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Abstract-In this paper, we present an integrated multi-objective 

framework of a single machine for a single cutting tool problem. 

Our maintenance policy is based on performing minimal repairs 
in case of a minor failure and Preventive Maintenance (PM) to 

avoid a major failure that results in the replacement of the tool. 

This framework allows simultaneous optimization of the two 

conflicting time and cost objectives. A redundant system is 

proposed as a part of the model to assist the production line 

under a major failure. In addition, the tool’s preventive 
maintenance time is synchronized with the completion of the 

machine tool’s work cycle to reduce the machine’s set-up time. 

The model was optimized using a customized Non-dominated 

Sorting Genetic Algorithm (NSGA-II). An experimental study 

based on real-market data was conducted and the results were 
compared with the ones obtained from classical methods. 

Keywords-maintenance scheduling; preventive maintenance; 

redundancy; non-dominated sorting genetic algorithm; multi-

objective optimization; time and cost trade-off 

I. INTRODUCTION  

Addressing the trade-off between time and cost brings forth 
several challenges.  Notably, any change in the time schedule 
has an impact on project cost and ultimate profit. This is 
reflected in the efficiency of the tools and machines in the 
production line. Cutting tools are widely used in almost all 
lines of industrial systems. However, due to their constant use 
they are subjected to gradual depreciation and/or severe 
damages. These complications attribute to the costs of storage 
and procurement as well as the production disruption during 
operation.  In order to reconcile these challenges, it is necessary 
to consider the system characteristics before implementing the 
production process. In a manufacturing system, all the 

equipment parts, including machines and tools, have an 
estimated lifetime. In order to prevent the line from going idle 
as a result of an unexpected minor or major breakdown of a 
piece of equipment, a common approach is to incorporate 
Preventive Maintenance (PM) as proposed in [1, 2] using linear 
programming algorithms. PM is regularly performed to 
decrease the likelihood of system failure under two alternatives. 
A repair action allows the equipment to be operable again or a 
replacement to a new tool. For a comprehensive review on 
integrated maintenance and production planning models, we 
refer the enthusiastic reader to [3]. In general, there is a 
possibility of an excessive amount of time to repair a tool in 
addition to the fact that replacement with a new element might 
not always be to the best profit interest. Therefore, PM actions 
alone may not be as effective in planning decisions. Another 
technique to improve system performance, is to use redundancy 
in the processing operation [4]. The redundant system is 
designed to automatically take over the equipment operation if 
a failure occurs. Some works have considered a joint 
redundancy and maintenance strategy optimization [5]. This 
model determines the optimal redundancy levels in addition to 
the minimal repair simultaneously. While there are clear 
advantages of incorporating PM and redundant systems (e.g. 
reduction in time and cost of failures), these systems can create 
other difficulties such as extra operational costs. 

In an optimal PM scheduling process, there is an essential 
role in resource and planning management to meet the 
conflicting user-driven requirements. The objective of such a 
system is to minimize the time between the essential PM 
actions and the corresponding cost. Although in a competitive 
environment minimizing time and cost is less likely to happen 
simultaneously, an optimal trade-off between time and cost is 
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achievable. Time and cost trade-off models have long been 
addressed using traditional exact optimization algorithms 
where the cost function is linear [6–9] or nonlinear [10]. In 
several works, these problems have been formulated using 
dynamic programming [11]. However, given the NP-hard 
nature of the trade-off problems, using exact algorithms may 
become computationally intractable for large-size nonlinear 
problems. In order to improve the computational performance 
over the exact algorithms, several works suggest near-optimal 
heuristics such as Genetic Algorithms (GA) [12-14], Simulated 
Annealing (SA) [15], and Ant Colony Optimization (ACO) 
[16]. 

In all of these models, the problem is considered as a single 
objective time and cost trade-off. Alternatively, time and cost 
trade-off problems can be formulated as multi-objective 
models. In conventional multi-objective optimization problems, 
weighted LP and NLP algorithms yield a single optimal point 
based on the random or fixed weights [17, 18]. In single-
objective optimization models and multi-objective problems, 
the endeavor is to find a set of optimal solutions for conflicting 
objectives which are not necessarily superior corresponding to 
all objectives, called the non-dominated Pareto optimal 
solutions [19-21]. Utilizing evolutionary algorithms such as 
Non-dominated Sorting Genetic Algorithm (NSGA) [22-25], 
Multi-Colony ACO (MOACO) [26], and Multi-Objective 
Particle Swarm Optimization (MOPSO) [27, 28], establishes a 
set of solutions which are subject to decision-makers’ selection 
from the optimum. Although single-objective maintenance 
scheduling problems have been broadly addressed in the 
literature, the number of studies on multi-objective 
maintenance problems is quite limited. Authors in [29] use goal 
programming to solve the PM and replacement scheduling 
problem while suggesting heuristic solution procedures for 
large-scale problems. For large-scale multi-objective 
maintenance scheduling problems, NSGA is commonly used in 
search heuristics to optimize these problems based on operators 
of biologically inspired principles like mutation and crossover. 
Using GA, we can obtain optimal maintenance actions for the 
multi-objective maintenance scheduling problem of 
deteriorating structures. Authors in [14] proposed a bi-objective 
model for electromechanical products where they considered 
soft and hard failure as well as an imperfect PM approach. 
Their goal was to maximize the availability and minimize the 
cost of the system. In terms of solution methodology, they 
considered NSGA-II with the single mutation and crossover 
operators. 

Compared with the literature, the main contributions of this 
paper are: 

• We propose an integrated multi-objective preventive 
maintenance scheduling for a cutting tool system on a 
single machine with redundancy that captures the existing 
time and cost trade-off. Our model inherits the merits of 
providing a more realistic set of solutions which are tested 
for a large-scale case study. 

• Our model provides a well-suited customized redundancy 
option to decide which tools require a redundant system to 
assist the production line in addition when conducting PM 
actions. 

• We present an innovative customized crossover and 
mutation operators in the NSGA-II algorithm and we 
contrast our set of Pareto front solutions with conventional 
NSGA-II algorithms. Our numerical results attest the faster 
convergence of our modified NSGA-II algorithm over the 
techniques used in the literature. 

II. PROBLEM DESCRIPTION 

In order to formulate our scheduling problem, we begin by 
stating the following assumptions. 

A. Minor Failure Problem 

Let us consider an operating cutting tool assembled on a 
machine. As soon as a minor failure occurs, we perform 
minimal repair so that the tool is in an operable status again. In 
this case the tool’s useful life does not change. Generally, 
tools’ life deteriorates with time which necessitates regular 
tools inspection to replace the tool or perform a minimal repair. 
To address this, we schedule reoccurring PM actions to avoid 
unpredictable failures which affect the efficiency of the 
production line. In this case, the tool’s age is reset. In our 
problem, as a part of the optimization process, we would like to 
minimize the process time of PM actions which leads to an 
optimized cost and time of the process. 

B. Major Failure Problem 

From time to time, cutting tools are subjected to major 
failures in the middle of a cycle. These failures are caused by 
either human error or a tool life depreciation which leads to 
complete tool breakage. In order to keep the production line 
active, a new replacement tool needs to be available. However, 
inventory and holding equipment is costly. Therefore, in 
addition to scheduling PM actions in a timely manner, 
including redundant systems can have a significant impact on a 
cost-effective and time-saving system performance. 

C. Setup Time 

PM actions implementation entails stopping the machine 
tool and extracting the cutting tool out of it. If PM actions do 
not take place at the end of the machine’s cycle time, we have 
to interrupt the machine in the middle of the cutting operation. 
After PM actions are performed, the machine requires to be set 
up again. We define a penalty indicator for the setup time in the 
middle of the production process which we tend to minimize in 
our objective function. 

D. The Integrated Problem 

In the cutting process, in addition to performing PM actions 
in case of a minor failure, we consider a redundant system in 
the form of a backup when a major failure occurs. Moreover, as 
a part of our objective, we minimize the setup time after each 
process disruption. In the next section, the full model 
formulation is provided. 

III. PROBLEM FORMULATION 

Our formulation is inspired by [30]. The failure rates for 
minor and major failures are determined as: 



Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6542-6548 6544 
 

www.etasr.com Tavassoli et al.: Integrated Preventive Maintenance Scheduling Model with Redundancy for Cutting … 

 

1
1

1

( )
( )

( )
y

f y
r y

f y
∞

=

∫
    (1a) 

����� � ���	�

 ���	��� 	    (1b) 

where f1(y) and f2(y) are the probability density functions for 
minor and major failure variables. 

Let zt , t ∈ � be 1 if PM actions are performed before time t 
and 0 otherwise. We can formulate the effective age of the 
cutting tool as: 

�� � �1 � �������� � �� 	∀� ∈ �    (2) 
Equation (2) suggests that when zt = 0, no PM action is 

applied before time t. Therefore, the tool’s current age is its age 
at the previous time period t-1 in addition to some period 
length denoted by L. On the other hand, if PM actions are 
performed on the tool before t, its age is reset and the tool is 
considered as new. Next, we present the maintenance costs 
which consist of the expected Cost of Minimal Repair (CMR) 
and the Cost of PM (CPM) for each tool. 

�� � ∑ �"� #�$� �� � ��% 
 �����&�'()*'( 			∀+ ∈ ,    (3a) 
We can immediately write the cycle time for PM actions as: 

�� � ∑ �"� #�$� �� � ��% 
 �����&�'()*'( 			∀+ ∈ ,   (3b) 
where TPM and TMR are the process time for PM actions and 
minimal repair which are considered as continuous variables. If 
a major failure occurs, the production line will be stopped until 
the tool is replaced. Most of the equations described here can 
be applied to every cutting tool i ∈  I. We will explicitly 
mention when this is not the case. We denote the penalty 
associated with the major failure by CF1 and define it as: 

�-� � ��,�.��
 �����&�� � ��'()*'(      (4a) 

where Cm is defined as the cost of production of machine tool 
per time and TI and CT are the idle time of the machine due to 
a major failure and cost of replacing a broken tool with a new 
one respectively. The time it takes for replacing the tool can be 
computed as: 

�-� � �, 
 �����d��'()*'(     (4b) 

We define b to be 1 if the redundant system is applied and 0 
otherwise. When redundancy is considered in the process, the 
major failure occurrence penalty is defined as in (5a) which is 
the cost of applying a redundant system denoted by CRS in 
addition to CT. 

�-� � �%0 � ��    (5a) 
In this case, we assume that the process time of replacing 

the tool is ignored as it does not affect the overall production 
time as a result of a backup system which results to: 

�-� � 0       (5b� 
Consequently, (6a) and (6b) construe the cost and time 

penalty functions respectively. Let Tset be the machine setup 

time after being interrupted in the middle of its cycle time to 
conduct PM. We note that if the process time of the PM actions 
is equal to a coefficient of the cycle time of the machine tool, ��  = 0, which results in no time penalty. The cost penalty 
function can be interpreted in a similar manner. 

�456'7�	 � ∑ ��Tset�.#�$�     (6a) 

�456'7�	 � ∑ ���<=�#�$�     (6b) 

where ��  can be computed as: 

>� � 1 ⇔			∄A ∈ B:		A D Cycle	�+I=	 � 	�"�    (7a) 
>� � 0 ⇔			∃A ∈ B:		A D Cycle	�+I=	 � 	�"�    (7b) 

Our cost and time objective functions can be formulated as: 

Min Cost=K �� � ��� �.� � βMCF�,M �P $��1 � Q ��-�, � �R56'7�	,     (8a) 
Min Time=K �� � Q �-�, � �1 � Q ��-�, �P $��R56'7�	,     (8b) 

where Q  is binary ∀+ ∈ , and TPMi ≥ 0 ∀+ ∈ ,, where , is the 
set of cutting tools in the process. 

IV. METHODOLOGY 

On a production basis, we often use a lot of cutting tools in 
the process which affects the decisions about time and cost of 
PM actions and redundant systems inclusion. To mitigate the 
computational difficulties of solving the resulting large scale 
problem due to the non-linear objective functions, we apply a 
modified NSGA-II heuristic algorithm. We apply these 
modifications in the crossover and mutation operators which 
allow a faster convergence. We ultimately assess our solutions 
by  introducing an index penalty in the algorithm. 

A. Initialization 

Before creating the crossover and mutation operators, we 
require maintaining a diverse population of the candidate 
solutions which we refer to as chromosome strings. For 
starters, we generate 100 random solution alternatives. For each 
of our two variables of Q   and TPMi, we assign a row which is 
extended for each tool i. Figure 1 demonstrates one set out of 
the randomly generated 100 solutions. 

 
Fig. 1.  A chromosome string of set of candidate solutions. 

B. Mutation 

We define 3 mutation operators where we generate the 
parents using the roulette wheel selection. We design the first 
mutation operator to change the value of a random β cell 
picked from its row. In order to address the possibility of 
finding better optimal solutions whether redundancy is applied 
or not, the proposed operator switches the values of the cell 
from 0 to 1 or from 1 to 0. Our second operator picks a cell 
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from the second row of the chromosome string. This operator 
sums the value of the cell with a random number x in order to 
avoid selecting local solutions. The third operator is set to 
select solutions of the second row with the minimum penalty. 

C. Crossover 

For our experiment, we consider two crossover operators 
where the first one generates a parent using roulette wheel 
selection. It then switches two randomly selected parents and 
creates two offspring. The second operator generates uniformly 
distributed solutions in the Pareto front. In this approach, the 
operator chooses consecutive parents from the Pareto front 
which maximize the crowding distance. We use the following 
equations to create new solution candidates. 

��S � �� � �1 � T���� � ���    (9a� 
��S � �� � T��� � ���    (9b) 

where 0 ≤ λ ≤ 1 and ��S and ��S are the updated new cell values. 
D. Non-dominated Sorting 

To sort the solutions, we use the convexity crowding 
distance method. For every chromosome we have: 

& � W XY�Z��[XY\]^�XY\_Y
`
 $6     (10) 

where a6�b�	is the nth objective function and a6.'Z  and a6. 6 
are the maximum and minimum values of the nth objective 
function value. G is the closest value obtained to the considered 
objective value. 

E. Penalty Algorithm 

As explained above, we consider a penalty for each PM 
action that requires disturbing the production line in the middle 
of its cycle. In order to find the number of each solution's 
penalty α, we conduct a penalty algorithm which is illustrated 
in Figure 2. 

 
Fig. 2.  Penalty function algorithm. 

F. Numerical Example 

For the computational experiments, we used real data 
collected from [31]. In our numerical experiment, we consider 
6 cutting tools which perform machining operation on an 
aluminum part. Using a vertical milling machine, it produces 
10000 parts with a cost of $2.5 per minute. We consider the 
idle time of the machine tool in case of a major failure to be 
one complete shift of 8 hours and the cycle time of the machine 
tool to be 375 seconds. Figure 1 demonstrates the time and cost 
of PM for each cutting tool. We note that the cost and time of 
PM actions are assumed under screw and tool replacement after 
a breakage. 

V. NUMERICAL RESULT 

A. Results for Modified-NSGA-II vs. NSGA-II 

We initialize the algorithm by randomly generating a 
population of 100. The number of the initial population and the 
solutions provided by mutation and crossover differ based on 
their importance. Table I demonstrates the population for each 
operator. 

TABLE I.  PM COST AND TIME RESULTS  

 Tool #1 Tool #2 Tool #3 Tool #4 Tool #5 Tool #6 

CPR ($) 12 47 14 25 23 17 

CMR ($) 12 9 8 7 8 7 

TPR (min) 4 5 4 6 4 4 

TMR (min) 4 2 2 2 2 2 

TABLE II.  ALGORITHM SPECIFICATIONS AND POPULATION 

Algorithm specification Number of produced population 

Primary population 100 

Mutation Type1 30 

Mutation Type2 30 

Mutation Type3 30 

Crossover 1 30 

Crossover 2 30 

 
In order to assess the performance of our modified NSGA-

II algorithm, we define a reference based on 100 best candidate 
solutions obtained by the modified NSGA-II, NSGA-II with 
redundancy, and NSGA-II without redundancy, each replicated 
10 times. We conduct the experiment using MATLAB 
platform on a Windows-based server with 16 GB RAM. Our 
case study is based on a real data-set. Figure 3 contrasts the 
Pareto front results for the three algorithms. It can be seen that 
the modified NSGA-II provides a wider range of non-
dominated optimal solutions. To provide better intuition on 
how the implemented algorithms perform, the detailed results 
are exhibited in Table III. Each replication was run for 100 
iterations. We observe that due to the computational 
complexity of the modified NSGA-II, it takes relatively more 
time to solve each replication. Moreover, since we incorporated 
a mutation operator that seeks candidate solutions with no 
penalties, there are fewer solutions with penalty for the 
Modified NSGA-II than for NSGA-II with and without 
redundancy. Applying our mutation operators select solutions 
with no penalty in our proposed NSGA-II. However, there is 
no such operator incorporated to generate these solutions and 
may randomly select these solutions. We also notice that 
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NSGA-II with redundancy provides better computational 
performance confirming the effectiveness of including 
redundancy in the system. The results of the comparison 

between the NSGA-II and the modified NSGA-II can be seen 
in Table III. 

TABLE III.  RESULTS FOR NSGA-II AND MODIFIED NSGA-II 

 
Time Penalty NNS 

No. Iteration 
Modified-

NSGA2 

NSGA2 

Modified-

NSGA2 

NSGA2 

Modified-

NSGA2 

NSGA2 

Without the 

redundant 

system 

With the 

redundant 

system 

Without the 

redundant 

system 

With the 

redundant 

system 

Without the 

redundant 

system 

With the 

redundant 

system 

1 100 128.6 94.2 86.5 131.4 161.2 178.5 0 19 1 

2 100 134.3 87.8 87.2 116.0 176.4 150.6 0 0 6 

3 100 127.2 88.1 88.5 74.0 115.5 142.5 13 8 5 

4 100 127.0 88.0 88.6 125.8 177.1 167.3 0 1 5 

5 100 126.8 100.2 90.0 68.7 171.7 160.3 2 0 0 

6 100 128.2 113.2 87.4 75.6 156.3 157.3 31 4 4 

7 100 128.2 87.8 87.4 68.2 167.5 120.6 15 0 14 

8 100 126.0 86.5 87.3 119.1 121.7 159.4 1 14 7 

9 100 129.8 86.0 88.1 92.7 136.2 183.2 7 6 20 

10 100 128.0 85.9 87.9 97.2 163.7 156.8 1 0 2 

Ave. - 128.4 91.8 87.9 96.8 154.7 157.6 7 5.2 6.4 

Std. Dev. - 2.20 8.31 0.92 23.44 21.25 16.86 9.59 6.35 5.85 

 
Inverted Generated Distance Delta Index Spacing Metric 

No. Iteration 
Modified-

NSGA2 

NSGA2 

Modified-

NSGA2 

NSGA2 

Modified-

NSGA2 

NSGA2 

Without the 

redundant 

system 

With the 

redundant 

system 

Without the 

redundant 

system 

With the 

redundant 

system 

Without the 

redundant 

system 

With the 

redundant 

system 

1 100 268990 670680 1782100 4618 2499 465 185 796 291 

2 100 107210 651130 1772100 4974 3051 478 237 704 278 

3 100 82140 656510 1774300 5716 3118 583 332 204 362 

4 100 252240 601480 1782100 4606 3368 249 232 1273 83 

5 100 130800 675760 1777100 5296 2706 607 258 479 572 

6 100 81027 600140 1765000 5600 2221 332 184 695 202 

7 100 119160 677110 1785900 5153 3214 257 248 429 143 

8 100 177600 639400 1779800 5609 3163 414 241 354 249 

9 100 160170 677310 1771300 3978 2551 195 212 515 74 

10 100 50396 674010 1784400 6373 3401 442 225 483 396 

Ave. - 142970 652353 1777410 5192 2929 402 235 593 265 

Std. Dev. - 68860 28442 6324 649 384 133 39 281 145 

 

 
Fig. 3.  Optimal Pareto front for NSGA-II vs Modified NSGA-II. 

B. Inverted Generated Distance 

This approach is designed to evaluate the diversity of the 
optimal solutions computed by: 

,cd � ∑ e�f,R�g∈h∗|R∗|     (11) 

where P is a set of non-dominated solutions obtained by the 
algorithm and "∗ is the set of uniformly distributed points in a 
true Pareto front. &�k, "� is the minimum Euclidean distance 
between k and the points in ". In Table III, we observe that 
modified NSGA-II provides far less IGD numbers over the 
other NSGA-II algorithms across all the replications which 
prove the significant effectiveness of the algorithm in finding 
the optimal solutions. 

C. Delta Index 

In this approach, we examine the distribution of the Pareto 
front considering the following equation: 

l�<� � W |e_�em||n|��
|n|��
 $�     (12) 

where di is the Euclidean distance of two consecutive solutions 
of the Pareto front with s optimal solutions and &̅ is the average 
distance. The less the delta is, the more uniformly the Pareto 
front will be distributed. However, the range of Pareto front 
solutions affect the delta index as is demonstrated in Table III. 
Since the modified NSGA-II selects a wider range of solutions 
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in the Pareto front, its index is more than other reported indices 
for NSGA-II algorithms. 

D. Spacing Metrics 

In this technique, we opt for analyzing the uniformity 
between the Pareto front and the reference solutions which can 
be computed as in (13): 

0"�<� � p �|q|�� W �&̅ � & ��|n|
 $�     (13) 

where &  is the minimum distance of optimal solution i from 
the reference point and &̅ is defined as the average distance for 
s optimal solutions. Notice that the spacing metrics across all 
the replications for modified NSGA-II are less than NSGA-II 
with and without redundancy which suggests better uniformity 
to reference solutions. 

VI. CONCLUSION 

In this study, we developed an integrated multi-objective 
preventive maintenance scheduling model for a single machine 
cutting tool system with the option of redundancy in one 
framework. Redundancy performs as a backup and major 
failure safe system. Our model optimizes the redundancy 
requirements and the time duration of the PM process. We 
propose a modified genetic algorithm with customized 
mutation and crossover operators which allow finding a better 
Pareto front compared to the existing algorithms. We 
implemented our experiments on a case study drawn from real 
data. Our results confirm the better performance of the 
modified NSGA-II algorithm which suggests that evolutionary 
algorithms alone do not necessarily provide more viable 
optimal solutions and require customized operators for better 
computational efficiency. Moreover, integrating the PM 
process with redundancy outperforms the conventional models 
by providing more realistic solutions. Furthermore, defining the 
appropriate mutation and crossover operators in GA avoids 
selecting local optima which improves significantly the 
convergence. Analyzing PM process times provides valuable 
information to manufacturing companies in order to determine 
meticulous planning and scheduling decisions. In addition, 
these industries have the privilege of economic justification for 
applying redundancy in the production line before 
implementing the project, not to mention the ability to design, 
produce and procure their products based on customers’ 
priorities and demand requirements. Utilizing the modified 
NSGA-II, one can consider more objective functions such as 
the quality of roughness amount of the cutting surface as well 
as machine energy consumption or labor requirements in order 
to provide better scheduling results.  

For future work, the incorporation of the PM process and 
redundancy for multiple tools and machines is considered. In 
this case, we study a framework which includes multiple 
machines, each operating with different tools. This will result 
in error computation for a more complicated system which 
naturally necessitates defining appropriate mutation and 
crossover operators associated with the tools and the machines. 
Another future work could be implementing other evolutionary 
algorithms such as the NSGA-III to further improve the 

accuracy and performance of the solutions in large-scale 
instances. 
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