
Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6578-6583 6578

www.etasr.com Khan et al.: A Literature Review on Software Testing Techniques for Smartphone Applications

A Literature Review on Software Testing Techniques

for Smartphone Applications

Muhammad Naeem Ahmed Khan

Independent Researcher
Islamabad, Pakistan

mnak2010@gmail.com

Aamir Mehmood Mirza

Balochistan University of Information
Technology, Engineering and

Management Sciences

Quetta, Pakistan
mamehmood@msn.com

Raja Asif Wagan

Balochistan University of
Information Technology, Engineering

and Management Sciences

Quetta, Pakistan
raja.asif@buitms.edu.pk

Mahwish Shahid

University of Management and Technology
Lahore, Pakistan

mahwish.shahid@umt.edu.pk

Imran Saleem

University of Management and Technology
Lahore, Pakistan

imran.saleem@umt.edu.pk

Abstract-Smartphone applications are getting popular and have
become a necessity. There numerous smartphone applications

ranging from entertaining to gaming and from utility to mission-

critical. Almost everything on the web is now in hands of

Smartphone users, which makes this domain very important and

its quality should not be compromised. Achieving the desired

quality is not an easy task for the mobile platform as it has its
limitations. To produce a quality app, developers and testers need

to test and assess the app in numerous ways to ensure the best

trait of the application. In this concern, some efficient and

mature techniques are required to test smartphone applications.

In this study, the techniques, approaches, and models to assess

mobile apps covering major prospects and angels to test mobile

apps are identified. Our focus is on assessing the existing
techniques and to evaluate them on standard validation

parameters.

Keywords-Android; model based testing; functional testing; app

testing; functional refactoring

I. INTRODUCTION

Smartphone applications are getting popular and have
become a necessity. From banking to healthcare or from
gaming and utility to mission-critical, there is a huge pool of
smartphone applications [1, 2]. Achieving the desired quality is
not an easy task for the mobile platform as it has its limitations
such as processor, battery etc. To produce a quality app,
developers and testers need to validate it in numerous ways to
ensure the best trait of the application [3]. In this concern, some
efficient and mature techniques are required to test mobile
applications. Mobile applications have their quirks and
challenges regarding testing, such as the high number of
different events that need to be tested [4]. Security is also an
important aspect of smartphone applications [5]. These
challenges mostly rely on the mobile platform, but some
challenges arise due to the interoperability of the mobile
platform to other platforms like the web, third party systems,

and the cloud. In this study, the techniques, approaches, and
models to assess mobile apps covering major prospects and
angels to test mobile apps are identified. Our aim is to assess
the existing techniques and to evaluate them on standard
validation parameters.

II. RESEARCH METHODOLOGY

This review was conducted according to the guidelines

proposed by [6]. For this purpose, we have formulated a search
string and executed this search string on IEEE Explore, ACM

and Science Direct to identify research studies published from

2007 to 2020. By reviewing the title and the abstract we have
initially selected 98 research papers for full text reading. From

this initial database of research studies, we selected 19 research

papers to include in this study which were aimed at testing

smartphone applications. The database of the selected research
papers covers journal and conference papers about testing
techniques for smartphone applications. Most of the research

studies are primarily focused on theoretical reports, case
studies, field studies, and experience reports.

III. LITERATURE REVIEW

A. Security and Malware Testing

A study presented APSET for detecting the intent-based
vulnerabilities of Android applications. APSET takes
vulnerable patterns proposed by domain experts and system
specifications [5]. The major contribution of this study is test
case generation via the automatic generation of partial
specifications from applications. APSET also detects issues in
the data on the basis on intent mechanism. APSET was tested
on over 70 Android applications and it detected 62
vulnerabilities which could be exploited by hackers or attackers
to crash the application. This tool is founded over the model-
based testing technique along with the support of the ioSTS
model to generate patterns besides the reverse engineering of

Corresponding author: Mahwish Shahid

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6578-6583 6579

www.etasr.com Khan et al.: A Literature Review on Software Testing Techniques for Smartphone Applications

system class diagram and specification to generate test cases
for the application under test. The limitation of the proposed
tool is that it only works over intent-based loopholes and
pitfalls. APSET cannot be used for any other vulnerability. A
novel hybrid technique was proposed to detect malware in
Android applications based on static and dynamic analysis [7].
The proposed technique requires efficient data processing
(pattern generation and detection). System calls are used to
generate patterns for malware and normal apps which are done
through the support of Android OS manipulation. The
advantage of this approach is that it does not spend much time
as it takes in the static analysis, neither it consumes a lot of
resources as does the dynamic analysis. Some disadvantages
include that it needs to constantly gather new malware and
benign apps to keep detection accuracy because new types of
malware continue to emerge. This approach is based on the
difference between malware and benign apps in runtime system
calls. More normal and malware patterns are always needed.
Second, due to limited computing and storage resources, it is
not suitable to perform large-scale data processing in the
mobile phone. To achieve real-time detection, this approach
requires the mobile phone to have powerful computing
capabilities and sufficient data storage. Authors in [8]
presented a test automation technique for mobile platforms
based on observation, extraction, and abstraction of the running
SUT by using its GUI widget. The abstraction used in this tool
is used to create a scalable state machine model using event-
based test coverage criteria, which automatically creates test
cases for the SUT. The study demonstrates that the generated
test cases were effective and useful in detecting serious issues
and defects in the applications. Using the mentioned
approaches, the authors developed a fully automatic tool for the
detection of bugs and errors in Android applications. This study
also compares two famous Android application testing tools:
Monkey and Dynodroid. They configured Monkey and
Dynodroid to test the same four mobile applications which they
tested with Mobiguitar under the same parameters and inputs.
An experiment demonstrated that Monkey and Dynodroid both
did not find all of the exceptions which their proposed tool did.

B. Cloud-based Testing

A systematically review the state of the knowledge of the
empirical studies is presented in [9]. The study focuses on
mapping the testing techniques for mobile applications.
Additionally, the study emphasizes the need for testing metrics
to be included and adhere to address mobile application testing
lifecycle conformance. The major lags in the mentioned
techniques for a smartphone application testing lie in the
automation of testing. According to the authors, this is an
emerging and future of mobile and other testing, but very few
of them implemented this technique over complex applications.
Automated testing techniques perform well over small to
medium and simple mobile applications, but very little work is
done over the implementation and analysis of this technique
over complex mobile applications which put a question mark
over its credibility and reliability.

C. Test Automation

Authors in [10] proposed a novel framework for comparing
automatic testing techniques for smartphone applications. The

salient characteristics of every technique were picked to
develop the parameters. A comparison was done among online
testing techniques and in result, a general framework was
proposed based on the Unified Online Testing Algorithm. The
authors found that the random technique is more effective than
an active learning technique, but it is approximately 100 times
more expensive due to the nature of the experimental setup.
Active learning was cheaper and more efficient than the
random one in some cases, but in most of the cases the random
testing technique was better in execution but more expensive in
cost. Authors in [11] presented an experimental study to
analyze and evaluate the MBT approach in modeling,
concretization, and execution of automated tests in mobile
applications. Along with the usage of MBT they adopted the
Event Sequence Graph (ESG) to design their test model. For
the implementation of the test cases, they used the Robotium
framework. This study evaluated the perks and shortcomings of
using MBT as an approach to automate test execution for this
particular platform. Several perks and challenges were
identified including: automatic generation of test cases,
capacity to detect faults, improvement in test quality, test time
and cost reduction, and evolution of test models. The
challenges in the usage of MBT in the mobile application that
are related to this domain are: difficulties in test modeling and
particularities in the concretization of test cases in mobility
context and in-depth knowledge of Robotium.

The design and implementation of the mobile TaaS system
called MTaaS is presented in [12]. MTaaS is an infrastructure
for mobile application testing on the cloud which provides
large scale remote mobile application testing for the Android
platform. Some issues regarding resource allocation and
sharing were discussed as this study focuses on the cloud to
implement the proposed system where resource allocation and
management is a very important factor to be handled. This
issue is resolved through a hybrid model that aims to improve
the system performance while reducing cost. The system was
tested on different real time scenarios and use cases. MTaaS
was compared to Perfecto Mobile, TestDroid, YiceYun, Testin,
and UTest under the same parameters and inputs. The results
showed that MTaaS performed satisfactorily. Further, some
limitations were discussed like the security and privacy of the
user’s data, security threats to multiple virtual machines, and
intrusion detection. Another issue that was highlighted was the
lack of standards in mobile test environments and test
automation for mobile application testing with the addition to
the lack of well-defined test models and coverage criteria for
cloud-based application testing. Authors in [13] presented a
tool named SIT to test self-adaptive applications. SIT
framework stands on Abstract Trace (AT) and Trace Segments
(TS). Test case generation was achieved by sampling-based test
generation. As per experimental results, the SIT improved
defect detection significantly. SIT was evaluated and analyzed
over three online available context-sensitive and self-adaptive
applications: Robot car, Phone Adaptor and SECONDO. The
study implemented Random Testing (RT) and Dynamic
Symbolic Execution (DSE) for comparison purposes. Overall
the SIT improved detection rate by 22.4-42.2%. Despite all
these advantages and good results, the SIT has some
limitations. It currently relies on application specific support,

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6578-6583 6580

www.etasr.com Khan et al.: A Literature Review on Software Testing Techniques for Smartphone Applications

which means if an application is running in a particular
environment, that environment should not be easily changed or
manipulated during testing. The improvement room is also
available in the proposed approach in a way that assertions that
were used to define program failures were composed manually
in the application. It might be possible to derive these
assertions automatically from specifications.

In [14], a GUI based automated testing tool called SPAG-C
is proposed which uses a record-replay technique to perform
GUI testing. SPAG-C used event-based and smart wait
function to eliminate the uncertainty of the reply process and
by using GUI layout information to verify the results testing
process produces. The experimentation showed that SPAG-C
maintains the accuracy to 99.5% in addition to the reduction of
the time required to record test cases by verifying the process
automatically with the increased reusability of the test oracles
without compromising the accuracy. The proposed tool was
compared with Histogram, SURF, and Template matching
tools and their techniques and results proved that SPAG-C
outperformed them. The novelty of the SPAG-C is that for
some apps only a small portion of the screen is changed when
the app responds to an event. For such apps the tester can select
the region of interest in the screen of the device and then
SPAG-C will verify it which saves time to fully verify the
screens once again. As a limitation, there is the problem that
applications with non-deterministic GUI cannot be tested by
SPAG-C. This is because the camera cannot extract the
necessary elements from the screen for later comparison and
matching as AUT screen keeps changing in video playing
applications or gaming apps. This approach works on the
image capturing mechanism so the camera which is used to
capture screenshots of all UI could be affected by external
factors of the environment like light, exposure etc. A controlled
environment is required to execute this procedure. Authors in
[15] presented an empirical study in which MBT was applied
to mobile applications to examine the effectiveness of their
approach over mobile systems and applications. The study uses
EFSM to model a mobile app and implemented a command-
line tool "Kelevra" along with Appium, an automation tool.
Gestures, clicks and keyboard inputs are examples of methods
that can then be applied to the retrieved UI element objects.
The MBT approach was also previously tested over an app
"GMSEC", which is quite simple as compared to "Quiz-Up".
The experimental setup exhibits that MBT pays well off over
the effort it requires. Experiments show that applying MBT
found non-trivial bugs and defects in Quiz-Up which was
already being tested, proving the effectiveness of this approach
towards mobile systems or applications. A possible extension
to this would be to minimize the manual steps even more.
Another option would be to implement a language to describe a
SUT and its possible outcomes. For mobile applications, we
can describe the UI elements and patterns in a particular view
or scene under the test. The constructed textual description
could then be translated into a model representation such as the
EFSM. The key limitation observed is that the proposed
technique is suitable for testing small-sized apps.

Authors in [16] presented an adaptation model for testing
mobile applications which is comprised of two sub-parts,
Mobile analyzer and Test Mobile [16]. The study was inspired

by a framework used by web app testing, Reweb and Testweb,
a tool for analysis, testing and restructuring application.
Refactoring is a key step in this proposed technique as
refactoring minimizes code size without affecting the
functionality of an app. The major focus of this study was to
minimize the test effort by minimizing the test cases of an app,
which can be achieved through refactoring AUT (Application
Under Test), so that the transitions and paths of applications
can be minimized which ultimately results in less test cases and
efforts to test an app without compromising the coverage.
Based on this model, test cases were generated. At this point,
applications entered the second module, Test Mobile, and
generated test cases were selected upon defined criteria. After
test case selection, the expected outcome and run time output
were compared after the execution, and the result decided
whether the test passed or failed. Reweb and Testweb were
initially used for web domain applications and they were
designed for a particular domain so they performed well. The
advantage of this technique is that it minimizes test case space
without compromising coverage. Further advancement in this
technique can be made by automating the process of
refactoring which eases its use and lessens human involvement
and effort on refactoring. Authors in [17] presented an MBT
approach for test case generation for smartphone applications.
State machines were used for modeling and test case
generation. Test cases were generated through SPIN, an
automatic tool for test case generation through model usage.
The proposed approach used XML based transformations to
translate the test cases to some executable form to activate the
applications under test. For experimentation, Facebook and
YouTube applications were used. The proposed approach was
tested with other model-based approaches and techniques
which include APSET, MobiGUITAR, and SwiftHand. This
approach uses the view state machine model to model any
application, which involves excessive mathematics and prior
working knowledge of state machines, as these models become
very complex in large size programs. The second issue is that
there is a lot of involvement of third-party tools which are
assisting in the basic three steps of this approach.

Authors in [18] proposed a grey box approach for
automatically reverse engineering GUI-models of mobile
applications. Their system, Orbit, uses a finite state machine for
model generation and the results of an empirical evaluation on
several real apps were presented. At first, the authors used
static analysis of the application’s source code to extract the set
of user actions supported by each widget in the app GUI. Then,
a dynamic crawler was used to reverse engineer a model of the
app, by systematically exercising the extracted actions on the
live app. Orbit was evaluated on 3 parameters, test coverage,
time consumption, and precision. It was compared with
Monkey, MobiGUITAR, and Android GUI Ripper in
experimental steps. A limitation in this approach is that it
requires a lot of manual work, consisting in manually selecting
attributes of the executable components to compose the visual
observable states for the GUI.

Authors in [19] proposed a technique to test mobile
applications using reverse engineering and pattern recognition
of mobile AUT. The process was based on the automatic and
dynamic exploration of the apps' GUI. To support the dynamic

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6578-6583 6581

www.etasr.com Khan et al.: A Literature Review on Software Testing Techniques for Smartphone Applications

exploration, static analysis was also conducted to verify how
they are executed. GUI widgets were examined through their
execution and calls. The achieved patterns decided the errors
and bugs, if found. The major contribution of this work is a
reverse engineering approach to identify occurrences of
behavioral patterns in mobile applications and a dynamic, run
time, and on the go testing approach based on the application of
test patterns associated with behavioral patterns identified in
the mobile application. The proposed approach was found to
perform better than the MBT approach as most of the GUI
MBT approaches use reverse engineering for model gain. A
drawback of this study is that the pattern behavior judgment is
not easy and can be a tedious task if done manually. Since this
study reverse engineers the app under test and analyzes its
patterns statically, this static task of pattern recognition and
extraction is not easy as apps get more complex day by day.
Future work in this study could be the automation of pattern
identification and recognition, which would reduce and
minimize execution time and minimize human error.

Authors in [20] proposed test adapters to test GUIs through
automated testing of industrial applications. Test generations
through test adapters can be applied at the unit, integration and
system test level. Authors in [21] proposed the A3E approach
to use static, taint style, data flow analysis on the app to
develop a high level control flow graph that captures legal
transitions on the app's screen. The experiment on 25 popular
apps achieved 59.39-64.11% activity coverage and 29.53-

36.46% method coverage. Model-based software testing can be
used to automatically produce test cases from a formal model
describing the SUT. In addition to conventional test
automation, it may increase the quality of testing and reduce
the resources needed. A case study was presented to illustrate
the ability of a MBT to produce long-term test cases and run
parallel tests on multiple smartphone devices in [22]. Authors
in [23] introduced a novel method designed to identify irregular
network traffic activities in a multimedia app and how different
user experiences will lead to unexpected traffic patterns. It
makes the generation of a test suite composed of a huge
number of test cases that can be executed and measured with
adequate automation. Instead of random interactions, this test
suite represents realistic user behaviors, which may reveal
unforeseen consequences to users.

IV. CRITICAL EVALUATION

A systematic literature review was performed in order to
find, analyze, and classify papers which focused on testing
mobile applications. The aim of the current study was to
provide practitioners and researchers a clear view of the state of
the art so that they can easily find existing solutions pertinent
to their issues. The papers have been classified based on the
focused area, testing techniques/models, tool(s) (used and
proposed), platform/OS, tested applications domain, and
validation methods and parameters. A summary of the
approaches and techniques is presented in Table I.

TABLE I. CRITICAL EVALUATION

Ref. Focused Area
Testing techniques /

models
Tools

Platform /

OS

Tested applications

domain
Validation parameters

Comparison with other

techniques, tools, and models

[4]

Test oracle automation

using model driven
approach

-State machine

-Object management

group
-Class diagram

-Sequence diagram

xUnit (used) Android Utility app

-Bug detection

-Test case execution time
-Model transformation time

-

[5]

Security testing for

Android based

smartphones

-Reverse Engineering

of app class diagram

-ioSTS model

APSET Android

-General utility

-Location based

-Entertainment

-Dictionary

-Vulnerability path coverage

(80%)

-Bug detection (88%)

-Test terdicts (23%)

Tools: Notepad, Google Map,

YouTube and Searchable

Dictionary

[7]
Malware detection in

Android smartphones

-Static analysis

-Dynamic analysis
None Android

-Learning apps

-Utility tools

-Games

-Malware detection

-Accuracy up to 90%

Tools: AndroGuard and

DroidMat

[8]

Model based

automatic test cases

generation and

execution for mobile

platforms

-Model based testing

-Reverse engineering

-FSM

MobiGUITAR Android
-Android application

testing tools

-Exception handling

-Defect detection

-Code coverage (70%)

Tools: Aardict, Monkey and

Dynodroid

Techniques: Model based

testing, random testing

[9]

Mapping mobile

application testing

techniques to self-

defined classification

schemes.

-Model based

-Data driven

-Search based

-Reverse engineering

-Contextual fuzzing

-GUI based testing

-Automated testing

-Scripted UI testing

-Event based testing

None

-Android

-Symbian

-Windows

-Silverlight

-News reader

-Spreadsheet

applications

-Advertising

-Mobile learning

-Sales force

automation

-Android testing

-Usability testing

-Security testing

-Test automation

-Context awareness

-General mobile

Tools: AppDoctor, JPF

Android, MobileTest,

TestDroid, DroidChecker,

Caiipa, Mobiguitar, and

AppInsight

Techniques: Model based, GUI

based, automated and event

based testing

[10]

Comparing and

evaluating automatic

testing techniques for

Android mobile apps.

-Event based testing

-Graph based search
None Android

-Mobile games

-Calculator

-Shopping list

manager

-Recipe manager

-Task managing

-Note taking

-Battery viewer

-Avg. code coverage (0.035%)

-Avg. testing cost (7.86ms)

Tools: Aarddict, SimplyDo,

TicTacToe, Trolly, TomDroid,

TaskMan, BitesandManPages

Techniques: Active learning

and Random Testing.

Model: GUI Tree

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6578-6583 6582

www.etasr.com Khan et al.: A Literature Review on Software Testing Techniques for Smartphone Applications

[11]
Test automation for

mobile applications

-Model based testing

-Event Sequence

Graph

Robotium Android
Contacts and address

manager

-Avg. event sequence execution

time (99.93s)

-Fault detection rate

-Cyclomatic complexity (1,22)

Tools: Address Book App

[12]

Cloud based testing

for Smartphone

applications

-Mobility testing

-Security testing

-Functional testing

-GUI testing

-Service oriented

testing

MTaaS
-Android

-Cloud

Android application

testing tools

-Performance testing

-Avg. response rime: 181ms

-Avg. request hit rate: 35.6/s

-Avg. error ratio: 2.793%

-Test Case success rate (100%)

Tools: Perfecto Mobile,

TestDroid, YiceYun,

TestinandUTest

Infrastructure approach:

Crowd sourcing, emulation

based, and device based

[13]

Testing of self-

adaptive mobile

applications

Sampling based

interactive testing
SIT Android

Context aware

applications

-Number of bugs: 91.4%

-Bug detection rate: 19.8%

-Test time efficiency: 82.6%

-Branch coverage: 12.3-47.9%

-Test effectiveness: 95.2%

Tools: Robot Car, SECONDO,

Caiipa and Phone Adapter

Techniques: Random testing

and DSE

[14]

Assessing accuracy,

efficiency and

reusability of testing

oracles for Android

devices.

-GUI testing

-Event batching

-Smart wait function

-Record-replay

SPAG-C Android
Android application

testing tools

-Accuracy (99.5)

-Efficiency (50-75%)

-Reusability (approx. 5h)

Based on

-False positive rate

-False negative rate

Tools: SPAG and

MonkeyRunner

Techniques: Histogram, SURF

and Template matching

[15]

Mobile application

testing through model-

based testing

EFSM model

Used: Appium

Proposed:

Kelevra

Android Learning Apps -Fault detection rate Tools: GMSEC

[16]

An adaptive model for

mobile application

testing

Source code

refactoring

ReWeb&Test

Web (used)
Android Calculator

-Bug detection

-Test suite/code minimization
Tool: Calculator

[17]

A model-based testing

approach for

generating test cases

for Android apps.

State machine SPIN (used) Android N/A
-App coverage

-Testing time duration

Tools: MobiGUITAR& APSET

Techniques: SwiftHand

[18]

A model-based

method of

automatically reverse

engineering GUI-

models of mobile

applications

Finite state machine ORBIT Android

-Business

-Productivity

-Entertainment

-Literary

-Test coverage: 79%

-Testing time duration: 51%

-Precision

Tools: Monkey, Android Guitar

& Android GUI Ripper

Technique: Depth First Search

& Forward Crawling

[19]

An automated GUI

testing approach to

find defects/bugs in

mobile applications

-GUI dynamic

analysis

-Static analysis

Dalvik VM

(used)
Android

-E health

-Mobile games

-Business

-Communication

Defect rate

Tool: Monkey

Techniques: Model based

testing

[20]

Applied code level

testing to test rich GUI

based applications.

-Unit testing

-GUI testing

-Manual testing

Randoop

(used)
Windows

Industrial projects

(case studies)

-Defect detection rate (51%)

-Test case generation (153)

-Coverage (63%)

Tools: jUnit

Techniques: Manual testing,

jUnit Automated testing (Java

FX)

[21]

Systematic exploration

of Android apps for

testing purpose.

-Black box testing

-DFS

-Targeted exploration

-Dynamic analysis

A3E

(proposed)
Android

-Entertainment

-E commerce

-Media

-Social

-Music

-Health

-Method coverage

-Activity coverage

-Exploration time

Techniques: Manual testing

[22]

Model based GUI

testing approach for

testing Smartphones

apps

-MBT

-GUI testing

TEMA Test

Engine (used)
Android

-Camera

-Messenger

-Bug detection

-App state coverage
-

[23]

Identification of

abnormalities in user

interaction with

multimedia apps using

model based approach.

-MBT

-State machine

diagram

MVE

(proposed)
Android Music

-No. of executed test cases

-State coverage
-

V. CONCLUSION

In this study, several techniques and approaches in addition
to models and tools were reviewed for smartphone app testing.
We found a pool of testing strategies to assess the quality of
mobile apps of various natures. While analyzing and evaluating
the reviewed approaches for mobile app testing, we found the
model-based approach more convenient and promising to test

mobile apps because of its appealing approach to model the
overall design of a system [24]. The main advantage of using
the model-based approach is that the testers are well satisfied
with the recused efforts and the level of test cases it helps
produce [25]. Another advantage to adopt model-based testing
is that it supports several automated tools for test case
generation and execution. In this study, we have presented an
abstract model for testing smartphone apps which support

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6578-6583 6583

www.etasr.com Khan et al.: A Literature Review on Software Testing Techniques for Smartphone Applications

semi-automated testing. A potential future work in this context
could be to evolve a fully automated approach in the form of a
testing tool which takes an app as an input and generates test
cases according to the chosen model. The proposed tool may
possess more than one model for modeling that app and would
present the test results after executing the generated test cases
in accordance with the selected model. The proposed approach
would significantly lessen the human efforts required to test
mobile apps and would also minimize the chances of human
error.

REFERENCES

[1] Z. U. Rehman and F. A. Shaikh, "Critical Factors Influencing the
Behavioral Intention of Consumers towards Mobile Banking in

Malaysia," Engineering, Technology & Applied Science Research, vol.
10, no. 1, pp. 5265–5269, Feb. 2020, https://doi.org/10.48084/

etasr.3320.

[2] M. C. Lam, M. Ayob, J. Y. Lee, N. Abdullah, F. A. Hamzah, and S. S.
M. Zahir, "Mobile-based Hospital Bed Management with Near Field

Communication Technology :," Engineering, Technology & Applied
Science Research, vol. 10, no. 3, pp. 5706–5712, Jun. 2020,

https://doi.org/10.48084/etasr.3527.

[3] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, "Continuous,
Evolutionary and Large-Scale: A New Perspective for Automated

Mobile App Testing," in 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Sep. 2017, pp. 399–410,

https://doi.org/10.1109/ICSME.2017.27.

[4] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini, and G. Visaggio,
"Automated generation of test oracles using a model-driven approach,"

Information and Software Technology, vol. 55, no. 2, pp. 301–319, Feb.
2013, https://doi.org/10.1016/j.infsof.2012.08.009.

[5] S. Salva and S. R. Zafimiharisoa, "APSET, an Android aPplication
SEcurity Testing tool for detecting intent-based vulnerabilities,"

International Journal on Software Tools for Technology Transfer, vol.
17, no. 2, pp. 201–221, Apr. 2015, https://doi.org/10.1007/s10009-014-

0303-8.

[6] B. Kitchenham and S. Charters, "Guidelines for performing Systematic
Literature Reviews in Software Engineering," Keele University and

Durham University, EBSE 2007-001, 2007. Accessed: Dec. 09, 2020.
[Online]. Available: http://www.dur.ac.uk/ebse/resources/Systematic-

reviews-5-8.pdf.

[7] F. Tong and Z. Yan, "A hybrid approach of mobile malware detection in
Android," Journal of Parallel and Distributed Computing, vol. 103, pp.

22–31, May 2017, https://doi.org/10.1016/j.jpdc.2016.10.012.

[8] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, "MobiGUITAR: Automated Model-Based Testing of Mobile

Apps," IEEE Software, vol. 32, no. 5, pp. 53–59, Sep. 2015,
https://doi.org/10.1109/MS.2014.55.

[9] S. Zein, N. Salleh, and J. Grundy, "A systematic mapping study of

mobile application testing techniques," Journal of Systems and Software,
vol. 117, pp. 334–356, Jul. 2016, https://doi.org/10.1016/

j.jss.2016.03.065.

[10] D. Amalfitano, N. Amatucci, A. M. Memon, P. Tramontana, and A. R.
Fasolino, "A general framework for comparing automatic testing

techniques of Android mobile apps," Journal of Systems and Software,
vol. 125, pp. 322–343, Mar. 2017, https://doi.org/10.1016/

j.jss.2016.12.017.

[11] G. de Cleva Farto and A. T. Endo, "Evaluating the Model-Based Testing

Approach in the Context of Mobile Applications," Electronic Notes in
Theoretical Computer Science, vol. 314, pp. 3–21, Jun. 2015,

https://doi.org/10.1016/j.entcs.2015.05.002.

[12] C. Tao and J. Gao, "On building a cloud-based mobile testing
infrastructure service system," Journal of Systems and Software, vol.

124, pp. 39–55, Feb. 2017, https://doi.org/10.1016/j.jss.2016.11.016.

[13] Y. Qin, C. Xu, P. Yu, and J. Lu, "SIT: Sampling-based interactive
testing for self-adaptive apps," Journal of Systems and Software, vol.

120, pp. 70–88, Oct. 2016, https://doi.org/10.1016/j.jss.2016.07.002.

[14] Y. Lin, J. F. Rojas, E. T.- Chu, and Y. Lai, "On the Accuracy,
Efficiency, and Reusability of Automated Test Oracles for Android

Devices," IEEE Transactions on Software Engineering, vol. 40, no. 10,
pp. 957–970, Oct. 2014, https://doi.org/10.1109/TSE.2014.2331982.

[15] V. Gudmundsson, M. Lindvall, L. Aceto, J. Bergthorsson, and D.

Ganesan, "Model-based Testing of Mobile Systems -- An Empirical
Study on QuizUp Android App," Electronic Proceedings in Theoretical

Computer Science, vol. 208, pp. 16–30, May 2016,
https://doi.org/10.4204/EPTCS.208.2.

[16] M. Ahmed, R. Ibrahim, and N. Ibrahim, "An Adaptation Model for

Android Application Testing with Refactoring," International Journal of
Software Engineering and Its Applications, vol. 9, no. 10, pp. 65–74,

Oct. 2015, https://doi.org/10.14257/ijseia.2015.9.10.07.

[17] A. R. Espada, M. del M. Gallardo, A. Salmerón, and P. Merino, "Using

Model Checking to Generate Test Cases for Android Applications,"
Electronic Proceedings in Theoretical Computer Science, vol. 180, pp.

7–21, Apr. 2015, https://doi.org/10.4204/EPTCS.180.1.

[18] W. Yang, M. R. Prasad, and T. Xie, "A Grey-Box Approach for
Automated GUI-Model Generation of Mobile Applications," in

Fundamental Approaches to Software Engineering, Berlin, Heidelberg,
2013, pp. 250–265, https://doi.org/10.1007/978-3-642-37057-1_19.

[19] I. C. Morgado, A. C. R. Paiva, and J. P. Faria, "Automated Pattern-

Based Testing of Mobile Applications," in 2014 9th International
Conference on the Quality of Information and Communications

Technology, Guimaraes, Portugal, Sep. 2014, pp. 294–299,
https://doi.org/10.1109/QUATIC.2014.47.

[20] R. Ramler, G. Buchgeher, and C. Klammer, "Adapting automated test

generation to GUI testing of industry applications," Information and
Software Technology, vol. 93, pp. 248–263, Jan. 2018,

https://doi.org/10.1016/j.infsof.2017.07.005.

[21] T. Azim and I. Neamtiu, "Targeted and depth-first exploration for
systematic testing of android apps," in Proceedings of the 2013 ACM

SIGPLAN international conference on Object oriented programming
systems languages & applications, New York, NY, USA, Oct. 2013, pp.

641–660, https://doi.org/10.1145/2509136.2509549.

[22] R. Dev, A. Jääskeläinen, and M. Katara, "Model-Based GUI Testing.
Case Smartphone Camera and Messaging Development.," Advances in

Computers, vol. 85, pp. 65–122, 2012, https://doi.org/10.1016/B978-0-
12-396526-4.00002-3.

[23] A. R. Espada, M. del M. Gallardo, A. Salmerón, and P. Merino,
"Performance Analysis of Spotify® for Android with Model-Based

Testing," Mobile Information Systems, vol. 2017, Feb. 2017, Art. no.
2012696, https://doi.org/10.1155/2017/2012696.

[24] A. M. Mirza and M. N. A. Khan, "An Automated Functional Testing

Framework for Context-Aware Applications," IEEE Access, vol. 6, pp.
46568–46583, 2018, https://doi.org/10.1109/ACCESS.2018.2865213.

[25] S. Mohacsi, M. Felderer, and A. Beer, "Estimating the Cost and Benefit

of Model-Based Testing: A Decision Support Procedure for the
Application of Model-Based Testing in Industry," in 2015 41st

Euromicro Conference on Software Engineering and Advanced
Applications, Funchal, Portugal, Aug. 2015, pp. 382–389,

https://doi.org/10.1109/SEAA.2015.18.

