the signal subspace of the new 
array. Let Vs be the column matrix depending upon the signal 
subspace and zn, Ab. Vs is related with r×r transformation T and 
can be written as: 

s bV A T=     (7) 

and can be portioned as follows: 
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From this step, A will be equal to Ex, Ey, and have the same 
range. The rank r of matrix Exy is: 

[ ]xy x yE E E=     (9) 

To find the r×2r rank r matrix having null space of Exy to 
form the matrix F is written as: 

[ ]x y x x y y x yE E F E F E F ATF A TFϕ= + = +     (10) 

Assuming Ψ is: 

1[ ]x yF Fψ −= −     (11) 

by reshuffling the above equations, we get: 

x yE Eψ =     (12) 

Now, by substituting we get: 

1 1AT A T AT T A T Tψ ϕ ψ ϕ ψ ϕ− −= ⇒ = ⇒ =    (13) 

The given equations mean that the eigenvalues of Ψ are the 
same as the diagonal elements of φ. Once the eigenvalues λ of 
φ have been calculated, the angle of arrival is calculated as: 
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If A is the full rank matrix, then the eigenvalues of the 
matrix Ψ are the diagonal elements of φ and the eigenvectors of 
Ψ are the columns of T. Practically, the signal subspace is not 
known exactly, the only estimate is taken from sample 
covariance matrix Rxx or from a sub space tracking algorithm. 
Therefore, Exψ=Εy will not be exactly satisfied and we will 
have to resort to a least square solution to compute Ψ. The least 
square process assumes that the columns in Ex are known 
exactly whereas the data in Ey are noisy. If the assumption that 
Ex and Ey are equally noisy is made, then the total least square 
criteria is used to solve to above problem with better results. 

III. OPTIMIZATION USING GENETIC ALGORITHM 

The Genetic Algorithm (GA) is a population search 
algorithm inspired by the evolutionary process of natural 
selection [15]. GA is a simple algorithm that has been proven 
to be very powerful and widely applicable. The algorithm 
arrives at a solution by performing operations on a population 
of solutions referred to as chromosomes over several iterations, 
which are referred to as generations. The operations used are 
borrowed from genetic concepts such as mutation, 
reproduction, fitness, etc. The algorithm uses fitness evaluation 
to rank solutions and randomness in creating new generations 
of solutions in order to promote diversity. Authors in [16] used 
the GA to optimize the relative position in an antenna system. 
Authors in [17] used the GA in a linear array with infinite SNR 
in order to extract the amplitude and DOA of various signals. 
Authors in [18] introduced the use of GA in ML based 
parameter and spatial spectrum estimation. Authors in [19] 
introduced a new refined GA for accurate and reliable DOA 
estimation with the help of a sensor array based on the ML 
function. Authors in [20] introduced a new genetic based 
estimation method with the help of fourth order cumulant. A 
new genetic firefly hybrid algorithm based on the neural 
network was designed in [21] for finding the best position in 
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the data cube. A new algorithm was designed in[22] for finding 
the best path in all the clusters based on the generalized 
travelling salesman problem. This algorithm was based on the 
minimum cost tour within a clustered set of cities. The 
application of GA on beam forming of correlated and 
uncorrelated static sources was discussed. When the target is 
moving in CDMA systems by knowing the spreading code, the 
LMS algorithm received the signal at zero rates. The SNR was 
as low as -9dB for uncorrelated static sources but when the 
signals were correlated, the LMS gave unstable beam forming. 
Hence, GA gives good results for all sources which are static 
with good error rate [23]. Authors in [24] proposed a multiple 
source localization method for DOA estimation at each sensor 
mode. The GA based proposed algorithm was compared with 
conventional sequential search techniques. The computational 
load and inter node communication burden was reduced, so the 
algorithm was considered suitable for use in IT based 
applications having large numbers of sensor nodes and sources. 
The GA is most commonly used as an optimization algorithm 
and has efficiently solved various optimization problems across 
many disciplines in proficient manners. Alternating projection 
maximum likelihood, stimulated annealing grid based search, 
and data based grid search are used in the GA. The GA has 
widely been used in the DOA estimation by using the spatial 
spectrum estimation. The ML technique gives an optimal 
solution when compared to other methods. Based on the 
likelihood function, the ML is superior to other techniques [3, 
14, 25]. A new optimized array structure for DOA estimation 
was designed which can estimate both azimuth and elevation 
angles. The array is designed with the help of the GA that has 
as a fitness function the optimization of the array structure. The 
array aperture size increases when the number of elements in 
the array is increased. After that, various DOA algorithms have 
been applied to the proposed structure and simulation results 
were obtained. The proposed array was compared with other 
arrays in terms of RMSE of azimuth and elevation angles. 

A. Structure of the New Optimized Array  

Based on the GA, the proposed design array structure is 
given in Figures 1 and 2. In this structure, the population size is 
taken as 100 with 1000 iterations and a randomly generated 
initial array structure of 10 elements on the XY plane. The 
signal generated from various directions is received at each 
array element and combined to produce the output. 

 

 
Fig. 1.  Optimum configuration with number of iterations=1. 

The optimized new array structure is formed and the total 
spacing between array elements is 314.1593 for 10 array 
elements and 157.0796 for 20 array elements. Total spacing 
reduces when the number of array elements increases along 
with the complexity of the structure. The formed structure is 
the optimized structure that can be used to detect the signal in 
two dimensions. The optimized structure is designed with the 
help of GA after several iterations. 

 

 
Fig. 2.  The purposed array structure of 20 elements. 

B. Steps Involved in Array Optimization 

Figure 3 gives the flowchart of the used algorithm. The 
steps involved in the optimization of the array are: 

Input: Config (PQ, distance, Cost Function), Population, 
Crossover 90%, and Mutation 10%, iterations 
for Number of Iterations 
for population  
Selection Cost( Config) ==> MSE ==> Small MSE 10% 
Crossover= offsprings are created in hope of producing 

better Config 
Mutation =Changing the configuration PQ in hope of 

producing better Config 
Population for next iteration 
end 
end 

 

 
Fig. 3.  Flowchart of the MATLAB code. 
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C. Execution Time of DOA Estimation Algorithms 

In terms of execution time (the time taken by the algorithm 
to estimate the signal), the ESPRIT algorithm requires the least 
time when compared to the other algorithms, as can be seen in 
Figure 4. 

 

 
Fig. 4.  Execution time of algorithms on the proposed configuration. 

In the optimized array, we have applied simulations of 
various DOA algorithms in order to compare their performance 
in terms of execution time. The simulation results are obtained 
with different signal directions at various angles. Figures 4-9 
give the simulation results of the different DOA algorithms on 
the optimized array structure. Figure 4 gives the simulation 
results of the different algorithms in terms of execution time. It 
is evident that the ESPRIT algorithm shows better results than 
the other algorithms.  

Figures 5 and 6 show the simulation results of the ESPRIT 
and beam-forming algorithm at different angles (60°, 80°, 90°, 
100°, 120°). The angles are accurately estimated through the 
ESPRIT algorithm but the estimation through beam-forming is 
poor. Also, in Figures 7-9 (estimation through MUSIC, FOFA, 
and Capon algorithms) the estimation is accurate and clear. The 
simulation results of the discussed algorithms depend on the 
number of sources, the number of antenna elements, the 
spacing between the elements, and the SNR. When the number 
of sources is bigger than the antenna elements, it is difficult to 
estimate the signal directions. When there are more of antenna 
elements, the obtained results are better. The spacing between 
the elements is taken as 0.5λ.  

 

 
Fig. 5.  ESPRIT histogram corresponding to 5 signals directions. 

 
Fig. 6.  Beam-forming spatial spectrum corresponding to 5 signals. 

 
Fig. 7.  MUSIC spatial spectrum corresponding to 5 signals. 

 
Fig. 8.  FOFP spatial spectrum corresponding to 5 signals. 

D. Comparison with Existing Arrays 

The proposed array is compared with Circular, Rectangular, 
Concentric, and IASA arrays in terms of RMSE of azimuth and 
elevation angles. The results of the GA based array have been 
observed to be better when compared with the other arrays. 
Figures 9-21 give the detailed comparison and show that the 
RMSE of the proposed design offers better results. Figures 10-
11 depict the azimuth and elevation angle comparison with 
RMSE of the proposed GA based array. The circular array is 
compared with the GA based array in Figure 10. The result 
shows that the RMSE of the GA based array is lower for both 
azimuth and elevation angles. 
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Figures 12 and 13 show the azimuth and elevation angle 
comparison with RMSE of the proposed GA based array with 
the rectangular array. The result shows that the RMSE of the 
GA based array is lower for both angles. Figures 14 and 15 
show the comparison results of azimuth and elevation angle 
with RMSE of the proposed GA based array with the 
concentric array. The result shows that the RMSE of the GA 
based array is lower for both angles. Figures 16 and 17 
illustrate the comparison of azimuth and elevation angle with 
RMSE of the proposed GA based array with the IASA array. 
The result shows that the RMSE of the GA based array is lower 
for both angles. 

 

 
Fig. 9.  Capon algorithm spatial spectrum corresponding to 5 signals. 

 
Fig. 10.  RMSE of the azimuth angles of circular and GA based arrays. 

 
Fig. 11.  RMSE of the elevation angle of circular and GA based arrays. 

 
Fig. 12.  RMSE of the azimuth angle of rectangular and GA based arrays. 

 
Fig. 13.  RMSE of the elevation angle of rectangular and GA based arrays. 

 

Fig. 14.  RMSE of the azimuth angle of concentric and GA based arrays. 

 
Fig. 15.  RMSE of the elevation angle of concentric and GA based arrays. 
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Fig. 16.  RMSE of the azimuth angle of IASA and GA based arrays. 

 

Fig. 17.  RMSE of the elevation angle of IASA and GA based arrays. 

 
Fig. 18.  RMSE error of the azimuth angle of circular, rectangular, 

concentric, and IASA arrays. 

Figures 18 and 19 show the azimuth and elevation angle 
comparison with RMSE of the four arrays. The result shows 
that the RMSE of the IASA array is lower for both azimuth and 
elevation angles. Figures 20 and 21 show the azimuth and 
elevation angle comparison with RMSE of the proposed GA 
based array with all the considered existing arrays. The result 
shows that the RMSE of the GA based array is lower for both 
azimuth and elevation angles. This type of GA based array is 
generally used in the communication field for the estimation of 
the signal and radar and sonar field for signal estimation. The 
only limitation of this type of optimized GA based array is that 
it basically estimates the signal direction of static targets. 

Concluding, this optimized array structure detects the signal 
accurately in terms of RMSE. 

 

 
Fig. 19.  RMSE of the elevation angles of circular, rectangular, concentric, 

and IASA arrays. 

 
Fig. 20.  RMSE error of the azimuth angle of circular, rectangular, 

concentric, IASA, and GA based arrays. 

 
Fig. 21.  RMSE error of the elevation angle of circular, rectangular, 

concentric, IASA, and GA based arrays. 

IV. CONCLUSIONS 

The DOA of signal estimation is a major concern for the 
communication technologist. The proposed geometry for DOA 
estimation aims to meet the estimation accuracy requirements. 
The simulation results of the proposed configuration show that 
the GA based array with ESPRIT algorithm has better 
estimation accuracy among all four proposed DOA estimation 
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algorithms. The results can be further improved with the help 
of some other optimized algorithms in terms of number of 
elements and SNR. Other array configurations can also be 
taken into consideration for the estimation of the signal angles.  
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