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Abstract—Logo detection in images and videos is considered a 
key task for various applications, such as vehicle logo detection 

for traffic-monitoring systems, copyright infringement detection, 

and contextual content placement. The main contribution of this 

work is the application of emerging deep learning techniques to 

perform brand and logo recognition tasks through the use of 

multiple modern convolutional neural network models. In this 
work, pre-trained object detection models are utilized in order to 

enhance the performance of logo detection tasks when only a 

portion of labeled training images taken in truthful context is 

obtainable, evading wide manual classification costs. Superior 

logo detection results were obtained. In this study, the 

FlickrLogos-32 dataset was used, which is a common public 

dataset for logo detection and brand recognition from real-world 
product images. For model evaluation, the efficiency of creating 

the model and of its accuracy was considered. 

Keywords—logo detection; deep learning; convolutional neural 

networks; FlickrLogos-32   

I. INTRODUCTION  

Logo Detection (LD) is important for several real-world 
applications [1] by enhancing the ability of users/systems to 
recognize the identities of items by their brand logos. As a 
result, LD is an area that many companies aim to explore to 
captivate their clients and make informed decisions regarding 
brand development [2]. LD is a sub-field of object detection 
which is the task of identifying wherever there is a specific 
object in an image. We are not only interested in simply 
identifying the existence of an object, but also to locate it 
within the image. There are many classical approaches to 
object detection such as key point-based detectors and local 
feature-based recognition. More recently, there has been a 
growing interest in using Convolutional Neural Networks 
(CNNs) to perform object detection tasks. This approach 
usually starts by capturing images by camera devices, probably 

experimenting with different resolutions, and then processing 
the images in order to be able to classify the images of the 
objects contained within [3]. More specifically, three steps can 
be used in traditional object detection and classification 
approaches, and these are: informative region selection, feature 
extraction, and classification [4]. In region selection, it is 
probable to scan the whole image consuming a multi-scale 
sliding window, as numerous substances (objects) might appear 
in different positions with several sizes and feature ratios. 

There are differences between LD and Logo Recognition 
(LR). LR is used to detect a logo's identity in an image, 
whereas LD is considered to detect a logo's position [5]. Both 
LD and LR are based on classification methods. For example, 
[6] proposed the use of CNNs for a recognition pipeline 
comprising a recall-oriented logo region. A CNN, in general, is 
considered as a widely used method in both LD and LR. 
Research in LD has been addressed in several directions where 
general object detection with deep learning methods has always 
been an excessive realization. Construction of a deep object 
detection model classically needs many categorized training 
data collected using wide manual classification. In this paper, 
RCNN, FRCNN and RetinaNet were used for logo detection. 
This paper presents the current LD methods and sheds light on 
common datasets used in previous research.  

II. LITERATURE REVIEW 

One of the aims of this research is to investigate the area of 
LD and examine the state-of-the-art approaches. It should be 
noted that due to the desire to explore new trends in LD, which 
is a very fast-growing area, we focused on papers published 
during the last five years or papers that have shown a 
considerable impact in terms of number of citations. Table I 
shows the summary of the studied and referenced articles. 
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TABLE I.  SUMMARY OF THE REVIEWED ARTICLES 

Reference Year Approach Dataset Performance 

[7] 2019 YOLOv3 VLD-3 76.6-98.8 

[8] 2017 Faster R-CNN FlickerLogo 0.52-0.67 

[1] 2019 OSLD - SDML BLAC and Flickr-32 84.5-90.9 

[9] 2018 RetinaNet INbreast - GURO 86-1.00 

[10] 2017 Faster R-CNN FlickrLogos mAP 51-66% 

[11] 2020 Faster R-CNN and YOLOv2 WebLogo-2M mAP 36.8-46.9 

[12] 2017 DenseNet16 -, ResNet101 -, VGG16 FlickrLogos-32 SportsLogos 0.37-0.46 

[13] 2017 Scalable Logo Self Training (SLST) WebLogo-2M mAP 34.37% 

[14] 2007 ANN and Support Vector Machine (SVM), Fisher classifier Tobacco-800 39.3-84.2% 

[5] 2015 RCNN – FRCN – SPPnet Logos-18 test set Logos-160 test set 81.3-95.2% 

[15] 2019 Faster R-CNN, SSD, YOLOv3 FlickrLogos-32, PL2K 0.565 mAP 

[6] 2017 CNN FlickrLogos-32 Logos-32plus 0.1-95.8% 

[2] 2016 Fast Region-based Convolutional Networks (FRCN) ILSVRC, FlickrLogos-32 mAP 54.5-73.74% 

[16] 2018 
Retina U-Net, Mask R-CNN, Faster R-CNN +, U-Faster R-

CNN, + DetU-Net 
LIDC-IDRI mAP 29-50.5% 

[17] 2017 Faster R-CNN FlickrLogo-32 TopLogo-10 mAP 20.5-81.1% 

[18] 2020 DenseNet-CNN FlickrLogo-32 92.8% 

 

A. Logo Detection Methods 

Several frameworks have been proposed in the LD area, 
and experimental evaluations show different results. For 
example, in [2], CNNs were shown to be a reliable technique 
for LD, containing several layers that are similar to simple and 
complex cells in the primary visual cortex. In particular, it 
adopts a hierarchical structure that enables the recognition of 
visual patterns arising from image pixels. The convolutional 
layers alternate with other subsampling layers that have varying 
sizes. As a result, they help enhancing image clarity and 
improve LD. Other researchers [11, 13] indicated that the 
technique of scalable logo self-co-learning can self-discover 
informative training pictures from the blaring web information. 
In particular, this can be helpful to enhance model capacity in a 
cross-model co-learning approach [13]. The scalability of the 
logo is of concern because it determines the level of 
categorization possible and the efficiency of the LD approach. 
The process enables the collection of many unconstrained 
images for review. The images need not undergo any fine-
grained instance level of labeling for the necessary aspects to 
become clearer to the users. However, sometimes, the use of 
proxies for the scalable LR enables the classification and 
identification of the logos [15]. In particular, this is because 
there is no clear definition of a logo and logos vary like brands. 
The proxies, however, facilitate the re-training of images to 
integrate all variations. Although it may seem impractical, the 
utilization of proxies in scalable LR involves the use of a 
universal logo detector and a few-shot logo recognizer. As a 
result, the use of proxies can become a reliable tool because it 
can enable the users to enhance clarity and assess the image 
better. Additionally, companies can utilize the proxies in 
scalable LR to achieve high precision and make informed 
decisions. 

Authors in [16] used Retina U-Net for semantic separation 
in classifying medical images. Retina U-Net is a useful tool for 
logo detection and classification, which can guarantee the 
desired results for image analysis. Retina U-Net can be a 
reliable LD and image markup technology. Companies can rely 
on this technology to enhance the clarity of their brands. They 

can make brands more attractive and can be easily valued by 
customers. In this regard, Retina U-Net can become a suitable 
tool through which companies can attract customers. Authors 
in [14] proposed an LD method which used a boosting 
approach through multiple image scales particularly for LD and 
image extraction. It uses a trained fisher classifier, a kind of 
deep learning approach, to perform initial classification that 
can identify features from document context and linked 
components. In particular, each logo area is classified by a 
cascade of simple classifiers to continuously improve scales. It 
is considered to be able to detect regions to be refined and 
ignores false alarms. Early research produces weak 
performance of Faster R-CNN [10]. Therefore, the researchers 
in [8, 10] introduced a Fast RCNN approach which is based on 
deep neural networks where the convolutional layers are used 
to extract gradually abstract feature representations by using 
previous learned convolutions, then apply a non-linear 
activation task to the image. More recently, authors in [18] 
proposed a transfer-learning-based method aided by the use of 
Densely Connected Convolutional Networks (DenseNet) for 
logo recognition. They applied their proposed method to the 
FlickerLogos-32 dataset. 

In Computer Aided Diagnosis (CAD) systems [9], the 
system utilizes a mass detection model based on RetinaNet. 
RetinaNet is a kind of deep CNN, where an object detector is 
mainly expected as a one-stage object detector that is fast and 
effective while achieving improved performance. However, 
new research in this area [11] argues that the current LD 
approaches typically consider a small number of logo sessions, 
with limited images per session and presume fine-tuning 
associated to each object annotation. However, this produces 
the problem of limited ability to be scalable to dynamic 
applications in the real world. Their proposed approach tries to 
overcome these challenges by ignoring manual labeling and 
directly exploring web data learning principles. In particular, it 
proposes an incremental learning approach, named Scalable 
Logo Self-Co-Learning (SL 2). This method can automatically 
self-discover informative training images from noisy web data 
for increasingly improving model ability in a cross-model co-
learning means. 
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B. Datasets Used 

The datasets that have been used in recent studies come 
from various sources. Authors in [14] utilized the Tobacco-800 
dataset which consists of 42 million pages of documents, 
whereas authors in [8, 10] have used four publicly available 
datasets. Authors in [11] introduced a very large logo dataset 
which contains: 2,190,757 images of 194 logo classes, named 
“WebLogo-2M” by designing an automatic approach for data 
collection and processing by automatically sampling web logo 
images from social media sources (Twitter). In other studies, 
such as [2, 6, 15], the public dataset FlickrLogos-32 was used. 
This dataset is one of the most commonly used datasets in the 
field of logos, it contains 8,248 pictures, with 32 images per 
brand. Authors in [15] introduced a new logo dataset 
containing 2000 logos and 295K images collected from 
Amazon, called PL2K. The dataset used in the current paper is 
FlickrLogos-32 [19]. This dataset has 32 logos each has many 
examples and it also has well-articulated annotations. This is 
the most prevalent logo detection dataset containing and it has 
been used for the purposes of this research for comparisons 
with existing approaches in the area. Sample data from this 
dataset can be seen in [6, 19]. 

C. Evaluation Stage 

Evaluation of the considered methods has been conducted 
in a variety of ways through several steps. The framework 
presented in [10] has been evaluated on the dataset in order to 
improve the detection performance on small object instances. 
The evaluation of the approach presented in [8] was conducted 
on the dataset improving the RPN performance from 0.52 to 
0.71 (mAP) and the detection performance from 0.52 to 0.67 
(mAP). A description of the evaluation metrics will be 
presented in the following sections. Other researchers [2] used 
metrics of performance for measuring LD performance such as 
the Average Precision (AP) for every logo class and the mean 
AP (mAP) for all classes, where the detection is considered 
true when the Intersection over Union (IoU) overtakes 50%. In 
addition, two evaluations per each detector type (single and 
five shot) were used in [15]. The Faster R-CNN model worked 
best with a mAP of 0.56558, where the mAP was decided by 
region proposals with a class detection threshold of 0.5. For 
example, the proposed models were trained on PL2K and 
evaluated on FlickrLogos32 to achieve new state-of-the-art 
performance of 56.55% mAP. In the evaluation stage in [15], 
the researchers used an evaluation metric based on labeled 
ground truth to measure the quality of LD. In [11], the 
evaluation has been conducted by using extensive comparative 
evaluations demonstrating the superiority of SL 2 over the 
state-of-the-art contemporary web data learning methods and 
strongly weakly supervised detection models. The experimental 
evaluation of [9], shows that the considered model extracts 
inconsistent mass features from the single dataset as well as the 
combined dataset whose mammograms are collected from 
different sources, which proposes the ability of the model to be 
applied to different groups. The evaluation of the proposed 
model in [9] has been addressed in setups consuming pre-
trained weights, which uses weights pre-trained on GURO, 
training and testing on INbreast. This shows that consuming 
the pre-trained weights on datasets produces the same 

performance as directly consuming datasets in the training 
stage. 

III. METHODOLOGY 

The studied dataset has been examined with the use of 
some pre-trained deep learning models for object detection 
based on CNNs. 

A. CNN Models 

1) RetinaNet 

RetinaNet [20] consists of a support network, and binary 
sub-nets that use various features of the maps of the provision 
network. One establishment subnet categorizes the instance of 
the image, and one regression subnet registers out the bounding 
box. The model workflow is: 

• Loading and preparing training data. 

• Training a deep neural network using RetinaNet. 

• Evaluating the model. 

• Using the model for inference. 

2) Faster R-CNN 

Faster R-CNN [21] assimilates the area suggestion 
algorithm into the CNN model. Faster R-CNN model is 
composed of an RPN (Region Proposal Network) and a firm R-
CNN with communal convolutional feature layers. The model 
workflow is:  

• Using the image classification pre-trained model.  

• Fine-tuning the RPN for the area proposal task, which is 
prepared using the pre-trained image classification model 
where optimistic samples have IoU>0.7, while undesirable 
samples have IoU <0.3. 

o Slips a small n×n three-dimensional gap over the 
convention of the feature map of the complete 
image. 

o At the middle of each gliding window, it forecasts 
numerous areas of numerous balances and ratios 
concurrently. A presenter is a grouping of gliding 
the window center, scale, and ratio. For instance, 
for 3 scales + 3 ratios, then k=9 anchors at each 
gliding position.  

• Trains the Fast R-CNN LD model by the usage of the 
proposals formed by the current RPN. 

• Uses the Fast R-CNN system to modify the RPN training. 
Through the observance of the public convolutional layers, 
solitarily fine tunes the RPN-precise layers. At this level, 
the RPN and the finding network have public convolutional 
layers. 

3) R-CNN 

R-CNN [22] is one of the most common deep learning 
frameworks used to detect objects on a large scale. It is a 
combination of CNNs and region suggestion. The model 
workflow is as follows:  
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• Train the CNN network for image classification. 

• Propose category-independent regions of interest by 
selective search. 

• The areas of the objects are warped to make sure that they 
are in place for the fixed size needed by the CNN. 

• Move on with the fine-tuning of the CNN which is warped 
over the proposal areas for K + 1 classes. The extra class is 
associated with the background (does not have many 
objects of interest).  

• Assure that every image in the area, with one or more of the 
forwarded flows of movement throughout the CNN makes 
a feature vector.  

• Decrease the localization of the errors. 

B. Evaluation Measures 

1) Localization and Intersection over Union 

As can be seen in [22], the object detection of the dataset 
can be estimated accurately by the IoU which is known to be 
used in the evaluation stage [23]. The predication of locating 
the object is determined on how strict the model is, by the 
evaluation of the function of object localization of the model. 
This is usually accomplished by drawing a bounding box 
around the desired object [22]. The function of localization is 
evaluated by the IoU: 

IoU �
����		
��������������
���	∩�������������
����

����		
��������������
���	∪	�������������
����
� 0.5	    (1) 

Each object is associated with one bounding box, but in 
some cases, the bounding boxes might be more than one. When 
there are more than one bounding boxes regarded to one object, 
one box will either be True Positive (TP) or False Positive (FP) 
and the other box is vice versa. Yet, an object can be 
recognized as False Negative (FN) when there is no predicted 
bounding box. 

2) Mean Average Precision 

mAP is one of the most popular metrics in measuring the 
accuracy of object detectors, e.g. R-CNN. It is also called 
precision-recall for detecting bounding boxes. Precision-recall 
is considered to measure how the network understands 
importance and how it removes invalid information. mAP 
enhances the information produced by precision-recall. The 
prediction is more accurate when the mAP score is higher. 

mAP �
 

!
∑ APi�$ 
!     (2) 

The AP is the average of class predictions (N) measured 
over various thresholds, i.e., it is the average of precision 
values for various recall levels [24]. The current study aligns 
with the approach in [24]. In particular, in the current study, the 
AP curves for each logo class are based on the pre-trained 
models (R-CNN, Faster R-CNN, RetinaNet). 

IV. IMPLEMENTATION 

Initially, we started by cleaning the dataset and checking if 
the annotation files were correct. Then the dataset needed to be 
fed into each of the training models. Since it takes too much 

time to build the model, the model needs to be stored and then 
reused. After that, we chose samples of pictures from the 
dataset to train each model on them, in order to produce 
weights. The remaining images were used for testing the 
models in order to find each one's testing accuracy. For 
implementation, Colab notebook was used to execute code on 
Google’s cloud servers. Hardware specifications were: CPU: 
AMD ryzen 7, GPU: 2080ti, Ram: 16GB, GPU capacity 
needed for the build: 2.3GB for R-CNN, 1.5GB for FR-CNN, 
and 3.1GB for RetinaNet. 

V. RESULTS AND DISCUSSION 

It has been found that R-CNN takes more time and GPU 
space, but obtained higher accuracy. Hence, the increased 
accuracy comes with a cost. This is because the FR-CNN first 
applies CNN and then the zones where compared to the R-
CNN which makes the regions first and then applies CNN. 
When comparing the R-CNN and the FR-CNN to the 
RetinaNet, it was revealed that the RetinaNet takes fewer test 
time when compared to R-CNN, it demands more training time 
when compared to the FR-CNN and it takes more space than 
both R-CNN and FR-CNN because it checks layers more, 
because the quality of the image matters less to RetinaNet.  

 

 
Fig. 1.  R-CNN performance. 

As shown in Figure 1, there is a considerable increase in the 
testing accuracy whereas there is a decrease in the training loss 
for the first 1000 iterations. Similarly, as shown in Figure 2, 
when the iterations increase, the training loss decreases linearly 
and the test accuracy increases significantly. For the first 600 
iterations the training loss is close to 0.3. As shown in Figure 3, 
with an increase in the training iterations, the loss decreases 
linearly and the test accuracy increases significantly for the first 
3000 iterations, whereas the training loss is close to 0 after that. 
Table II shows the comparison of the results of the current and 
previous research. We have outperformed the Faster R-CNN 
model of previous research results by 12% in mAP. We 
achieved high accuracy by training the dataset on the RCNN 
model, reaching 99.8%, a difference of 8.8% from [6]. Our 
model also achieved a high accuracy of 95.2% with RetinaNet 
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model with threshold 0.5, a difference of 0.6% behind the 
model presented in [24], at the same threshold. 

 

 
Fig. 2.  Faster-RCNN performance. 

 
Fig. 3.  RetinaNet performance. 

TABLE II.  RESULT COMPARISON FOR METHODS THAT USED THE 

FLICKRLOGOS-32 DATASET 

Method Precision Recall Accuracy mAP 

[25] 0.909 0.845 0.884 - 

[26] - - 0.896 - 

[2] 0.955 0.908 - - 

[6] 0.976 0.676 0.910 - 

[18] - - 0.928 - 

[12] - - - 0.464 

[15] - 0.798 - 0.565 

[22] RetinaNet: threshold 0.5 0.948 0.829 0.946 0.620 

Ours: RetinaNet: threshold 0.5 - - 0.952 0.40 

Ours: RCNN - - 0.998 0.65 

Ours: Faster R-CNN - - 0.936 0.74 

VI. CONCLUSION 

Applying CNNs in LD is a common process for such 
purposes. Many network architectures have been applied, 
resulting in varying accuracy. The process involves many 
challenges as the logos may appear on any scale, position, and 
under different perspectives in an image. The traditional 
techniques for LR include key point-based sensors and local 
feature-based recognition. However, by using different CNN 
models such as R-CNN and FR-CNN, better results can be 
achieved as it has been discussed in this study. As newer CNN 
models get available, more experiments should be done, taking 
into account the trade-offs between accuracy, training and 
development cost.  
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