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Abstract-Multiplication is one of the basic operations that 

influence the performance of many computer applications such 

as cryptography. The main challenge of the multiplication 

operation is the cost of the operation as compared to other basic 
operations such as addition and subtraction, especially when the 

size of the numbers is large. In this work, we investigate the use 

of the window strategy for multiplying a sequence of large 

integers to design an efficient sequential algorithm in order to 

reduce the number of bit-multiplication operations involved in 

multiplying a sequence of large integers. In our implementation, 
several parameters are considered and measured for their effect 

on the proposed algorithm and the best-known sequential 

algorithm in the literature. These parameters are the size of the 

sequence of integers, the size of the integers, the size of the 

window, and the distribution of the data. The experimental 

results prove the effectiveness of the proposed algorithm are 

compared to the ones of the best-known sequential algorithm, 
and the proposed algorithm is able to achieve a reduction in 
computing time greater than 50% in most cases. 

Keywords-multiplication; big data; cryptography; algorithm 

performance; computer arithmetic   

I. INTRODUCTION  

Computer arithmetic plays an essential role in every layer 
of computing and it is an important consideration when 
developing computer solutions for many problems such as 
cryptography, image processing, and numerical computations. 
In computer arithmetic, we use different operations such as 
addition, subtraction, multiplication, and division to achieve the 
goal of computation. Among these, the operation that has 
particular significance for many applications is the 
multiplication operation [1]. The multiplication operation is 
important, mainly for three reasons. First, the time cost of 
performing the multiplication operation is greater than that of 

other operations such as addition and subtraction. For example, 
given two integer numbers of � -bits each, the addition and 
multiplication of the two integer numbers require ���� and 
����� bit operations, respectively, using the Naïve method [1]. 
This means that there is a significant difference between the 
costs of the two operations. Second, many primitive and 
essential arithmetic operations, such as division, squaring, 
inverse multiplication, and modulo operations, are based on the 
multiplication operation. Therefore, the running time of the 
multiplication operation affects these operations. Third, several 
complex applications in computer science, such as 
cryptography and digital signal processing, are based on a huge 
number of multiplication operations [2-6]. For example, in 
RSA and El-Gamal public-key cryptosystem, the multiplication 
operation is necessary. So, a more efficient multiplication 
method would lead to the speeding up of the computation 
process in complex applications. 

For the above reasons, different strategies have been 
suggested to reduce the total number of operations required for 
multiplication. Two main research directions have been 
followed to improve the efficiency of the multiplication 
operation on a data set that consists of � integer numbers each 
of size �. The first direction has been to reduce the cost of 
multiplying two numbers, � and �, of size � each and thereby 
decrease the total cost of the multiplication operations for a 
data set. The second direction has been to reduce the cost of 
multiplying the data set by proposing an efficient strategy to 
multiply the � numbers. Regarding the first research direction, 
many methods have been proposed to reduce the time 
complexity of multiplying two integers in both sequential [7-
23] and parallel computation [24-29]. In the case of sequential 
computation, several techniques have been proposed such as 
the Naïve multiplication algorithm [1], Karatsuba’s algorithm 
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[1,15], the Toom–Cook multiplication algorithm [20], and a 
fast Fourier transform-based algorithm [18]. The time 
complexity of the Naïve multiplication method is ����� , 
whereas Karatsuba’s algorithm uses a divide and conquer 
strategy to multiply the two integers in ���	�, where 
	 =
	log� 3 ≈ 1.585. The Toom–Cook multiplication method is a 
generalization of Karatsuba’s algorithm using r-way 

multiplication and has a cost of � ������� ���� �⁄ !". In contrast, 
Schonhage and Strassen utilize the fast Fourier transform to 
reduce the time complexity of multiplication. They propose 
two algorithms, where the best one runs on 
��� log� log log��  and uses an arithmetical modulo 
operation. Another two algorithms are proposed to reduce the 
running time of the Schonhage-Strassen algorithm to achieve 

��� log� 	2�����∗ ��! , where log∗ � = �%�%�&�'%:	)*+�,�� ≤
2. and )*+�/�� = �. The first algorithm is based on arithmetic 
over complex numbers [12], while the other is based on 
modular arithmetic [10].  

On the other hand, many different attempts have been made 
to parallelize the multiplication problem using different parallel 
models [24-29]. Most of these attempts have been based on the 
shared memory model, where the processors in this model 
communicate through shared memory. Also, some research 
studies have focused on implementing some parallel algorithms 
on real machines, such as FPGAs, GPUs, and multicore [25-
27]. In the case of the second research direction, a few 
algorithms have been proposed to reduce the time complexity 
of the multiplication of �  integers in both sequential and 
parallel computation. In the case of sequential computation, the 
best-known algorithm is the Naïve method, which scans the 
sequence of integer numbers and multiplies one number in each 
iteration. In the case of parallel computation, a few strategies 
[30] have been proposed that use a shared memory model and 
are implemented on specific real machines such as the 
multicore system [31]. 

In this paper, we are interested in contributing to the second 
research direction that focuses on using sequential computation 
because, despite the progress that has been made toward 
developing an effective strategy, there is still room for 
improvement. Here, we present an efficient improvement 
sequential algorithm to multiply a large number of integers, 
each of large size. A comparison of the proposed algorithm and 
the best-known sequential algorithm indicates that, from a 
practical perspective, the proposed algorithm performs better. 
Our improved algorithm speeds up the best-known sequential 
algorithm when � and � are large.  

II. THE OPTIMAL ALGORITHM 

In this section, first we describe the optimal sequential 
algorithm that is used to multiply �  numbers,  
0 = ��/��…�23��. Then we give an example to illustrate the 
number of multiplication operations required to multiply � 
numbers. 

A. The Optimal Multiplication Algorithm 

The optimal multiplication algorithm, denoted as OM, 
multiplies � numbers by sequentially scanning the input array 
of � − 1 iterations. In each iteration %, the algorithm multiplies 

the number �,  with 5, where % ≥ 1 and 5 is initially equal to 
�/ and finally 5	 = 	∏ �823�

8	9	/ . In the light of the above, the 

algorithm requires ���	:2;<� time. The term � is is derived 
from � − 1  iterations, where ���� = ��� − 1� , while the 
term :2;<  is the total number of operations required to multiply 
two numbers. The value of :2;<  depends on the size of the two 
numbers. If we have two numbers of size n each: 

�, = ��,��3�� , �,��3��, … , �,�, �,/! and 
�8 = ��8��3�� , 	�8��3�� , … , �8� , �8/!, 

then multiplying �,  and �8  requires �����  multiplication 
operations using the Naïve method, while the best-known time 

complexity for :2;< is ��� log �	2�����
∗��!  [10, 12]. To 

differentiate between the multiplication operation for the two 

integers �, and �8, and the multiplication operation for the two 
digits/bits �,< and �,	, we name the second type of operation as 
the digit-multiplication or bit-multiplication operation. So, the 
multiplication of �,  and �8  requires ����� digit-multiplication 
or bit-multiplication operations. The main problem when 
multiplying � numbers, each of size � bits, is the size of the 
result of the multiplication, which increases with the increase in 

the value of �. For example, when �	 = 	4, initially 5 = �/ 
and in the first iteration, the algorithm computes 5 = �/ × ��, 
of size 2� using �� bit-multiplication operations in the worst 
case. The second iteration of the algorithm involves 
multiplying 5 = �/ × ��  of size 2�  with ��  of size �  to 
produce 5 = �/ × �� × ��  of size 3�  using 2��  bit-
multiplication operations. In the last iteration, the algorithm 
computes 5 = �/ × �� × �� × �@  of size 4�  using 3��  bit-
multiplication operations. Hence, the overall number of bit-
multiplication operations to compute 5 = �/ × �� × �� × �@  
is  �� + 2�� + 3�� = 6�� in the worst case. Furthermore, in 
general, the multiplication of � integer numbers, of size � bits 
each, requires �� + 2�� + 3�� +⋯+ �� − 1���  bit-
multiplication operations, which is equal to �	�	�� − 1�/2 in 
the worst case. 

B. Illustrative Example 

An illustrative example is given to explain the total number 
of digit-multiplication operations required to multiply m 
numbers using the sequential OM algorithm. The notation :∗ 
represents the total number of digit-multiplication operations. 
For simplicity, let us assume that we have an array of �	 = 	20 
integer numbers and that the value of each element in the array 
is 5, i.e.: 

0	 = 	�5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5� 
The execution of the optimal sequential algorithm on 0 is 

described below. 

Initially, 5 = �/ = 5  and :∗ = 0 , and the algorithm 
executes 19 iterations to compute 5	 = 	5�/. These iterations 
are represented in Figures 1–4. Each figure consists of many 
subfigures, where each subfigure represents an iteration in the 
execution of the OM algorithm. Three pieces of information 
are associated with each iteration. The first is the number of 
digit-multiplications for multiplying the two numbers and is 
denoted by ∗ �
�, where 
 is the number of digit-multiplication 
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operations. For example, in Figure 1(c), the algorithm 
multiplies 5 with the digits 5, 2, and 1, so the number of digit-
multiplication operations is 3, and is denoted by ∗ �3�. The 
second piece of information is the total number of digit-
multiplication operations from the start to the current iteration 
and is denoted by :∗ . For example, in Figure 1(c), the total 
number of digit-multiplication operations is equal to the 
number of digit-multiplication operations for the current 
iteration, %	 � 	3, plus the total number of digit-multiplication 

operations for the previous iterations. Therefore, 
:∗ � :∗ A∗ �3� � 3 A 3 � 6 . The third and last piece of 
information in each subfigure consists of the iteration number, 

%, and the value of 5 that is equal to ∏ �8
,
8	9	/ . 

Figures 1-4 display the complete execution of the OM 
algorithm on 0  for iterations 1–5, 6–10, 11–14, and 15–19, 
respectively. 

 

 
Fig. 1.  Number of operations of the iterations 1-5 for the OM algorithm. 

 
Fig. 2.  Number of operations of the iterations 6-10 for the OM algorithm. 

 
Fig. 3.  Number of operations of the iterations 11-14 for the OM algorithm. 

 
Fig. 4.  Number of operations of the iterations 15-18 for the OM algorithm. 

III. THE MODIFIED ALGORITHM 

In this section, at first the idea and the steps of the 
suggested strategy for speeding up the execution time of the 
multiplication of � numbers, each of size �, where � is a large 
value are introduced. Then two examples are given to illustrate 
the proposed approach by applying it to the array discussed in 
Section II.  

A. The Algorithm 

The proposed algorithm is based on dividing the array into 

blocks, each of size F , where F	 G 	� . Then the algorithm 
computes the multiplication of the elements in each block 
independently. The result of the multiplication for each block, 
say :H�I , is accumulated to produce the final result of the 
multiplication, 5 . So, after computing the multiplication of 
each block the value of 5  is updated by calculating 
 5	 = 	5	 × :H�I, see Algorithm BM0.  
Initially, the algorithm computes the total number of 

blocks, �J , by calculating 	K� F⁄ L . Then the algorithm 
computes the multiplication of F  elements in an auxiliary 
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variable :H�I , where the initial value of :H�I  is the first 
element in the block. After that, the algorithm updates the 
value of the final result by multiplying it with the value of 
:H�I. After it has finished multiplying all the elements in all 
the blocks, the algorithm updates the final result by multiplying 
it with the remaining elements, � − K� F⁄ L × F . The time 
complexity of the proposed algorithm is equal to 

 �K� F⁄ L× F + �� − K� F⁄ L × F�! × :2;<M , which is 

���	:2;<�. The proposed algorithm executes � multiplication 
operations, while the OM algorithm executes � − 1 
multiplication operations. 

 

Algorithm BM0 

Input: An array of � numbers, 0 = ��/, ��, … , �23�� and F. 

Output: 5 = ∏ �, .23�
,9/  

Begin 

1. �J = K� F⁄ L 
2. 5 = 1 
3. For % � 0 to �J 4 1 do 
4.      N = %	 × F  
5. 				:H�I = �8 
6. While (N G �% + 1�F) do 
7.  	N � N A 1 
8.  :H�I = :H�I × �8 
9. End while 

10. 5 = 5	 × 	:H�I  
11. End for 
12. If � O 	�J × F then 
13. For N = 	�J × F to � − 1 do 
14. 							5	 � 	5	 ? 	�8 

15. End for 

16. End if 

End. 
 
In order to reduce the number of multiplications in the 

proposed algorithm, BM0, from �  to � − 1 , we apply the 
following modifications. First, we compute the multiplication 
of the first block using the final result 5 . Hence, the total 
number of multiplications is F 4 1, whereas the first block of 
the initially proposed algorithm required F  multiplications: 
F 4 1  to compute :H�I  and one to update 5 . Second, the 
remaining elements of the array are divided into blocks, 
K�� 4 F� F⁄ L, and then the same steps are performed as in the 
initial version of the proposed algorithm. The modification of 
the proposed algorithm is denoted as BM. Now, we compute 
the number of multiplications, to compute 5  for the BM 
algorithm. Thus, the first block requires F 4 1 multiplication 

operations, see lines 1–3. Each block, in the other blocks, 
requires F 4 1 multiplication operations, see lines 7–12, and 
the updating of the value of 5, for each block, requires only 
one multiplication. So, each iteration in the do-while loop 
requires F  multiplication operations. Therefore, the total 
number of multiplications for the do-while loop is 
K�/F 4 1L ? F	 where the term �/F-1 represents the number 
of windows in the do-while loop. Additionally, the total 
number of the remaining elements is � 4 K�/FL ? F. Hence, 
the total number of multiplications for the BM algorithm 
is	� 4 1. Hence, the running time and memory consumption of 
the BM algorithm are ���� and ��1�, respectively. 

 

Algorithm BM 

Input: An array of � numbers, 0 = ��/, ��, … , �23�� and F. 

Output: 5 = ∏ �,.23�
,9/  

Begin 

1. 5 =	�/ 
2. For	N = 1	to F 4 1 do 
3.      5 = 5	 ×	�8  
4. End for 

5. �J = K�� − F� F⁄ L 
6. For % = 1 to �J 4 1 do 
7.     		N = % × 	F	 
8.  :H�I = �8 
9.   While (N G �% + 1�F) do 
10.     	N = N + 1	 
11.     :H�I = :H�I × �8 
12.   End while 

13.   5 = 5	 × 	:H�I	 
14. End for 
15. If � O	��J + 1�? F then 
16. For	N = 	�J × F to � − 1 do 
17.                   5	 � 	5	 ?	�8 

18. End for 

19. End if 

End. 
 

B. Illustrative Example 

In this section, we illustrate how the proposed BM 
algorithm reduces the total number of digit-multiplication 
operations by applying it on the same array as in Section II.B 
and using two values of F:	5  and 10 . We also show how 
different block size values affect the total number of digit-
multiplication operations. 

 

 

Fig. 5.  Execution of the BM algorithm when b=5.
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Fig. 6.  Execution of BM algorithm when b=10. 

First, let us assume that the size of the block is F	 = 	5. 
Initially, the algorithm assigns 1 to 5 and executes lines 2–3. 
In the first iteration, the algorithm computes the multiplication 
of the first five numbers as 5	 = 	3125. The total number of 
digit-multiplication operations to compute 5  is nine, :∗ � 9, 
similar to Figure 1(a)–(d). This step is shown in Figure 5(a), 
where the information in the Figure refers to the block number 
instead of the iteration number. The algorithm computes the 
multiplication of the second block in :H�I	 � 	3125  using 
nine digit-multiplication operations. Then, the algorithm 
updates the value of 5 by multiplying it with :H�I, using 16 
digit-multiplication operations. Therefore, the total number of 
digit-multiplication operations until the end of this step is 
:∗ � 9A 16A 9 � 34 , see Figure 5(b). Figures 5(c)–(d) 
represent the result of executing the third and fourth blocks, 
respectively. The total number of digit-multiplication 
operations for the final result of 5 is :∗ � 124. 

In the second example illustrated in Figure 6, when 
F	 � 	10 , the BM algorithm computes the first block in 
5	 � 	5�/  using 36 digit-multiplication operations, which is 
similar to Figures 1(a)–(e) and 2(a)–(d). The second block is 
calculated by performing two steps. The first step involves 
computing the auxiliary variable :H�I � 5�/  using 36 digit-
multiplication operations. The second step involves 
multiplying 5  with :H�I  using 49 digit-multiplication 
operations to produce 5 � 5�/. So, the total number of digit-
multiplication operations is :∗ = 36A 49 A 36 � 121. Hence 
the BM algorithm requires fewer digit-multiplication 
operations when F � 10. In other words, the BM algorithm 
performs better when F � 10  than when F � 5  and F � 1 . 
Also, the BM algorithm performs better when b = 5 than when 
F = 1. 

IV. EXPERIMENTAL STUDY 

In this section, we study the BM algorithm experimentally 
to find the answers to the following research questions:  

1. Does the value of F have an effect on the running time of 
the BM algorithm experimentally, and if so, is this effect 

significant? 

2. Do certain parameters (the size of the sequence of integers, 
the size of the integers, the size of the window, and the 

distribution of the data) have an effect on the performance 

of the BM algorithm? 

3. Does the BM algorithm have a faster running time as 

compared to the OM algorithm? 

The above questions are addressed in the following 
subsections. Subsection A contains a brief description of the 

platform (hardware and software) and the methodology used to 
test and measure the running time of both the BM and OM 
algorithms. Subsection B contains the answers to the first and 
second questions. Subsection C answers the third question. 

A. Methodology 

The experimental studies were conducted on a machine 
consisting of a 2.4 GHz processor with 32 GB of memory and 
a Windows operating system. Both algorithms, OM and BM, 
are implemented using C++ language and the GMP (GNU 
Multiple Precision Arithmetic) package. The GMP package is 
used to achieve two objectives. First, when we multiply many 
integer numbers of size 16 bits or more, the result is a number 
that is greater in size than 64 bits, and numbers of such size 
cannot be manipulated by the integer range in C++ language. 
Second, some of the applications that use the OM algorithm, 
such as cryptography, require a data of sizes greater than 64 
bits. The experimental studies are based on the following four 
parameters: 

• The first parameter is the size of the integer number, �, and 
is measured in bits. In the experiment, we used �	 = 	32, 
64, 128, 256, and 512. 

• The second parameter is the size of the array, �. In the 
experiment, we use �	 = 1/4
, 1/2
, 1
, 2
, 4
, 8
, 16
, 
and 32
, where 
 � 1024. 

• The third parameter is the size of the block, F, used in the 
computation. In the experiment, we use different values of 
block size: 25,50,… ,500, except when �	 - 	512, the last 
value of F is 250. 

• The fourth parameter is the data range, Q, that is used to 
generate the elements of the array. In the experiment, we 
use two types of data range. The first data range is Q� 	 =
	R2�3�, 2� 4 1S, which means that all data in the array of 
size � bits exactly, i.e., 2�3� - �, G 2�. The second data 
range is Q� 	 � 	 R0, 2� 4 1S, which means that all data in the 
array of size less than or equal � bits, i.e., 0 - �, G 2�. 

The running time for each of the algorithms (BM and OM) 
is measured by taking the average time for 50 instances for 
fixed parameter values. The running time of the algorithms is 
measured in seconds. 

B. Behavior of the BM Algorithm 

In this subsection, we study the effect of changing the value 
of F on the running time of the BM algorithm using different 
values of �, � and Q. To verify this goal, we first generate a 
data set by determining the values of �, �  and Q . Then we 
generate a data for one instance, T � ��, �, Q�. For example, 
we set � � 4
, � � 512, and Q � Q�. After that, we execute 
the BM algorithm on different values of F  as described in 
Section IV.A and the running time for BM algorithm is 
measured for each value of F. Next, we repeat the previous 
steps using different values of data T � ��,�,Q�. Following 
that, the same procedure is applied on BM algorithm using Q� 
and different values of �, and �. Figure 7 shows the running 
time behavior of the BM algorithm using different values of 
�,�,Q,  and F . The results of our experiments lead to four 
observations for fixed values of � and �.  
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(a1)  � = 32, � � 32
, 16
 

 

(a2)  � � 32, � � 8
, 4
 

 

(a3)  � � 32, � � 2
, 1
 

 

(a4) � � 32, � � 1/2
, 1/4
 
 

(b1)  � � 64, � � 32
, 16
 

 

(b2)  � � 64, � � 8
, 4
 
 

 

 

(b3)  � � 64, � � 2
, 1
 
 

 

 

(b3)  � � 64, � � 1/2
, 1/4
 
  

(c1) � � 128,� � 32
, 16
   

 

(c2)  � � 128, � � 8
, 4
  

 

(c3)  � � 128, � � 2
, 1
  

 

(c4)  � � 128, � � 1/2
, 1/4
 
  

(d1)  � � 256, � � 32
, 16
 

 

 

(d2)  � � 256, � � 8
, 4
 
  

 

 

(d3)  � � 256, � � 2
, 1
 
 

 

 

(d4)  � � 256, � � 1/2
, 1/4
 
 

(e1)  � � 512 � � 32
, 16
 
 

 

(e2)  � � 512, � � 8
, 4
 
 

 

 

(e3)  � � 512, � � 2
, 1
 
 

 

(e4)  � � 512, � � 1/2
, 1/4
 
 

Fig. 7.  Running time behavior of BM algorithm using different values of D, where the X-axis represents the different values of b. 
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First, the running time of the BM algorithm decreases with 
different values of F . For example, when �	 = 	32  and 
�	 = 	32768, the running time of the BM algorithm when 
F = 25,50, 75, 100,125,150,175,200,225 , and 250  is 
2.93,  2.3,  2.08,1.77, 1.66, 1.60, 1.42,1.36, 1.29 , and 1.27 , 
respectively.  

Second, it is not always the case that increasing the value of 
b leads to a decrease in the running time of the BM algorithm. 
For example, when �	 = 	256, �	 = 1/2
  and F	 = 	25, 50, 
75, 100, 125, 150, 175, 200, 225, and 250, the running time 
of the BM algorithm is 0.021, 0.018, 0.017, 0.017, 0.017, 
0.018, 0.020, 0.020, 0.022, and 0.024, respectively. Usually, 
this case occurs when � and � are small or when F is close in 
value to � . This means that not all values of F  lead to an 
improvement in the running time of the BM algorithm, 
especially when � and � are small.  
Third, it is clear that between two successive values of F, 

the improvement is small. However, when the difference 
between the two values of F is large, with a certain limitation, 
the improvement is significant. For example, when �	 = 	16
, 
�	 = 128, and F	 = 	75 and 100, the running time of the BM 

algorithm is 3.99  and 3.68 , respectively, while the running 
time for the BM algorithm when F	 = 	75	and 250 is 3.99 and 
2.35, respectively.  
Fourth, the running time of the BM algorithm on Q� is a 

little faster than on Q� . The reason for this is that all the 
numbers in Q�  have n bits exactly, while the numbers in Q� 
have a maximum length �. 

C. Comparison of OM and BM Algorithms 

In this subsection, the running times of the OM algorithm 
and BM algorithm are compared based on two values. The first 
value is the minimum running time obtained from the 
experimental results for the BM algorithm using different 
values of F, this value is denoted as BMmin. The second value is 
the average running time calculated from all running times of 
the BM algorithm using different values of F , denoted as 
BMAvg. Therefore, two running time values for the BM 
algorithm are considered: BMmin and BMAvg. Table I lists the 
running times of both algorithms, OM and BM, when the data 
range for the elements of the array taken from Q� . Several 
observations arise from the analysis of the data results in Table 
I. 

TABLE I.  RUNNING TIME (IN SECONDS) OF OM AND BM ALGORITHMS IN THE CASE OF Q� 

 

TABLE II.  PERCENTAGE OF IMPROVEMENT BY THE BM ALGORITHM AS COMPARED TO THE OM ALGORITHM IN THE CASE OF Q�  . 

V 

W bits 

32 64 128 256 512 

BMmin BMAvg BMmin BMAvg BMmin BMAvg BMmin BMAvg BMmin BMAvg 

X/YZ 0.00% 0.00% 22.22% 11.11% 50.00% 36.67% 54.21% 35.51% 59.72% 38.78% 

X/[Z 0.00% 0.00% 33.33% 33.33% 54.55% 36.36% 59.95% 43.46% 69.00% 47.35% 

XZ 33.33% 0.00% 57.14% 50.00% 61.36% 54.55% 69.63% 60.86% 74.80% 65.49% 

[Z 50.00% 14.29% 65.45% 60.00% 69.94% 64.74% 75.52% 71.05% 80.50% 75.97% 

YZ 56.52% 23.08% 72.15% 64.38% 76.30% 70.66% 80.62% 76.60% 84.18% 81.39% 

\Z 61.11% 27.08% 77.01% 66.90% 80.49% 73.62% 84.32% 78.85% 87.51% 84.19% 

X]Z 64.86% 29.73% 79.43% 68.37% 83.12% 74.92% 86.63% 80.66% 90.38% 85.93% 

^[Z 66.10% 30.91% 80.55% 68.86% 84.41% 75.46% 88.52% 82.28% 91.99% 86.89% 

 

First, the running time of the BM algorithm is faster than 
that of the OM algorithm for all data sets, except for two cases: 
T � 	 �256,32,Q��  and T = �512,32,Q��  where the running 
time of the two algorithms are equal.  

Second, two factors have an effect on the difference in the 
running times of the two algorithms. The first factor is the size 
of array, �, while the second factor is the size of the integer 
number, n. For small values of �  and � , the difference in 

W Algorithm 
V 

X/YZ X/[Z XZ [Z YZ \Z X]Z ^[Z 

32 

OM 0.0003 0.001 0.003 0.012 0.046 0.18 0.74 2.92 

BMmin 0.0003 0.001 0.002 0.006 0.02 0.70 0.26 0.99 

BMAvg 0.0003 0.001 0.002 0.007 0.026 0.096 0.370 1.433 

64 

OM 0.0009 0.003 0.014 0.055 0.219 0.87 3.50 13.37 

BMmin 0.0007 0.002 0.006 0.019 0.061 0.200 0.720 2.600 

BMAvg 0.0008 0.002 0.007 0.022 0.078 0.288 1.107 4.163 

128 

OM 0.003 0.011 0.044 0.173 0.709 2.87 11.49 45.62 

BMmin 0.0015 0.005 0.017 0.052 0.168 0.56 1.94 7.11 

BMAvg 0.0019 0.007 0.02 0.061 0.208 0.757 2.882 11.197 

256 

OM 0.0107 0.042 0.171 0.694 2.761 10.8 49.59 191.13 

BMmin 0.0049 0.017 0.052 0.17 0.535 1.694 6.628 21.943 

BMAvg 0.0069 0.024 0.067 0.201 0.646 2.285 9.59 33.864 

512 

OM 0.0435 0.171 0.666 2.579 10.302 42.084 172.42 750.41 

BMmin 0.0175 0.053 0.168 0.503 1.63 5.256 16.581 60.094 

BMAvg 0.0266 0.09 0.23 0.62 1.917 6.652 24.262 98.396 
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running time between the two algorithms is small. For 
example, when � � 64  and � = 512  the running times of 
OM, BMmin and BMAvg are 0.003 , 0.002 , and 0.002 , 
respectively. On the other hand, when � = 128 and � = 16
, 
the running times of OM, BMmin and BMAvg are 11.49, 1.94, 
and 2.88 seconds, respectively.  
Third, based on the second observation, the percentage of 

improvement achieved by the BM algorithm, in terms of BMmin 
and BMAvg, as compared to OM algorithm increases with an 
increase in the values of �  and �.  This means that the 
improvement occurs in two cases: when � is fixed and �  is 
varied and when � is fixed and � is varied. For example, if 
� = 128, the percentage of improvement achieved by the BM 
algorithm when � = 1/4
 , 1/2
 , 1
 , 2
 , 4
  8
 , 16
  and 
32
  is 50%, 54.55%, 61.36%, 69.94%, 76.30%, 80.49%, 
83.12%, 84.41% respectively in the case of BMmin, while the 
percentage of improvement in the case of BMAvg is 36.67%, 
36.36%, 54.55%, 64.74%, 70.66%, 73.62%, 74.92%, and 
75.46%, respectively. Also, if � = 1
 , the percentage of 
improvement achieved by the BM algorithm when � = 32, 64, 
128 , and 256  is 33.33%, 57.14%, 61.36%, and 69.59%, 
respectively in the case of BMmin, while the percentage of 
improvement in the case of BMAvg is 0.0%, 50%, 54.55%, and 
60.82% respectively. The full details of the percentage 
improvement achieved by the BM algorithm as compared to 
the OM algorithm are shown in Table II. 

Fourth, referring to Table II, it is clear that the percentage 
of improvement achieved by the BM algorithm in the case of 
BMmin is better than in the case of BMAvg, for fixed � and �, 
because the running time for BM algorithm in case of BMmin is 
less than the running time for BM algorithm in case of BMAvg. 

Note that, with increasing �	and �, the running times for 
BM in case of Q� is near to the case of Q�, so we neglect the 
comparison between BM and OM algorithms in case of Q�. 

V. CONCLUSION  

In this paper, we studied the multiplication operation 
because it has a higher time cost as compared to other basic 
arithmetic operations and therefore has a significant influence 
on the performance of many applications such as cryptography 
and digital signal processing. To reduce the cost of this 
operation, we developed an efficient algorithm for sequential 
computation tasks that require the multiplication of a sequence 
of big integers. The algorithm is based on using the window 
strategy to reduce the cost of multiplying the sequence of big 
integers. The algorithm has the same time complexity as the 
best-known sequential algorithm but performs fewer digit-
multiplication operations. In our experimental studies to test 
the performance of the proposed BM algorithm, we considered 
four parameters of different values: sequence size (� � 1/4
, 
1/2
, 1
, 2
, 4
, 8
, 16
, and 32
), integer size (� = 32, 
64, 128, 256, and 512), block size (F	 = 	25, 50, …, 500), 
and data range (fixed and varied sizes). The results showed the 
effectiveness of the proposed algorithm as compared to the 
best-known sequential algorithm, where the percentage of 
improvement achieved by the proposed algorithm was 90% 
when � and � were large. 

There are different future directions related to this study. 
Firstly, the study of the behavior of the BM algorithm when 
� ≥ 1
. Secondly, the study of the effect of increased value of 
F on the BM algorithm. Third, the question of the existence of 
a relation between the values of F and �. Fourth, how to use 
the GPU to speedup the running time for the BM algorithm. 
Fifth, how to speedup modular multi-exponentiation using the 
BM algorithm and modular exponentiation.  
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