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Abstract-Advancement in depth-sensing technology has allowed 

mobile robots to visualize the surrounding environment in 3D 
models. Regardless of the sensing technology (i.e. active, passive, 

or laser-based), a complete system that integrates recent depth 

data in previous 3D models in real-time is done by employing 

Simultaneous Localization And Mapping (SLAM) algorithms 

followed by a 3D reconstruction engine. Unfortunately, both the 

SLAM algorithm and the 3D reconstruction engine are usually 

executed on a single computing device, making the whole system 

exceptionally costly and heavy and restricting the robot's 

mobility. This paper proposes a decentralized, modular 

reconstruction system capable of employing various sensors to 

facilitate online 3D reconstruction from a resource-limited mobile 
robot. 
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I. INTRODUCTION  

The recent development of active depth-sensing technology 
in which a known pattern is projected onto a suspected surface 
to measure depth has attracted impressive research and 
development momentum. For instance, Google initiated the 
project Tango [1] where active depth perception capabilities 
have been integrated within a standard mobile device to 
facilitate depth perception, area learning, motion tracking, and 
Augmented Reality (AR). Similarly, plug and play devices 
such as Structure [2] allow consumers to develop a 3-
dimensional map of surroundings to facilitate relatively 
accurate 3D measurements and 3D scanning. Applications of 
active depth sensors are more common in mobile robots due to 

their higher sensing rate (a.k.a. frame-rate), lightweight design, 
and publicly available development resources [3, 4]. Therefore, 
various applications exist in which semi-autonomous or 
autonomous mobile robots equipped with such sensors are 
deployed to perform mundane to specialized tasks. For 
instance, a mobile robot equipped with a depth sensor can scan 
the 3D geometry of a medium size room and store the output 
meshes in relatively good quality. Unfortunately, scaling the 
overall design to accommodate larger environments requires a 
complete 3D fusion-based reconstruction (such as InfiniTAM 
[5], FastFusion [6], and RFusion [7]) executed with higher 
computational and memory resource computing devices. 
Furthermore, their working principle limits active depth sensors 
to be bounded in an indoor environment, hence, scanning 
mechanisms should exhibit generic qualities to facilitate 
outdoor reconstruction. Therefore, a decentralized 3D 
reconstruction system in which both computing and scanning 
devices are connected through a well-known data sharing 
architecture to reconstruct large-scale environments is expected 
to efficiently handle such scenarios, as shown in Figure 1. 

This paper proposes a novel decentralized approach to the 
3D reconstruction framework, shown in Figure 2. The overall 
workload is divided, so that process of depth sensing and 
localization is performed in a scanning node, and every 
potential keyframe is integrated with a remote computing node. 
Simultaneously, both computers are connected with a well-
known Robot Operating System (ROS) [8] publisher/subscriber 
architecture over TCP/IP. This allows flexible, scalable, and 

Corresponding author: Faheem Akhtar 



Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6584-6588 6585 
 

www.etasr.com Rajput et al.: A Versatile Decentralized 3D Volumetric Fusion for On-line Reconstruction 

 

independent architecture, which can be adapted in potentially 
countless applications. 

 

 
Fig. 1.  A typical 3D fusion framework. 

 
Fig. 2.  A decentralized 3D fusion framework. 

II. LITERATURE REVIEW 

Many VisualSLAM algorithms exist that are explicitly 
designed to target particular sensor systems. For instance, 
Large Scale Dense (LSD) monocular slam [9] is a 
computationally lightweight algorithm that can directly be 
implemented in mobile devices such as cellphones and tablets. 
In principle, LSD-SLAM takes the live camera image stream 
and localizes camera position by tracking features within 
frames while estimating sensor ego-motion. Unfortunately, 
monocular SLAM algorithms are prone to accumulate 
estimation drift caused by lower potential features and depth 
ambiguity. To solve the estimation drift, algorithms such as 
RGBD-SLAM [10] and Stereo-LSD SLAM [11] counter the 
problem by introducing additional features such as the 3D 
geometry of the environment. In principle, 3D information 
acquired from a depth camera from either active depth camera 
or passive stereo estimation can be used to generate vital 
features with an improved overall tracking efficiency. 
Unfortunately, these algorithms are explicitly designed, which 
restricts the generic nature of overall framework design. In 
other cases, various implementations of VisualSLAM 
algorithms use predictive filtering (such as Kalman filters) to 
fuse tracking information with sensor ego-motion from the 
Inertial Measurement Unit (IMU). These fusion-based SLAM 
algorithms [12] provide further sensor localization accuracy at 
the expense of extended hardware and computational 
resources. Fortunately, ORB-SLAM2 [13] 's generic nature 
provides state-of-the-art tracking information without affecting 
the overall computational profile. It is therefore expected that 
employing ORB-SLAM2 in scanning systems will provide 
unrestricted sensor selection to accommodate both small- and 
large-scale 3D reconstruction. 

Authors in [14] proposed the core concept of volumetric 3D 
integration in 1996. They proposed that range images may be 
represented and integrated by a voxel grid containing Signed 
Distance Function (SDF) from the expected surface. In 

principle, each incremental update of range image is 
represented in implicit form, and weighted addition is applied 
to update globally consistent 3D models. Unfortunately, the 
integration approach did not receive research interest due to its 
extensive memory and computational resources. In 2011, 
Microsoft released a Software Development Kit (SDK) with 
support for their Kinect depth sensor, which revived the 3D 
fusion and reconstruction concept. KinectFusion [15] was the 
first standalone reconstruction framework that performed 
localization and integration with GPU computational resources 
using an active depth camera. Initially, the scale of 
reconstruction supported by KinectFusion was bounded due to 
limited GPU resources. Authors in [17] extended the working 
of KinectFusion to accommodate large scale reconstruction. At 
present, various implementations of volumetric fusion [5, 6, 16, 
17] utilize modern CPU and GPU architecture to facilitate 
virtually boundless reconstruction with the help of hashed 
voxel grids. Therefore, in the presented system, we have 
extended a regularized implementation of [7] that provides 
controlled regularization to facilitate the implicit representation 
smoothing. 

In this paper, a novel 3D reconstruction framework is 
proposed to facilitate a decentralized, remote 3D reconstruction 
scenario. The proposed framework is targeted to utilize 
multiple computationally inexpensive computing nodes that 
efficiently distribute the visual slam algorithm and 3D 
reconstruction framework workload. Unfortunately, authors 
could not find an appropriate baseline framework for extensive 
comparison to view the presented work's novelty and the 
problem domain. However, our work will serve as the baseline 
for upcoming research in this application domain. 

III. PROPOSED METHODOLOGY 

A. Scanning Node 

In order to maintain generality, it is presumed that a depth 
sensor of either active or passive depth sensing nature is 
attached to mobile computing devices such as laptops and 
streams of color and depth images are easily available. For 
further simplicity, it is presumed that both color and depth 
cameras are calibrated, and their respective intrinsic parameters 
such as focal lengths and central points are known. In general, 
all sensors can produce a steady image stream of 30 frames per 
second, a single registered time-stamped depth and color image 
that can be respectively denoted. In our implementation of the 
proposed system, the latest version of ORBSLAM2 is 
employed as a localization algorithm to track camera 
movements within the environment. Furthermore, the generic 
nature of ORBSLAM2 allows flexibility in sensor selection to 
accommodate both small- and large-scale 3D reconstruction. 
After the successful estimation of camera poses within the 
localization module, an instance is created containing 
respective depth and color image and camera pose information 
in standard notation, which contains rotation and translation 
information respectively. Therefore, each depth sample can be 
converted easily to a world coordinate system by using (1):  
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At this moment, (� is broadcasted through ROS TCP/IP as a 
packet (referred to as topic in ROS terminology) which is 
received by a computing node to perform 3D integration and 
rendering to provide real-time 3D reconstruction. 

B. Computing Node 

The computing node accepts each keyframe and performs 
3D fusion by employing recursive total variation based implicit 
regularization to reduce noise effects. The system first converts 
each valid depth sample to a list of the 3D point cloud (denoted 
compactly as in upcoming text) in the world coordinates using 
rotation and translation. The system then employs a least 
square-based regularized integration that inherently reduces 
noise effects and produces smoother iso-surfaces. The process 
of regularizing the implicit surface involves representing the 
obtained in the axis-aligned volumetric grid in which each cell 
(referred to as voxel) contains a projective signed distance from 
the surface. For each valid 3D point )	 ∈ 	+� , the system 
extracts a set of voxels (referred to as SDF-signal in [7]) that lie 
along the ray from camera position and ).  In least squares 
terminology, the extracted SDF-signal (denoted as , ) is 
presumed to be the current measurement of the system which is 
prone to accumulate estimation noise. Assuming a linear 
relation between ,	and the unknown true state of system - with 
a system matrix A exists (see [18] for more details), an 
estimated state of the system -	.can be calculated by minimizing 
the following least squares system: 

	-. = /�0min�4‖6- −,‖778    (2) 
However, in order to introduce a smoothing aspect in (2), 

an additional regularization term is added which acts as counter 
weight and influences the -	.  to accommodate neighboring 
elements. Such minimization system can be written as: 

	-. = /�0min�4‖- −,‖77 + 9‖0
-�‖778    (3) 
where λ is a regularization parameter that controls the influence 
of neighboring elements and 0
-�  is a function which 
approximates the second order finite difference of - . In 
principle, the number of elements in -, , and -	.  (referred to as 
support in [5]) directly affects the noise handling properties of 
the overall system. Therefore, longer streams are suitable to 
handle high degrees of depth noise, such as those acquired 
from passive depth sensors. Simultaneously, shorter support 
can easily accommodate relatively accurate depth information 
captured from an active depth camera. After solving the 
minimization task, the values of -	.  are updated to particular 
voxel locations. The complete process of regularized 
integration ensures that the underlying implicit representation 
is smooth, and the resulting volumetric grid can be easily 
rendered using a standard marching cube algorithm [19]. 

IV. EVALUATION 

Two distinct datasets were selected to evaluate the 
proposed decentralized system's generic nature containing a 

series of stereo image pairs and traditional RGB-D images 
from KITTI [20] and CoRBS [21] datasets respectively. The 
KITTI vision benchmark suite (written compactly as KITTI) 
contains a comprehensive set of visual and numerical data such 
as stereo image pairs, LiDAR point cloud, and vehicle GPS 
information. The versatile nature of the data present in the 
KITTI dataset allows researchers to quantitatively evaluate 
their research in the fields of stereo matching, scene flow, 
optical flow, depth estimation, visualSLAM, and object 
tracking (as explained in [20]). Similarly, the CoRBS dataset 
contains a set of RGB and depth images captured from the 
Kinect v2 camera. Simultaneously, the ground truth pose of the 
camera and 3D models are also provided to evaluate SLAM 
and 3D reconstruction algorithms' efficiency. 

It is worth mentioning that the system's goal is to perform 
well in an online scenario where the localization algorithm (e.g. 
ORBSLAM2, etc.) estimates sensor position in real-time. The 
baseline for performance benchmark is calculated by 
employing localization and fusion modules on the same 
computing device (referred to as the traditional approach). 
Such baseline implementation highlights the strain of 
processing as well as throughput delays caused by severe data 
processing. To isolate and quantify throughput delays, a precise 
timing mechanism is applied. The localization module issues 
and attaches a timestamp to the processing instance (i.e. either 
RGB-D or stereo image pair). The fusion module is designed to 
execute in an independent processing thread, another 
timestamp is generated, and the difference is recorded as a 
processing delay. In the optimal scenario, the difference 
between timestamps is expected to contain a smaller value, 
while non-optimal systems are expected to produce higher 
values. Such high processing delays further degrade the 
system's performance as previous time differences can 
accumulate to hinder the reconstruction framework's real-time 
profile. 

Figure 3 illustrates the problems caused by throughput 
delays in a traditional 3D fusion framework. The system’s 
performance is decreased with every successive input 
keyframe, and the system crashes after processing 
approximately 60 and 25 keyframes due to memory overflow 
in both 06_KITTI and 07_KITTI trajectories, respectively. 
Contrarily, the proposed system continues to work with an 
average throughput delay of 500ms for all input instances. 
Similar observations have been observed during the 
experimentation process of the Desk1 trajectory from the 
CoRBS dataset (referred to as CoRBS_D1) and are shown in 
Figure 4. Absolute Trajectory Error (ATE) is an important 
measure that compares the estimated camera poses with ground 
truth trajectory. It calculates statistical error measures such as 
min, max, mean, median, standard deviation, and RMSE 
quantities to establish a fair comparison between the estimated 
trajectories between the traditional system and the proposed 
decentralized system. All camera poses estimated from the 
proposed system were truncated and then compared by a 
publicly available analysis tool [21].  

Although no modifications were performed in the 
visualSLAM engine of the proposed method and the traditional 
system, it was observed that throughput delays indirectly affect 
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the estimation process of SLAM. This counter-intuitive finding 
is caused by the fact that traditional on-line visualSLAM 
modules are usually memory dependent. Once the memory 
buffer is filled with incoming successive keyframe images, the 
system either compensates with increasing the memory buffer 
area or drops incoming frames. We suspect that due to the 
dropping of keyframes, the visualSLAM module fails to 
register the camera movement successfully, and the final result 
is increased in overall absolute trajectory error. Figure 5 shows 
the reconstructed 3D models from 06_KITTI and 07_KITTI 
trajectories. It is worth mentioning that these models are the 
result of fusing 428 and 242 keyframes respectively. Since 
traditional on-line 3D fusion frameworks crashed at much 
smaller keyframe numbers, their partially reconstructed results 
are deliberately withheld. 

 

(a) 

 

(b) 

 

Fig. 3.  Processing delays in traditional and proposed method for: 

(a) 06_KITTI and (b) 07_KITTI trajectory. 

 
Fig. 4.  Processing delays in traditional and proposed method for the 

Desk1 trajectory. 

(a) 

 

(b) 

 

Fig. 5.  Reconstructed 3D models from (a) 06_KITTI and (b) 07_KITTI 

trajectories. 

V. CONCLUSION 

This paper proposed a decentralized online 3D 
reconstruction framework capable of working with various 
available depth sensors. The experimental results show that a 
decentralized online 3D reconstruction framework is robust 
enough to handle traditional visualSLAM limitations, such as 
integrating fast incoming keyframes on its own. Furthermore, it 
was observed and shown with quantitative results that the 
proposed system also facilitates a modular approach, which, in 
result, can offer extendibility without changing the complete 
system. The communication between decentralized computing 
nodes is done with the state-of-the-art Robot Operating System, 
which is open source and performs with exceptional reliability. 
Finally, it is shown that a lightweight decentralized system 
outperforms a traditional 3D reconstruction system. 
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