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Abstract-This paper deals with the simulation, and design of a 

trajectory-tracking control law for a physical system under 

parameter uncertainty modeled by a bond graph. This control 
strategy is based on the inversion of the system through their 

causal Input/Output (I/O) path using the principle of bicausality 

to track the desired trajectory. The proposed control strategy is 

validated with the use of a simple mechanical mass-spring-

damper system. The results show that the bond graph is a very 

helpful methodology for the design of control laws in the presence 

of uncertainties. This proposed control can be applied in several 
applications and can be improved to ensure robust control.  
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I. INTRODUCTION  

Bond graph modeling is a rapidly developing powerful tool 
for modeling multidisciplinary physical systems with graphic 
and algebraic characteristics that help analyzing system 
properties and synthesizing control laws or algorithms for 
system monitoring. The work presented in this paper is based 
on the application of the control law introduced in [1] on a 
system modeled by a bond graph which was improved by the 
study of parametric uncertainties introduced in [2, 3] and the 
work in [3] regarding incremental bond graphs for the 
derivation of the state model for the study of robustness of 
bond graph models. These uncertainties are included by adding 
some bond graph elements which describe their effect in the 
system, as described in Section IV. This work consists of the 
design of a trajectory-tracking control law using uncertain bond 
graph models, in the same way as they are used in the 
development of diagnostic algorithms for industrial systems [5-

7]. Therefore, this work can represent a foundation stone for 
the design of robust control laws using bond graphs to ensure 
the control of complex systems. 

II. BOND GRAPH MODELING  

The bond graph methodology for modeling physical 
systems was first introduced in 1961 [10] and was formalized 
in [11, 12]. It is based on the principle of conservation of 
energy between interconnected physical systems. It formalizes 
the transfer of power in different parts of the physical system, 
which is represented by a graphical link of half-arrow (Figure 
1), which is modeled by the product of two conjugate variables 
that form the power, the effort, and the flux. All phenomena in 
a physical system can be modeled by their characters: A power 
producer or active elements as effort source “Se” or flow 
source “Sf”, power consumers or passive elements such as 
resistances with “R”, energy storages with “I” or “C”, power 
transformation with direct transformation, (“TF”) or mixed 
transformation (“GY” or Gyrator), conservative power (“0” 
junction for common effort or “1” junction for common flow). 

 
Fig. 1.  Power transfer between systems A and B. 

The bond graph modeling of such physical systems always 
goes through the following steps: 

• The word bond graph, which is the abstract modeling of the 
system, dividing it into sub-systems interconnected by 
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graphic links. 

• The causal bond graph model is the representation of 
physical phenomena by bond graph elements, with 
connecting elements in the directions of power transfer. 

• The causality application is the mathematics of bond graph 
modeling. It is the representation of cause and effect 
between interconnected systems. It is represented with a 
perpendicular stroke to bond representing the direction that 
the effort is known (see Figure 2). It is covered through 
selected assignment rules [13]. 

 

 
Fig. 2.  Causality in bond graph. 

As all modeling methods, the bond graph model allows its 
models to switch to other modeling forms such as block 
diagram, state space, or transfer function [13-14]. To better 
illustrate this methodology, the mechanical system and its bond 
graph model are presented in Figure 3. 

 

 
Fig. 3.  Bond graph model of the mass-spring-damper system. 

By following the bond graph modeling steps in Figure 3, 
the junction 1 shows the speed movement of the system, due to 
the force U applied to the mass M which is modeled by the 
inertia I, as system input or Se element. The output is 
represented by a flow detector Df, which is a speed sensor. The 
shock absorber and spring are modeled by R and C elements 
respectively. The concept of bicausality in a bond graph was 
introduced in 1995 [8]. It is used for the design of the inverse 
model of a system modeled by a bond graph. It is also used to 
estimate the parameters of such a model and/or to estimate its 
state evolution. In the causality concept, the causal stroke 
indicates the direction where the effort is known, while in the 
bicausality, the causal stroke is divided into two strokes, top 
and bottom, perpendicular to the two sides of the bond. The top 
line indicates the orientation of effort and flow, while the lower 
line indicates the source of the effort and flow. Figure 4 shows 
the difference between causality and bicausality. 

 

 

(a) 

 

(b) 

Fig. 4.  Bond graph (a) causality vs. (b) bicausality. 

III. TRAJECTORY-TRACKING CONTROL BY BOND GRAPH  

The synthesis of a control law is generally based on a 
model describing the behavior of the system under study. 
Physical systems vary from linear [15] to non-linear [16] and 
may or may not vary in time with several control techniques to 
regulate or track trajectory, leading to several control laws 
which may be linear such as the LQR control [17], LQR 
control based on bond graph model [18], PID and Intelligent 
PID control [19], and nonlinear control in several techniques 
based on graphical model (bond graph) [20-21], mathematical 
model (CTC, VSC, backstepping, H∞, MPC, etc.) [22-24], or 
intelligent and meta-heuristic model optimization [19, 25-26], 
etc. [27-28]. In this paper, the tracking trajectory law is based 
in the technique initiated in [1] by the application of an 
algorithm of 5 steps which allows finding the control law for 
each junction block along with the causal I/O path. The 
algorithm steps are grouped in Table I. 

TABLE I.  TRAJECTORY-TRACKING LAW CONTROL DESIGN STEPS 

Steps Step name Operations 

Step 1 Causal inversion 
Inversion of I/O minimal causal dynamic path in 
the bond graph model using the bicausality 

Step 2 Inverse equation 
Derivation on the bond graph model of the 
minimum dynamic equation I/O (mde), which 

presents the error 

Step 3 
Output 

substitution 
Output substitution in mde : y(t)=y*(t)-e(t) 

Step 4 Error dynamics Constraining the error dynamic: ( ) * ( )e t k e t= −�  

Step 5 Error substitution Error substitution by: e(t)=y*(t)-y(t) 

y(t): system output, y*(t) : desired output or trajectory 

 
By applying the above procedure on the bond graph model 

of Figure 3, the steps can be described as follows: 

Step 1: Bond graph inversion, which is to build the inverse 
I/O model along the causal I/O path, as shown in Figure 5. 

 

 
Fig. 5.  Inverse bond graph model. 

Step 2: Derivation of the (mde) following the inversion 
equation. The virtual input is obtained as: 

1
. .

dv
U b v M vdt

dt C
= + + ∫     (1) 

Step 3: Output substitution. The error of the output is 
defined as: 

*
ve v v= −     (2) 

This leads to: 
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( ) ( ) ( )* * *1
.v v vU b v e M v e v e dt

C
= − + − + −∫� �     (3) 

Step 4: Error dynamics. The dynamics of the error is 
defined as a 1st order equation (integrator): 

0,0 >=+ vvvv kwitheke�     (4) 

where (3) becomes: 

( ) ( ) ( )∫ −+++−= dtev
C

ekvMevbU vvvv
*** 1

. �     (5) 

Step 5: Error substitution. Using (2) into (5) yields (6):  

( ) *** ...
1

vkMvMvdt
C

vMkbU vv +++−= ∫ �     (6) 

Equation (6) is the relationship of the control input, so that 
the output v follows the reference v*, with a well appropriate 
choice of constant kv for a better solution. The application of 
this technique was done with the utilization of 20-sim [9] 
version 2.3 which allows the simulation of systems modeled by 
bond graphs. Using the available toolboxes, the bond graph 
model of the presented system is implemented (Figure 4) and 
with the control law developed by (6), the graph in Figure 6 is 
obtained for speed with square trajectory and a choice of 
kv=200. The graph in Figure 6 shows that the system tracks 
well the desired path with the proposed control technique. In 
the next section, the uncertainty modeling parameters in a bond 
graph model are introduced and the control law for the 
uncertain model is recalculated.  

 

 
Fig. 6.  Tracking-trajectory control simulation. 

IV. UNCERTAINTY IN BOND GRAPH 

The bond graph tool by its graphical character and its 
analytical and structural performances are also used to 
represent modeling uncertainties as action elements on the 
system bond graph model. The introduction of uncertainty 
addition [2, 3] was followed by [4]. This technique can be 
applied to the design of robust diagnosis algorithms of bond 
graph models [5-7]. In the literature, two types of consideration 
can be found on the study of uncertainties: structured and 
unstructured uncertainties [29]. The current work is focused in 
the second type, which includes modeling uncertainties of 
physical phenomena, such as additive and multiplicative 
uncertainty at the input or the output. In bond graph modeling, 

both types of uncertainty (additive and multiplicative) are 
studied in [3], whereas in this work, the effect of input 
multiplicative uncertainty in the synthesis of control law is 
proposed. This is done using the standard interconnection 
model shown in Figure 7.  

 

 
Fig. 7.  Standard interconnection model. 

The standard interconnection model can be represented by 
the following system of equations: 









++=

++=

++=

uDwDxCy

uDwDxCz

uBwBAxx

22212

12111

21�

   

 (7) 

where x is the state vector, u the input vector, w the auxiliary 
input vector, z the auxiliary output vector, y the output vector, 
M(s) is the nominal system, and ∆ the diagonal uncertainty 
matrix, where w=∆.z with ( )idiag δ=∆  and iδ  is the ith 
parameter of the system. 

In the bond graph model, only passive components (R, C, 
and I) are assumed and are subject to uncertainty with 
transformation elements (TF and GY). An example of the 
design of the standard interconnection model for the I element 
in integral causality, is presented as follows: the constitutive 
law of the I element in integral causality is: 

∫= dte
I

f .
1

    (8) 

By introducing the term of the multiplicative error, it is 
found that: 

( )∫+= dte
I

f I
n

.1
1

δ  With 
II

I

n ∆+

∆
−=δ

 
   (9) 

The bond graph model of the uncertain element I and in the 
last relation (9) gives the representation of Figure 8. By the 
addition of uncertainty on the I element of our model in Figure 
3, the model in Figure 9 is obtained.  

 

 

(a) 

 

(b) 

Fig. 8.  Bond graph model of the element I: (a) nominal (b) with 
uncertainty. 
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Fig. 9.  Bond graph model with uncertainty. 

V. DESIGN OF THE CONTROL LAW  

By applying the control law design procedure stated above 
on the bond graph model with the uncertainty of the system 
presented in Figure 3, the following steps can be deduced. 

Step 1: Bond graph model inversion. Applying the 
inversion procedure of the causal path input/output on our 
model, using the principle of bicausality, the following scheme 
is obtained: 

 

 
Fig. 10.  Inverse I/O causal path. 

Step 2: Derivation of the dynamic equation. Using the 
structural equations of junctions leads to: 

• Junction  1: vM : 76 ee =  with Mn vMe �.7 =   

• Junction 0 : 564 fff −= with: 

4

6 7

5 .
M

M M

f v

f f v

f v δ

=


= =
 = −

    (10) 

Hence: 

( ) MM vv .1 δ+=     (11) 

• Junction 1 :v 4321 eeee ++=
 
with: 

1

2

3

4 6 7

1
. .

.

.n M

e U

e v dt k v dt
C

e b v

e e e M v

=

 = =

 =


= = =

∫ ∫

�

    (12) 

Hence: 

∫++= dtvkvMvbU Mn ... �

 
   (13) 

Replaces the speed v using (10) and (12) takes the 
following form: 

( ) ( )∫++++= dtvkvMvbU MMMnMM .1.1 δδ �

    
(14) 

Step 3: Output substitution. The output error is defined as: 

M Mv M M M M ve v v v v e
∗ ∗= − ⇒ = −     (15) 

This leads to the relation: 

( )( ) ( )
( ) ( )
1

    1 .

M M

M

M M v n M v

M M v

U b v e M v e

k v e dt

δ

δ

∗ ∗

∗

= + − + −

+ + −∫

� �

    (16) 

Step 4: Error dynamics. The dynamics of the error is 
defined as a 1st-order equation (integrator): 

0=+
MMM vvv eke�

  
with 0

Mv
k 〉 then 

MMM vvv eke −=�     (17)  

Equation (16) becomes: 

( )( ) ( )
( ) ( )
1

    1 .

M M M

M

M M v n M v v

M M v

U b v e M v k e

k v e dt

δ

δ

∗ ∗

∗

= + − + +

+ + −∫

�

    (18) 

Step 5: Error substitution. Returning to (15) yields to (18): 

( ) ( )
( )

1

    1 .

M M MM n v M n M v v

M M

U b M k v M v k e

k v dt

δ

δ

∗ = + − + + 

+ + ∫

�

    (19) 

which is the control law. The output vM follows the desired 
trajectory v*M. 

To validate the proposed control for this system, the control 
relation (19) is implemented on the 20-sim simulator, with a 
choice of nominalized values of parameters, and a value of kvM 
which allows reaching the control objective (tracking the 
trajectory of the desired speed), with a square-shaped signal, 
which for example simulates the motion of a rail traction chain. 
After choosing the uncertainty of the I element, which 
simulates additional load in a random form, the result shown in 
Figure 11 is found. The uncertainty of the presented case is 
chosen as random fluctuations bounded by the value (±0.5) 
around the normalized nominal value. Figure 11 shows the 
desired trajectory (curve B) followed by the output of our 
system (curve A), which confirms the efficiency of the 
designed control to the uncertainties of the system parameters. 
The error between the desired and the tracked velocity is 
around 10% from the nominal value, which is accepted in a 
control law. The contribution of this work is in the use of 
graphical and algebraic properties of the bond graph tool for 
the design of the control law, when the model is in presence of 
uncertainties, without the need for mathematical equation 
derivation, such as used in [18, 20-21].   
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Fig. 11.  Simulation result of designed control with 20-sim simulator. 

For the implementation of this control law, a platform is 
needed that integrates bond graph models, such as the 20-sim 
software in later versions than the one used in this paper, which 
allow interaction with practical systems. We are working on the 
integration of bond graph models in embedded systems to use 
them in the design of control and diagnostic systems.  

VI. CONCLUSION  

The main aim of this paper was to design a robust tracking-
trajectory control system which considers the uncertainties of 
system parameters, based on bond graph modeling. It has been 
proved that the bond graph is a powerful tool for modeling a 
dynamic system to ensure the analysis of interconnected 
physical systems. It is also very efficient for the design of 
control laws. The simulation results show the effectiveness and 
the robustness of the proposed and designed controller against 
parametric changes of the presented application. On the other 
side, the proposed control algorithm can be improved to be a 
promising solution for several industrial control applications.  
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