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Abstract—The university course timetabling problem looks for 
the best schedule, to satisfy given criteria as a set of given 

resources, which may contain lecturers, groups of students, 

classrooms, or laboratories. Developing a timetable is a 

fundamental requirement for the healthy functioning of all 

educational and administrative parts of an academic institution. 

However, factors such as the availability of hours, the number of 
subjects, and the allocation of teachers make the timetable 

problem very complex. This study intends to review several 

optimization algorithms that could be applied as possible 

solutions for the university student course timetable problem. 

The reviewed algorithms take into account the demands of 
institutional constraints for course timetable management. 

Keywords-timetabling; genetic algorithms; Particle Swarm 

Optimization (PSO) 

I. INTRODUCTION  

Many higher education institutions have teaching staff from 
various fields, who work together to meet the educational goals 
set. However, creating a timetable with no conflicts, which 
these lecturers can use is one of the challenges most 
universities face. Generally, a timetable is a table of various 
events and their schedule [1]. Therefore, in a university 
timetable, the institution assigns the courses taken by students 
and delivered by tutors to a defined finite set of resources, 
which include time slots and classrooms. This process presents 
many challenges. For example, in a typical school, there are 
several student groups who may or may not be taking the same 
course at the same time [2]. Thus, when scheduling lectures, 
one has to ensure that learners, lecturers, and lecture halls do 
not conflict. This need makes the timetabling of university 
courses to be a complex and time-consuming task to complete. 
University timetabling committees cannot perform this 
distribution randomly as they must consider several decisive 
factors. There are several constraints that guide the process of 
making an effective timetable. These constraints, which are 

rules, policies, and preferences of universities, lecturers, and 
students, can be categorized as hard, soft, or medium. Hard 
constraints are those guidelines that should not be violated or 
overlapped at all, soft constraints are desires of the involved 
stakeholders that can be ignored without any serious 
consequences, and medium constraints are preferences that 
they are preferred to not be violated [3]. The committee 
handling the timetabling must consider all these requirements 
to create an optimal outcome. Due to the complexity of this 
problem, timetable coordinators spend a considerable amount 
of time looking for the best solution. However, even if they 
have a lot of experience, the resolution found may not be 
optimal due to the large number of possible combinations. 
Thus, the distribution of workload among the various lecturers 
in an academic institution constitutes a problem of 
combinatorial nature. In general, resolving such challenges and 
obtaining exact optimal solutions is computationally 
intractable. Therefore, the university timetabling problem is an 
example of a Non-Polynomial (NP)-hard problem [4]. These 
are problems with no particular efficient solutions. In the case 
of timetabling where there is no specific algorithm that can be 
utilized to schedule classes since each institution has its special 
constraints [5, 6]. At the same time, when done manually, the 
obtained result depends on both the initial approach and the 
experience of the timetabling committee. 

Public universities typically take days to manually schedule 
all the classes that students should take depending on the 
availability of lecturers and classrooms [7]. Thus, the proposal 
to automate this process intends to meet real needs, with the 
main aim to reduce the time taken to complete it efficiently. 
Describing the real problem by mathematical functions, the 
study seeks the values of such models with the use of 
optimization techniques. This way, it will provide a solution 
that maximizes the use of available human resources and 
satisfies the needs of all involved parties. This approach 
becomes very complex as more restrictions arise, such as the 
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number of courses in the school and the availability of essential 
resources like lecturers, students, and classrooms. The 
presented solutions behave inefficiently when there is an 
expansion of the institution and their accuracy suffers as the 
number of courses and classes grow [8]. Thus, a personalized 
computational approach to address the issue becomes important 
and a priority. Due to the importance of the problem, several 
formalizations and solution methods have been proposed. The 
approaches based on meta-heuristics are considered to be 
particularly relevant. However, these optimization algorithms 
are not mutually exclusive. Instead, they combine ideas from 
different areas, with the main aim of providing different 
solutions to the timetabling issue [9]. One of the most popular 
approaches is acquiring solutions based on Genetic Algorithms 
(GAs) due to their high degree of computational parallelization 
and enhanced computational performance. Overall, university 
course timetabling can be treated as organizing a group of 
classes to meet the specifications of particular institutions. 
Over the years, various researchers have created various 
algorithms to find an optimal solution to this issue. For 
instance, authors in [9] created graph coloring schemes for 
timetable scheduling in 1967. Their work formed the 
foundation upon which more sophisticated techniques have 
been based. One of these models is linear programming, which 
was used to solve a labor scheduling problem in [10]. 

Moreover, a GA presents one of the best possible methods 
to address NP-complete problems. At its core, a GA is a 
parameter optimization strategy that iterates over a population, 
seeking the best fit for a problem until it obtains an optimal 
solution [11]. Several works have been completed with this 
algorithm for the treatment of timesheets. The GA borrows 
heavily from the field of natural sciences on the way it works. 
In particular, it allows observing events from the lens of natural 
phenomena, such as mutations and natural selection [12]. 
Hence, it helps developing computational mechanisms, which 
resemble these processes. Therefore, GAs use and specify 
biological terminologies, such as crossing-over and mutation, 
in a precise and specialized way [13]. In particular, through the 
process of cross-over, the fittest generations pass on their 
attributes to their offspring. In turn, mutation helps to prevent 
stagnation within a population and is essential for the proper 
functioning of the algorithm. Along this line, this study will use 
surveys to understand the general foundations for the problem 
of university lesson planning. This activity will assist in 
formulating the optimization model and describing the manner 
in which the algorithm can be adapted to make it applicable to 
the problem under investigation.  

II. RELATED WORDK 

Because university course timetabling is an NP-hard 
problem, there are several methods that have been explored in 
attempts to find optimal solutions. The manual approach 
requires several days of work and often results in inefficient 
outcomes [4, 14]. However, there are several other procedures 
that can be used to schedule academic activities and in which 
restrictions related to the type of problem considered must be 
respected. Nonetheless, the objective often involves 
distributing teachers and students in a particular course 
depending on time and resource availability, while also 

respecting their desires. Educational timetables are of three 
types: school, course, and exam timetables [1]. Scheduling the 
course timetable presents the most difficulties among the three 
as it is utilized frequently through a typical university semester 
and it covers only particular days within a week. University 
timetabling is not simple due to various constraints that would 
be applied to produce effective course timetabling [15-17]. 
Eventually, the timetabling constraints can be classified as hard 
and soft; the hard constraints are considered as mandatory 
while the soft constrains are optional [18-20]. Table I 
summarizes the most important soft and hard constraints of 
course timetabling. 

TABLE I. SOFT AND HARD CONSTRAINTS  

Hard constraints Soft constraints Ref. 

- Courses having common students cannot 

be allotted at the same time slot on the 

same day. 

- The total number of available periods of 

the daily timetable is 8 hours (maximum) 

Honours and general courses 

need to be scheduled in non-

overlapping time-slots. 

[15] 

- A room cannot be assigned to more than 

one lecture in a given period. 

- Courses belonging to a curriculum must 

be assigned to different periods. 

-Courses taught by a lecturer must be 

assigned to different periods. 

- The number of students taking a 

course must fit into the assigned 

room. 

- Each additional student over the 

capacity of the room counts as a 

violation. 

- Lectures for a given curriculum 

must be consecutive. 

[16] 

The timetable should be scheduled based 

on the university calendar 

To open the course, a minimum 

number of students should be 

registered 

[17] 

- Considers the workload of the lecturers. 

- Takes into account the free time (i.e. 

office hours and resets) of the lecturers. 

 [18] 

- Every course should be assigned to a 

venue at a particular timeslot. 

- The scheduled courses must not exceed 

the venue capacity. 

 [19] 

- Lecture rooms must not be booked twice 

at the same time. 

- All lecture venues and rooms must be 

scheduled once not twice. 

- Break periods must be allocated  

before other courses. 

- Faculty general courses must be 

allocated to slots before 

departmental courses. 

[20] 

- No student group has two events at the 

same time. 

- No lecturer has two events at the same 

time. 

- No event is in a room with less capacity 

than the number of students at the event. 

 [21] 

 

Hard and soft constrains are related to many factors such as 
courses, lecturers, students, classrooms, and operational dates 
and hours [16, 18, 19, 21]. Thus, it is important to apply 
optimization algorithms for effective scheduling of the course 
timetable. The use of optimization techniques in problem-
solving dates back several decades. Nonetheless, it has recently 
been boosted by the advent of computers and the increase in 
their processing capacity, which has led to a rise of the number 
of scheduling approaches. However, the application of these 
methods to solve practical problems has not been verified at the 
same proportion as the rate of their development. One of the 
reasons is the complexities of the real behavior and the model 
generated, which are described by non-linear behavior 
functions and whose solution space may be non-convex [14]. 
Heuristic methods have played an important role in resolving 
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these types of problems. Primarily, they involve values of the 
functions in the process, regardless of whether there is 
unimodality of the function or continuity in their derivatives. 
On the other hand, they demand a large number of calculations 
as stated by authors in [22], who argue that instead of 
performing many additional computations to determine a 
gradient with mathematical programming techniques, it may be 
more beneficial to use this time and resources to explore the 
search space more intensively. Among the heuristic 
optimization techniques, there are metaheuristic methods, 
which promise accurate and optimal solutions to the timetable 
scheduling issue. Notable approaches of this nature include 
Greedy Randomized Adaptive Search (GRASP), simulated 
annealing, tabu search, GAs, microchanonic annealing, and 
microchanonic optimization [23]. Scheduling problems are 
usually addressed by heuristic techniques due to their structure 
and complexity [22]. For instance, authors in [23] state that the 
simulated annealing scheme provides an efficient solution 
when applied to scenarios that require some form of 
programming. Several authors present comparisons and 
evaluations of the performance of different metaheuristics in 
solving scheduling problems [24]. Some of the common 

metaheuristic strategies include evolutionary algorithms, ant 
colony, local search, simulated annealing, and tabu search, but 
none of them can be singled out as the best. Table II shows a 
summary of some of these algorithms, including their 
advantages, disadvantages, and tools that can be applied to 
develop them. Using this Table, it is possible to identify the 
methodologies that can be applied to develop a solution to the 
university timetabling problem effectively. The problem of 
scheduling can be found in many areas, e.g. in the assignment 
of drivers to vehicles in a public transport company or in the 
development of school timetables. However, conflicts are 
common due to competing interests among the stakeholders 
involved and the existence of constraints that should be 
satisfied. In order to find the best possible solution to such 
issues, a swarm-intelligent algorithm, named Particle Swarm 
Optimization (PSO), can be used. This meta-heuristic was 
developed to find and optimize solutions for continuous 
problems. Nonetheless, it turned out to be a very suitable 
method for achieving quick and good solutions within these 
applications. At this point, however, the process must be 
adapted to the given circumstances for this discrete problem. 

TABLE II. COMPARISON OF DIFFERENT SCHEDULING AND OPTIMIZATION ALGORITHMS 

Reference Year Technique Tools Advantages Disadvantages 

[25] 2015 PSO 

Programming languages, such 

as Python. Supported by 

Gaussian 09 program package. 

Simple to implement. Does not converge fast. 

[26] 2017 Integer programming 
Various solver packages for 

global optimization. 
Few parameters that need to be adjusted. 

Difficult to define the initial design 

parameters. 

[27] 2016 
Multi-objective 

optimization 

Can be implemented using 

various programming 

languages. 

Able to run parallel computation. Can converge prematurely. 

[28] 2016 Hyper-heuristics 
Python or R programming 

languages. 
Can be robust. 

Complex to implement for 

inexperienced programmers. 

[29] 2017 Integer programming 
Solver packages, such as 

BARON. 

Have higher probability and efficiency in 

finding the highest optimization 

Cannot work out problems of 

scattering. 

[20] 2015 
Metaheuristic 

techniques 

Python or R programming 

languages. 
Can converge fast Dos not have short computational time. 

[32] 2018 
Fix-and-optimize 

metaheuristic 

Python or R programming 

languages. 
Does not overlap and mutate 

Not efficient in working problems 

linked with scattering. 

[32] 2015 Great deluge algorithm Matlab Has short computational time. 
Complex to implement for 

inexperienced programmers. 

[33] 2016 Linear integer model 
Solver packages, such as 

GAMS library. 

Efficient in solving problems that do not 

have accurate mathematical models. 

Complex to implement for 

inexperienced programmers. 

[34] 2017 
Artificial bee colony 

algorithm 
Matlab 

It is easy to use and can interface with 

other algorithms efficiently. 

Converges prematurely, resulting in no 

solutions in some instances. 

[35] 2017 
Stochastic gradient 

descent 

Stochastic simulation toolkit 

(StochKit) 

Simple to implement and works fast 

when applied to small datasets. 

Hyperparameters need to be tuned 

manually. Hence, people not familiar 

with it find it challenging to use. 

[36] 2018 

Broyden-Fletcher-

Goldfarb-Shanno 

(BFGS) algorithm 

The libLBFGS library written in 

the C++. 

Has better convergence than most 

algorithms 

Performs poorly in the context of non-

smooth optimization. 

[37] 2020 
Simulated annealing 

algorithm. 

Software tools, such as 

KDSimStudio and Simulated 

Conversation Development tool. 

Gradually converges to a global optimal 

solution and, thereby, escapes from a 

local solution. 

Requires enhancements to function 

effectively. 

[38] 2020 Tabu search algorithm 

Available frameworks, such as 

the Tabu Search Framework 

written in C++. 

Together with a memory concept, it can 

be utilized to explore iteration problems 

more precisely than other algorithms. 

It performs poorly in large dimension 

problems. 

[39] 2020 Tabu search algorithm 
Frameworks, such as the Tabu 

Search Framework. 

Ignores recently explored neighborhoods 

to avoid settling on a local optimum 

solution. 

As it does not have memory, it requires 

other algorithms or additional 

components to function effectively. 

[40] 2020 

Elite immune ant 

colony optimization 

algorithm 

Matlab 

Combines the strengths of both the ant 

colony and immune theory to ensure its 

efficiency. 

Complex to implement. 
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A. Genetic Algorithms  

The main task of scheduling algorithms in solving the 
university course timetabling problem is to find a solution that 
satisfies a set of restrictions. These limitations are either 
essential or nonessential. Essential restrictions are those that 
generate an unworkable timetable if they are not satisfied. On 
the other hand, the nonessential ones improve the quality of the 
framework. GAs are a strategy class that can be employed to 
resolve these conditions efficiently. They are based on the 
principles of genetics and natural selection, with the central 
idea being the selection of the fittest individuals in a 
population, who then recombine with others or mutate into new 
forms to generate new groups [41]. GAs are particularly 
applied to complex optimization problems, which are 
challenges that have different parameters or characteristics that 
need to be combined in search of the best solution and, at the 
same time, cannot be represented mathematically [42, 43]. 
Figure 1 illustrates the flowchart of the GA algorithm, from the 
initial population to when a suitable result is obtained.  

 

 
Fig. 1.  GA flowchart [41]. 

Over the years, several researchers have applied GAs to 
solve such problems. For instance, authors in [44] dealt applied 
the GA to address the issue of scheduling class timetables. The 
differential feature in this work is the use of crossover 
operators only between rows and, later, columns. Many authors 
also utilize several methods to treat infective solutions, which 
are those that do not meet the essential restrictions. In [45], the 
algorithm was applied to resolve the problem in two phases. 
First, a GA was applied to generate solutions that only meet the 
essential restrictions, and, in the second stage, based on the 
initial population generated in the initial step, GAs were 
employed to satisfy the non-essential conditions. In [46], a 
greedy approach was proposed to generate a robust initial 
population. Subsequently, the authors applied the GA to 
optimize this solution further. Other works, such as [47], 
propose the application of a repair function, which is 
introduced after crossover and mutation operations, to deal 
with infactible solutions. In [48], it is proposed to use local 
search methods to improve the solution, which, consequently, 
reduces the number of violations of non-essential restrictions. 
These methods are usually applied after the generation of each 
population in the evolution process. Often, GAs are 

implemented in the Delphi 5.0 programming environment and 
the problem input data are imported from the Saber Software 
Database. 

The problem of timetabling consists of scheduling a 
sequence of classes between teachers and students in a limited 
period of time, while satisfying a set of restrictions. This 
problem exists in any educational institution, but it becomes 
increasingly complex as the size of the establishments grows. 
Primarily, this phenomenon arises because the timetabling of 
courses belongs to the NP-hard class, for which polynomial-
time algorithms have been unable to obtain optimal solutions 
[49]. The timetabling problem has been studied for several 
years, with pioneering solutions forming the foundation for 
more effective techniques. The literature reveals several types 
of solutions, such as graph-based techniques and other 
approaches that find a maximal sequence of pairings in the 
bipartite graph composed of teachers and classes. Authors in 
[50] used programming by applying a Lagrangian relaxation 
technique, while authors in [23] formulated and solved the 
problem as an allocation challenge. Authors in [51] used flow 
resolution techniques in networks. As mentioned above, many 
authors divided the restrictions between hard and soft, where 
the hard restrictions define the feasible solutions, and the soft 
restrictions are included in the objective function. While 
satisfying the hard conditions means that the solution addresses 
the problem successfully, its quality is dependent on the 
procedure to blocks of different durations. Another popular 
approach is the employment of a multiobjective GA, which 
combines two points of view: student-oriented and teacher-
oriented. Moreover, one can use a two-stage GRASP 
algorithm. Others formulated another model for the problem, 
also using soft constraints in the objective function. One can 
explore a hyperheuristics framework based on graphs, 
researching local search algorithms based on low-level coloring 
algorithms. Other approaches can also apply a tabu search, 
using domain-independent neighborhood structures to penalize 
neighborhoods unable to generate better solutions. A 
combination of the bee colony meta-heuristic with an 
assimilation policy to guide the search process has also been 
proposed. Therefore, there are several approaches that can be 
followed to solve the university course timetabling issue, 
although they all have their advantages and disadvantages.  

B. Particle Swarm Optimization 

PSO was originally developed in 1995 to solve continuous 
problems [52]. The idea of simulating a swarm of bees has 
evolved into a meta-heuristic and presented an optimization 
procedure with some basic extensions. Based on this premise, 
the PSO procedure can be further modified to solve 
combinatorial problems [53, 54]. The boids (bird-like objects) 
model has been introduced, whereby each boid represents an 
individual who obeys three implemented rules in order to 
simulate swarm behavior for computer graphics and films, 
since it was found that the choreography of flocks of birds was 
aesthetic. The alignment ensures that individuals move in the 
same direction as their neighbors. Merging several boids 
enables cohesion, in which a single boid moves in the middle 
of a defined group, whereas separation causes boids to diverge 
in a small space. Depending on a given rule, a marked boid is 
aligned with the other boids. Later on, rest areas were added to 
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the boids model [55]. The individuals also have a need to 
remain within the swarm. The more a boid approaches a resting 
place, the greater the desire to move towards it, pulling more 
boids in this direction. Later, Kennedy and Eberhart developed 
the Swarm Optimization [55]. Theoretically, individuals can 
benefit from the discoveries and past experiences of their 
colleagues when searching for food [56]. This advantage can 
become critical and outweigh the disadvantages of food 
competition if the resource is unpredictably patched [57]. 
Kennedy and Eberhart followed this hypothesis that 
information exchange between group members offers an 
evolutionary advantage in the further development of the PSO 
by implementing social behavior in the birds and, hence, 
making them mass- and collision-free particles. They also 
extended the model by not only having them look for a rest 
area but also using a “cornfield vector” on which the best 
feeding place exists. These particles now have a memory of 
their best position in relation to such a feeding place and a 
knowledge of the best position so far within the entire swarm 
[57]. Based on these considerations, the classic PSO for 
continuous problems was developed. Figure 2 shows the 
flowchart of the PSO algorithm. 

 

 
Fig. 2.  Flowchart of the PSO algorithm. 

To optimize the solution, the PSO developed for continuous 
problems was modified in such a way that it was suitable for 
solving combinatorial problems. Various compositions of 
parameters were examined for their performance and it was 
observed that the attempt to modify the PSO in such a way that 
it was able to solve a combinatorial problem without the 
characteristics of swarm-intelligence [59]. The PSO 
significantly improved the quality of the solution of the 
manually created timetable with reasonable computing effort. 
In particular, the influence of an individual event can be 

emphasized in combination with swapping a random time 
window of the current solution. This exercise suggests a good 
current solution [60]. This exercise suggests a good balance 
between exploration and exploration of the solution space. 
Since the method presented primarily deals with continuous 
problems, further research is needed to determine its suitability 
in addressing the university timetable problem. 

While formulating a time table, it is important to consider 
the context of the problem within the educational institution in 
question. The problem may vary according to the institution 
and its business model, as, for example, in public and private 
educational establishments. Public schools usually have an 
open timetable model, in which subjects are offered and 
courses are built around them [60]. Thus, students are free to 
choose the subjects and they want to take and at what times. As 
the subjects are free, there is no requirement for rooms where it 
should be taught, and this allocation is also part of the process 
as a whole [59, 61]. Thus, it is possible for a course to be 
taught in several different classrooms throughout the week. In 
contrast, most private institutions follow a closed model. In this 
case, a course coordinator allocates the subjects that a student 
will take. Eventually, the learner has to approve the given set of 
units according to the level of study. In addition, the subjects 
are linked to courses they are being offered, and they are 
completely free as in the case of public institutions. As a result, 
subjects should not be allocated to classrooms, as they have a 
fixed location. That is, the classroom to which they are 
assigned. Thus, lecturers can switch rooms but not the student 
since teachers in private institutions can teach several subjects, 
although there is no requirement that a subject should always 
be taught by the same instructor. However, in public 
institutions, it is common for a teacher to be hired for one or 
more specific subjects. 

III. DISCUSSION 

Lesson planning deals with the scheduling of classes at a 
specific time in a given location, with particular participants 
that have to attend. In the best case, the solution of the problem 
results in plans that enable all students to take part in the 
meetings of interest at a certain location and time. There are, 
however, restrictions to the allocation of resources, which 
include time, space, and the availability of both teaching staff 
and the students. No other class should happen at the same time 
and venue with an ongoing one, and neither should two lessons 
demand the presence of the same group of students 
concurrently. Double occupancy of rooms has the same 
potential for conflict. As mentioned above, creating an efficient 
timetable is a typical NP-hard problem, which does not have a 
specific methodology of finding an optimal solution [62, 63]. 
Moreover, course timetables do not consider the preferences of 
students, as is generally the case in appointment requests. 

In the case of university lesson planning, this phenomenon 
means that lecturers play the role of active agents and students 
that of passive agents. At the same time, a lecture hall has to be 
of appropriate size, should possess the required equipment, and 
be available at an acceptable time for all participants without 
causing violations of both essential and nonessential constraints 
[63]. Therefore, the dates of a resulting timetable correspond to 
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assignments of a previously defined matrix of possible time 
windows. 

The conditions, which a timetable should satisfy can be 
divided into hard and soft constraints. Violations of hard 
constraints are not permitted because they could lead to the 
unavailability of lecturers, e.g. they might be scheduled to 
attend two concurrent classes. On the other hand, soft 
constraints can be left unsatisfied since such a case does not 
affect the admissibility of the timetable. The punishment for 
non-compliance with soft constraints is included in the 
assessment of the timetable [14]. Soft constraints occur, for 
example, when deadline requests for events cannot be met. In 
this case, these incidents can be shifted from their original 
desired dates to another time window without affecting the 
effectiveness of the timetable. 

The lesson planning activity in schools is further made 
difficult by the options that students have while selecting the 
classes to attend. For instance, one does not have to stick to 
given subject combinations, but can largely plan study 
programs independently. The attendance of individual courses 
does not have to take place in a particular semester, but can 
usually be integrated into the study period at will. The aim of 
university timetable scheduling is to use the resulting multitude 
of subject combinations to create a program, which is as free of 
overlaps as possible for all [64, 65]. Although the problems of 
school and course timetabling may appear similar at a first 
glance, they present significantly different problem sets, with 
the latter’s being more complex than those of the former. 

While formulating a timetable, it is important to consider 
the context of the problem faced by the educational institution 
in question. The issue may vary depending on the 
establishment and its business model. For example, while they 
are both institutions of higher learning, public and private 
universities have different funding models, which affect how 
they offer their classes and the types of services their students 
enjoy. Public schools usually have an open structure, in which 
subjects are offered and courses are built around them, while 
students are free to choose which subjects they want to take 
and at what time. As the subjects are free, there is no 
requirement for rooms where they should be taught, and this 
allocation is also part of the process as a whole [66]. Thus, it is 
possible for a course to be taught in several different 
classrooms throughout the week. On the other hand, most 
private institutions follow a closed model. In this case, a course 
coordinator allocates the subjects that a student will take. 
Eventually, the student has to approve the given set of units 
according to the level of study. In addition, the subjects are 
linked to courses in which they are being offered, and they are 
not completely free as in the case of public institutions. As a 
result, subjects should not be allocated to classrooms, as they 
have a fixed location. That is, the classroom to which they are 
assigned. Thus, lecturers can switch rooms but not the student 
since teachers in private institutions can teach several subjects, 
although there is no requirement that a subject should always 
be taught by the same instructor. However, in public 
institutions, it is common for a teacher to be hired for one or 
more specific subjects. 

University course timetabling solves the problem of 
creating assignments given specific time slots, classrooms, 
teachers, and subjects. The goal is to prevent a room from 
being occupied by two subjects simultaneously, or two teachers 
teaching the same class, or a teacher to have to teach two 
classes at the same time. The quality indicator of a solution 
varies, with some researchers using the sum of the preferences 
of a given discipline, such as a teacher allocation, to measure 
the effectiveness of a timetable [66, 67]. Others adopt soft 
restrictions and utilize them to assess the quality of the 
solution, while there are instances where student preferences or 
the spacing between classes has been employed to achieve the 
same goal. Authors in [4] consider a matrix of conflicts 
between learners taking two courses i and j simultaneously. 
The objective function considers the minimization of the 
number of cases where i and j are scheduled at the same time. 
Therefore, just as there are several methods of creating an 
optimal solution to the course timetabling problem, the quality 
of the resulting solutions can be evaluated in various ways.  

IV. CONCLUSION 

The problem of planning school hours is described as 
having to schedule a series of meetings between teachers and 
students over a set period of time and meet a number of 
different types of constraints. Since the types of restrictions 
generally change from one institution to another, different 
solutions to this problem have been proposed. The problem of 
school hours, it is a problem of combinatorial optimization with 
a vast search space and with a generally large number of 
restrictions. It is considered as an NP-hard problem. For 
problems like these, there is still no algorithm that tests all the 
possibilities to find the optimum solution in a timely manner. 
Therefore, this problem has been approached through heuristic 
techniques, and more recently by meta-heuristics. 
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