
Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6533

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

Speeding up the Multiplication Algorithm for Large

Integers

Hazem M. Bahig

Computer Science and Information Dept.
College of Computer Science and
Engineering, University of Ha’il

Ha’il, Saudi Arabia
h.bahig@uoh.edu.sa

Amer Alghadhban

Electrical Engineering Dept.
College of Engineering
University of Ha’il

Ha’il, Saudi Arabia
a.alghadban@uoh.edu.sa

Mohammed A. Mahdi

Computer Science and Information Dept.
College of Computer Science and
Engineering, University of Ha’il

Ha’il, Saudi Arabia
m.mahdi@uoh.edu.sa

Khaled A. Alutaibi

Computer Engineering Dept.
College of Computer Science and Engineering

University of Ha’il

Ha’il, Saudi Arabia
alutaibi@uoh.edu.sa

Hatem M. Bahig

Mathematics Department
Faculty of Science

Ain Shams University

Cairo, Egypt
h.m.bahig@gmail.com

Abstract-Multiplication is one of the basic operations that

influence the performance of many computer applications such

as cryptography. The main challenge of the multiplication

operation is the cost of the operation as compared to other basic
operations such as addition and subtraction, especially when the

size of the numbers is large. In this work, we investigate the use

of the window strategy for multiplying a sequence of large

integers to design an efficient sequential algorithm in order to

reduce the number of bit-multiplication operations involved in

multiplying a sequence of large integers. In our implementation,
several parameters are considered and measured for their effect

on the proposed algorithm and the best-known sequential

algorithm in the literature. These parameters are the size of the

sequence of integers, the size of the integers, the size of the

window, and the distribution of the data. The experimental

results prove the effectiveness of the proposed algorithm are

compared to the ones of the best-known sequential algorithm,
and the proposed algorithm is able to achieve a reduction in
computing time greater than 50% in most cases.

Keywords-multiplication; big data; cryptography; algorithm

performance; computer arithmetic

I. INTRODUCTION

Computer arithmetic plays an essential role in every layer
of computing and it is an important consideration when
developing computer solutions for many problems such as
cryptography, image processing, and numerical computations.
In computer arithmetic, we use different operations such as
addition, subtraction, multiplication, and division to achieve the
goal of computation. Among these, the operation that has
particular significance for many applications is the
multiplication operation [1]. The multiplication operation is
important, mainly for three reasons. First, the time cost of
performing the multiplication operation is greater than that of

other operations such as addition and subtraction. For example,
given two integer numbers of � -bits each, the addition and
multiplication of the two integer numbers require ���� and
����� bit operations, respectively, using the Naïve method [1].
This means that there is a significant difference between the
costs of the two operations. Second, many primitive and
essential arithmetic operations, such as division, squaring,
inverse multiplication, and modulo operations, are based on the
multiplication operation. Therefore, the running time of the
multiplication operation affects these operations. Third, several
complex applications in computer science, such as
cryptography and digital signal processing, are based on a huge
number of multiplication operations [2-6]. For example, in
RSA and El-Gamal public-key cryptosystem, the multiplication
operation is necessary. So, a more efficient multiplication
method would lead to the speeding up of the computation
process in complex applications.

For the above reasons, different strategies have been
suggested to reduce the total number of operations required for
multiplication. Two main research directions have been
followed to improve the efficiency of the multiplication
operation on a data set that consists of � integer numbers each
of size �. The first direction has been to reduce the cost of
multiplying two numbers, � and �, of size � each and thereby
decrease the total cost of the multiplication operations for a
data set. The second direction has been to reduce the cost of
multiplying the data set by proposing an efficient strategy to
multiply the � numbers. Regarding the first research direction,
many methods have been proposed to reduce the time
complexity of multiplying two integers in both sequential [7-
23] and parallel computation [24-29]. In the case of sequential
computation, several techniques have been proposed such as
the Naïve multiplication algorithm [1], Karatsuba’s algorithm

Corresponding authors: Hazem M. Bahig

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6534

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

[1,15], the Toom–Cook multiplication algorithm [20], and a
fast Fourier transform-based algorithm [18]. The time
complexity of the Naïve multiplication method is ����� ,
whereas Karatsuba’s algorithm uses a divide and conquer
strategy to multiply the two integers in ���	�, where
	 =
	log� 3 ≈ 1.585. The Toom–Cook multiplication method is a
generalization of Karatsuba’s algorithm using r-way

multiplication and has a cost of � ������� ���� �⁄ !". In contrast,
Schonhage and Strassen utilize the fast Fourier transform to
reduce the time complexity of multiplication. They propose
two algorithms, where the best one runs on
��� log� log log�� and uses an arithmetical modulo
operation. Another two algorithms are proposed to reduce the
running time of the Schonhage-Strassen algorithm to achieve

��� log� 	2�����∗ ��! , where log∗ � = �%�%�&�'%:)*+�,�� ≤
2. and)*+�/�� = �. The first algorithm is based on arithmetic
over complex numbers [12], while the other is based on
modular arithmetic [10].

On the other hand, many different attempts have been made
to parallelize the multiplication problem using different parallel
models [24-29]. Most of these attempts have been based on the
shared memory model, where the processors in this model
communicate through shared memory. Also, some research
studies have focused on implementing some parallel algorithms
on real machines, such as FPGAs, GPUs, and multicore [25-
27]. In the case of the second research direction, a few
algorithms have been proposed to reduce the time complexity
of the multiplication of � integers in both sequential and
parallel computation. In the case of sequential computation, the
best-known algorithm is the Naïve method, which scans the
sequence of integer numbers and multiplies one number in each
iteration. In the case of parallel computation, a few strategies
[30] have been proposed that use a shared memory model and
are implemented on specific real machines such as the
multicore system [31].

In this paper, we are interested in contributing to the second
research direction that focuses on using sequential computation
because, despite the progress that has been made toward
developing an effective strategy, there is still room for
improvement. Here, we present an efficient improvement
sequential algorithm to multiply a large number of integers,
each of large size. A comparison of the proposed algorithm and
the best-known sequential algorithm indicates that, from a
practical perspective, the proposed algorithm performs better.
Our improved algorithm speeds up the best-known sequential
algorithm when � and � are large.

II. THE OPTIMAL ALGORITHM

In this section, first we describe the optimal sequential
algorithm that is used to multiply � numbers,
0 = ��/��…�23��. Then we give an example to illustrate the
number of multiplication operations required to multiply �
numbers.

A. The Optimal Multiplication Algorithm

The optimal multiplication algorithm, denoted as OM,
multiplies � numbers by sequentially scanning the input array
of � − 1 iterations. In each iteration %, the algorithm multiplies

the number �, with 5, where % ≥ 1 and 5 is initially equal to
�/ and finally 5	 = 	∏ �823�

8	9	/ . In the light of the above, the

algorithm requires ���	:2;<� time. The term � is is derived
from � − 1 iterations, where ���� = ��� − 1� , while the
term :2;< is the total number of operations required to multiply
two numbers. The value of :2;< depends on the size of the two
numbers. If we have two numbers of size n each:

�, = ��,��3�� , �,��3��, … , �,�, �,/! and
�8 = ��8��3�� , 	�8��3�� , … , �8� , �8/!,

then multiplying �, and �8 requires ����� multiplication
operations using the Naïve method, while the best-known time

complexity for :2;< is ��� log �	2�����
∗��! [10, 12]. To

differentiate between the multiplication operation for the two

integers �, and �8, and the multiplication operation for the two
digits/bits �,< and �,	, we name the second type of operation as
the digit-multiplication or bit-multiplication operation. So, the
multiplication of �, and �8 requires ����� digit-multiplication
or bit-multiplication operations. The main problem when
multiplying � numbers, each of size � bits, is the size of the
result of the multiplication, which increases with the increase in

the value of �. For example, when �	 = 	4, initially 5 = �/
and in the first iteration, the algorithm computes 5 = �/ × ��,
of size 2� using �� bit-multiplication operations in the worst
case. The second iteration of the algorithm involves
multiplying 5 = �/ × �� of size 2� with �� of size � to
produce 5 = �/ × �� × �� of size 3� using 2�� bit-
multiplication operations. In the last iteration, the algorithm
computes 5 = �/ × �� × �� × �@ of size 4� using 3�� bit-
multiplication operations. Hence, the overall number of bit-
multiplication operations to compute 5 = �/ × �� × �� × �@
is �� + 2�� + 3�� = 6�� in the worst case. Furthermore, in
general, the multiplication of � integer numbers, of size � bits
each, requires �� + 2�� + 3�� +⋯+ �� − 1��� bit-
multiplication operations, which is equal to �	�	�� − 1�/2 in
the worst case.

B. Illustrative Example

An illustrative example is given to explain the total number
of digit-multiplication operations required to multiply m
numbers using the sequential OM algorithm. The notation :∗
represents the total number of digit-multiplication operations.
For simplicity, let us assume that we have an array of �	 = 	20
integer numbers and that the value of each element in the array
is 5, i.e.:

0	 = 	�5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5�
The execution of the optimal sequential algorithm on 0 is

described below.

Initially, 5 = �/ = 5 and :∗ = 0 , and the algorithm
executes 19 iterations to compute 5	 = 	5�/. These iterations
are represented in Figures 1–4. Each figure consists of many
subfigures, where each subfigure represents an iteration in the
execution of the OM algorithm. Three pieces of information
are associated with each iteration. The first is the number of
digit-multiplications for multiplying the two numbers and is
denoted by ∗ �
�, where
 is the number of digit-multiplication

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6535

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

operations. For example, in Figure 1(c), the algorithm
multiplies 5 with the digits 5, 2, and 1, so the number of digit-
multiplication operations is 3, and is denoted by ∗ �3�. The
second piece of information is the total number of digit-
multiplication operations from the start to the current iteration
and is denoted by :∗ . For example, in Figure 1(c), the total
number of digit-multiplication operations is equal to the
number of digit-multiplication operations for the current
iteration, %	 � 	3, plus the total number of digit-multiplication

operations for the previous iterations. Therefore,
:∗ � :∗ A∗ �3� � 3 A 3 � 6 . The third and last piece of
information in each subfigure consists of the iteration number,

%, and the value of 5 that is equal to ∏ �8
,
8	9	/ .

Figures 1-4 display the complete execution of the OM
algorithm on 0 for iterations 1–5, 6–10, 11–14, and 15–19,
respectively.

Fig. 1. Number of operations of the iterations 1-5 for the OM algorithm.

Fig. 2. Number of operations of the iterations 6-10 for the OM algorithm.

Fig. 3. Number of operations of the iterations 11-14 for the OM algorithm.

Fig. 4. Number of operations of the iterations 15-18 for the OM algorithm.

III. THE MODIFIED ALGORITHM

In this section, at first the idea and the steps of the
suggested strategy for speeding up the execution time of the
multiplication of � numbers, each of size �, where � is a large
value are introduced. Then two examples are given to illustrate
the proposed approach by applying it to the array discussed in
Section II.

A. The Algorithm

The proposed algorithm is based on dividing the array into

blocks, each of size F , where F	 G 	� . Then the algorithm
computes the multiplication of the elements in each block
independently. The result of the multiplication for each block,
say :H�I , is accumulated to produce the final result of the
multiplication, 5 . So, after computing the multiplication of
each block the value of 5 is updated by calculating
 5	 = 	5	 × :H�I, see Algorithm BM0.
Initially, the algorithm computes the total number of

blocks, �J , by calculating 	K� F⁄ L . Then the algorithm
computes the multiplication of F elements in an auxiliary

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6536

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

variable :H�I , where the initial value of :H�I is the first
element in the block. After that, the algorithm updates the
value of the final result by multiplying it with the value of
:H�I. After it has finished multiplying all the elements in all
the blocks, the algorithm updates the final result by multiplying
it with the remaining elements, � − K� F⁄ L × F . The time
complexity of the proposed algorithm is equal to

 �K� F⁄ L× F + �� − K� F⁄ L × F�! × :2;<M , which is

���	:2;<�. The proposed algorithm executes � multiplication
operations, while the OM algorithm executes � − 1
multiplication operations.

Algorithm BM0

Input: An array of � numbers, 0 = ��/, ��, … , �23�� and F.

Output: 5 = ∏ �, .23�
,9/

Begin

1. �J = K� F⁄ L
2. 5 = 1
3. For % � 0 to �J 4 1 do
4. N = %	 × F
5. 				:H�I = �8
6. While (N G �% + 1�F) do
7. 	N � N A 1
8. :H�I = :H�I × �8
9. End while

10. 5 = 5	 × 	:H�I
11. End for
12. If � O 	�J × F then
13. For N = 	�J × F to � − 1 do
14. 							5	 � 	5	 ? 	�8

15. End for

16. End if

End.

In order to reduce the number of multiplications in the

proposed algorithm, BM0, from � to � − 1 , we apply the
following modifications. First, we compute the multiplication
of the first block using the final result 5 . Hence, the total
number of multiplications is F 4 1, whereas the first block of
the initially proposed algorithm required F multiplications:
F 4 1 to compute :H�I and one to update 5 . Second, the
remaining elements of the array are divided into blocks,
K�� 4 F� F⁄ L, and then the same steps are performed as in the
initial version of the proposed algorithm. The modification of
the proposed algorithm is denoted as BM. Now, we compute
the number of multiplications, to compute 5 for the BM
algorithm. Thus, the first block requires F 4 1 multiplication

operations, see lines 1–3. Each block, in the other blocks,
requires F 4 1 multiplication operations, see lines 7–12, and
the updating of the value of 5, for each block, requires only
one multiplication. So, each iteration in the do-while loop
requires F multiplication operations. Therefore, the total
number of multiplications for the do-while loop is
K�/F 4 1L ? F	 where the term �/F-1 represents the number
of windows in the do-while loop. Additionally, the total
number of the remaining elements is � 4 K�/FL ? F. Hence,
the total number of multiplications for the BM algorithm
is	� 4 1. Hence, the running time and memory consumption of
the BM algorithm are ���� and ��1�, respectively.

Algorithm BM

Input: An array of � numbers, 0 = ��/, ��, … , �23�� and F.

Output: 5 = ∏ �,.23�
,9/

Begin

1. 5 =	�/
2. For	N = 1	to F 4 1 do
3. 5 = 5	 ×	�8
4. End for

5. �J = K�� − F� F⁄ L
6. For % = 1 to �J 4 1 do
7. 		N = % × 	F	
8. :H�I = �8
9. While (N G �% + 1�F) do
10. 	N = N + 1	
11. :H�I = :H�I × �8
12. End while

13. 5 = 5	 × 	:H�I	
14. End for
15. If � O	��J + 1�? F then
16. For	N = 	�J × F to � − 1 do
17. 5	 � 	5	 ?	�8

18. End for

19. End if

End.

B. Illustrative Example

In this section, we illustrate how the proposed BM
algorithm reduces the total number of digit-multiplication
operations by applying it on the same array as in Section II.B
and using two values of F:	5 and 10 . We also show how
different block size values affect the total number of digit-
multiplication operations.

Fig. 5. Execution of the BM algorithm when b=5.

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6537

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

Fig. 6. Execution of BM algorithm when b=10.

First, let us assume that the size of the block is F	 = 	5.
Initially, the algorithm assigns 1 to 5 and executes lines 2–3.
In the first iteration, the algorithm computes the multiplication
of the first five numbers as 5	 = 	3125. The total number of
digit-multiplication operations to compute 5 is nine, :∗ � 9,
similar to Figure 1(a)–(d). This step is shown in Figure 5(a),
where the information in the Figure refers to the block number
instead of the iteration number. The algorithm computes the
multiplication of the second block in :H�I	 � 	3125 using
nine digit-multiplication operations. Then, the algorithm
updates the value of 5 by multiplying it with :H�I, using 16
digit-multiplication operations. Therefore, the total number of
digit-multiplication operations until the end of this step is
:∗ � 9A 16A 9 � 34 , see Figure 5(b). Figures 5(c)–(d)
represent the result of executing the third and fourth blocks,
respectively. The total number of digit-multiplication
operations for the final result of 5 is :∗ � 124.

In the second example illustrated in Figure 6, when
F	 � 	10 , the BM algorithm computes the first block in
5	 � 	5�/ using 36 digit-multiplication operations, which is
similar to Figures 1(a)–(e) and 2(a)–(d). The second block is
calculated by performing two steps. The first step involves
computing the auxiliary variable :H�I � 5�/ using 36 digit-
multiplication operations. The second step involves
multiplying 5 with :H�I using 49 digit-multiplication
operations to produce 5 � 5�/. So, the total number of digit-
multiplication operations is :∗ = 36A 49 A 36 � 121. Hence
the BM algorithm requires fewer digit-multiplication
operations when F � 10. In other words, the BM algorithm
performs better when F � 10 than when F � 5 and F � 1 .
Also, the BM algorithm performs better when b = 5 than when
F = 1.

IV. EXPERIMENTAL STUDY

In this section, we study the BM algorithm experimentally
to find the answers to the following research questions:

1. Does the value of F have an effect on the running time of
the BM algorithm experimentally, and if so, is this effect

significant?

2. Do certain parameters (the size of the sequence of integers,
the size of the integers, the size of the window, and the

distribution of the data) have an effect on the performance

of the BM algorithm?

3. Does the BM algorithm have a faster running time as

compared to the OM algorithm?

The above questions are addressed in the following
subsections. Subsection A contains a brief description of the

platform (hardware and software) and the methodology used to
test and measure the running time of both the BM and OM
algorithms. Subsection B contains the answers to the first and
second questions. Subsection C answers the third question.

A. Methodology

The experimental studies were conducted on a machine
consisting of a 2.4 GHz processor with 32 GB of memory and
a Windows operating system. Both algorithms, OM and BM,
are implemented using C++ language and the GMP (GNU
Multiple Precision Arithmetic) package. The GMP package is
used to achieve two objectives. First, when we multiply many
integer numbers of size 16 bits or more, the result is a number
that is greater in size than 64 bits, and numbers of such size
cannot be manipulated by the integer range in C++ language.
Second, some of the applications that use the OM algorithm,
such as cryptography, require a data of sizes greater than 64
bits. The experimental studies are based on the following four
parameters:

• The first parameter is the size of the integer number, �, and
is measured in bits. In the experiment, we used �	 = 	32,
64, 128, 256, and 512.

• The second parameter is the size of the array, �. In the
experiment, we use �	 = 1/4
, 1/2
, 1
, 2
, 4
, 8
, 16
,
and 32
, where
 � 1024.

• The third parameter is the size of the block, F, used in the
computation. In the experiment, we use different values of
block size: 25,50,… ,500, except when �	 - 	512, the last
value of F is 250.

• The fourth parameter is the data range, Q, that is used to
generate the elements of the array. In the experiment, we
use two types of data range. The first data range is Q� 	 =
	R2�3�, 2� 4 1S, which means that all data in the array of
size � bits exactly, i.e., 2�3� - �, G 2�. The second data
range is Q� 	 � 	 R0, 2� 4 1S, which means that all data in the
array of size less than or equal � bits, i.e., 0 - �, G 2�.

The running time for each of the algorithms (BM and OM)
is measured by taking the average time for 50 instances for
fixed parameter values. The running time of the algorithms is
measured in seconds.

B. Behavior of the BM Algorithm

In this subsection, we study the effect of changing the value
of F on the running time of the BM algorithm using different
values of �, � and Q. To verify this goal, we first generate a
data set by determining the values of �, � and Q . Then we
generate a data for one instance, T � ��, �, Q�. For example,
we set � � 4
, � � 512, and Q � Q�. After that, we execute
the BM algorithm on different values of F as described in
Section IV.A and the running time for BM algorithm is
measured for each value of F. Next, we repeat the previous
steps using different values of data T � ��,�,Q�. Following
that, the same procedure is applied on BM algorithm using Q�
and different values of �, and �. Figure 7 shows the running
time behavior of the BM algorithm using different values of
�,�,Q, and F . The results of our experiments lead to four
observations for fixed values of � and �.

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6538

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

(a1) � = 32, � � 32
, 16

(a2) � � 32, � � 8
, 4

(a3) � � 32, � � 2
, 1

(a4) � � 32, � � 1/2
, 1/4

(b1) � � 64, � � 32
, 16

(b2) � � 64, � � 8
, 4

(b3) � � 64, � � 2
, 1

(b3) � � 64, � � 1/2
, 1/4

(c1) � � 128,� � 32
, 16

(c2) � � 128, � � 8
, 4

(c3) � � 128, � � 2
, 1

(c4) � � 128, � � 1/2
, 1/4

(d1) � � 256, � � 32
, 16

(d2) � � 256, � � 8
, 4

(d3) � � 256, � � 2
, 1

(d4) � � 256, � � 1/2
, 1/4

(e1) � � 512 � � 32
, 16

(e2) � � 512, � � 8
, 4

(e3) � � 512, � � 2
, 1

(e4) � � 512, � � 1/2
, 1/4

Fig. 7. Running time behavior of BM algorithm using different values of D, where the X-axis represents the different values of b.

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6539

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

First, the running time of the BM algorithm decreases with
different values of F . For example, when �	 = 	32 and
�	 = 	32768, the running time of the BM algorithm when
F = 25,50, 75, 100,125,150,175,200,225 , and 250 is
2.93, 2.3, 2.08,1.77, 1.66, 1.60, 1.42,1.36, 1.29 , and 1.27 ,
respectively.

Second, it is not always the case that increasing the value of
b leads to a decrease in the running time of the BM algorithm.
For example, when �	 = 	256, �	 = 1/2
 and F	 = 	25, 50,
75, 100, 125, 150, 175, 200, 225, and 250, the running time
of the BM algorithm is 0.021, 0.018, 0.017, 0.017, 0.017,
0.018, 0.020, 0.020, 0.022, and 0.024, respectively. Usually,
this case occurs when � and � are small or when F is close in
value to � . This means that not all values of F lead to an
improvement in the running time of the BM algorithm,
especially when � and � are small.
Third, it is clear that between two successive values of F,

the improvement is small. However, when the difference
between the two values of F is large, with a certain limitation,
the improvement is significant. For example, when �	 = 	16
,
�	 = 128, and F	 = 	75 and 100, the running time of the BM

algorithm is 3.99 and 3.68 , respectively, while the running
time for the BM algorithm when F	 = 	75	and 250 is 3.99 and
2.35, respectively.
Fourth, the running time of the BM algorithm on Q� is a

little faster than on Q� . The reason for this is that all the
numbers in Q� have n bits exactly, while the numbers in Q�
have a maximum length �.

C. Comparison of OM and BM Algorithms

In this subsection, the running times of the OM algorithm
and BM algorithm are compared based on two values. The first
value is the minimum running time obtained from the
experimental results for the BM algorithm using different
values of F, this value is denoted as BMmin. The second value is
the average running time calculated from all running times of
the BM algorithm using different values of F , denoted as
BMAvg. Therefore, two running time values for the BM
algorithm are considered: BMmin and BMAvg. Table I lists the
running times of both algorithms, OM and BM, when the data
range for the elements of the array taken from Q� . Several
observations arise from the analysis of the data results in Table
I.

TABLE I. RUNNING TIME (IN SECONDS) OF OM AND BM ALGORITHMS IN THE CASE OF Q�

TABLE II. PERCENTAGE OF IMPROVEMENT BY THE BM ALGORITHM AS COMPARED TO THE OM ALGORITHM IN THE CASE OF Q� .

V

W bits

32 64 128 256 512

BMmin BMAvg BMmin BMAvg BMmin BMAvg BMmin BMAvg BMmin BMAvg

X/YZ 0.00% 0.00% 22.22% 11.11% 50.00% 36.67% 54.21% 35.51% 59.72% 38.78%

X/[Z 0.00% 0.00% 33.33% 33.33% 54.55% 36.36% 59.95% 43.46% 69.00% 47.35%

XZ 33.33% 0.00% 57.14% 50.00% 61.36% 54.55% 69.63% 60.86% 74.80% 65.49%

[Z 50.00% 14.29% 65.45% 60.00% 69.94% 64.74% 75.52% 71.05% 80.50% 75.97%

YZ 56.52% 23.08% 72.15% 64.38% 76.30% 70.66% 80.62% 76.60% 84.18% 81.39%

\Z 61.11% 27.08% 77.01% 66.90% 80.49% 73.62% 84.32% 78.85% 87.51% 84.19%

X]Z 64.86% 29.73% 79.43% 68.37% 83.12% 74.92% 86.63% 80.66% 90.38% 85.93%

^[Z 66.10% 30.91% 80.55% 68.86% 84.41% 75.46% 88.52% 82.28% 91.99% 86.89%

First, the running time of the BM algorithm is faster than
that of the OM algorithm for all data sets, except for two cases:
T � 	 �256,32,Q�� and T = �512,32,Q�� where the running
time of the two algorithms are equal.

Second, two factors have an effect on the difference in the
running times of the two algorithms. The first factor is the size
of array, �, while the second factor is the size of the integer
number, n. For small values of � and � , the difference in

W Algorithm
V

X/YZ X/[Z XZ [Z YZ \Z X]Z ^[Z

32

OM 0.0003 0.001 0.003 0.012 0.046 0.18 0.74 2.92

BMmin 0.0003 0.001 0.002 0.006 0.02 0.70 0.26 0.99

BMAvg 0.0003 0.001 0.002 0.007 0.026 0.096 0.370 1.433

64

OM 0.0009 0.003 0.014 0.055 0.219 0.87 3.50 13.37

BMmin 0.0007 0.002 0.006 0.019 0.061 0.200 0.720 2.600

BMAvg 0.0008 0.002 0.007 0.022 0.078 0.288 1.107 4.163

128

OM 0.003 0.011 0.044 0.173 0.709 2.87 11.49 45.62

BMmin 0.0015 0.005 0.017 0.052 0.168 0.56 1.94 7.11

BMAvg 0.0019 0.007 0.02 0.061 0.208 0.757 2.882 11.197

256

OM 0.0107 0.042 0.171 0.694 2.761 10.8 49.59 191.13

BMmin 0.0049 0.017 0.052 0.17 0.535 1.694 6.628 21.943

BMAvg 0.0069 0.024 0.067 0.201 0.646 2.285 9.59 33.864

512

OM 0.0435 0.171 0.666 2.579 10.302 42.084 172.42 750.41

BMmin 0.0175 0.053 0.168 0.503 1.63 5.256 16.581 60.094

BMAvg 0.0266 0.09 0.23 0.62 1.917 6.652 24.262 98.396

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6540

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

running time between the two algorithms is small. For
example, when � � 64 and � = 512 the running times of
OM, BMmin and BMAvg are 0.003 , 0.002 , and 0.002 ,
respectively. On the other hand, when � = 128 and � = 16
,
the running times of OM, BMmin and BMAvg are 11.49, 1.94,
and 2.88 seconds, respectively.
Third, based on the second observation, the percentage of

improvement achieved by the BM algorithm, in terms of BMmin
and BMAvg, as compared to OM algorithm increases with an
increase in the values of � and �. This means that the
improvement occurs in two cases: when � is fixed and � is
varied and when � is fixed and � is varied. For example, if
� = 128, the percentage of improvement achieved by the BM
algorithm when � = 1/4
 , 1/2
 , 1
 , 2
 , 4
 8
 , 16
 and
32
 is 50%, 54.55%, 61.36%, 69.94%, 76.30%, 80.49%,
83.12%, 84.41% respectively in the case of BMmin, while the
percentage of improvement in the case of BMAvg is 36.67%,
36.36%, 54.55%, 64.74%, 70.66%, 73.62%, 74.92%, and
75.46%, respectively. Also, if � = 1
 , the percentage of
improvement achieved by the BM algorithm when � = 32, 64,
128 , and 256 is 33.33%, 57.14%, 61.36%, and 69.59%,
respectively in the case of BMmin, while the percentage of
improvement in the case of BMAvg is 0.0%, 50%, 54.55%, and
60.82% respectively. The full details of the percentage
improvement achieved by the BM algorithm as compared to
the OM algorithm are shown in Table II.

Fourth, referring to Table II, it is clear that the percentage
of improvement achieved by the BM algorithm in the case of
BMmin is better than in the case of BMAvg, for fixed � and �,
because the running time for BM algorithm in case of BMmin is
less than the running time for BM algorithm in case of BMAvg.

Note that, with increasing �	and �, the running times for
BM in case of Q� is near to the case of Q�, so we neglect the
comparison between BM and OM algorithms in case of Q�.

V. CONCLUSION

In this paper, we studied the multiplication operation
because it has a higher time cost as compared to other basic
arithmetic operations and therefore has a significant influence
on the performance of many applications such as cryptography
and digital signal processing. To reduce the cost of this
operation, we developed an efficient algorithm for sequential
computation tasks that require the multiplication of a sequence
of big integers. The algorithm is based on using the window
strategy to reduce the cost of multiplying the sequence of big
integers. The algorithm has the same time complexity as the
best-known sequential algorithm but performs fewer digit-
multiplication operations. In our experimental studies to test
the performance of the proposed BM algorithm, we considered
four parameters of different values: sequence size (� � 1/4
,
1/2
, 1
, 2
, 4
, 8
, 16
, and 32
), integer size (� = 32,
64, 128, 256, and 512), block size (F	 = 	25, 50, …, 500),
and data range (fixed and varied sizes). The results showed the
effectiveness of the proposed algorithm as compared to the
best-known sequential algorithm, where the percentage of
improvement achieved by the proposed algorithm was 90%
when � and � were large.

There are different future directions related to this study.
Firstly, the study of the behavior of the BM algorithm when
� ≥ 1
. Secondly, the study of the effect of increased value of
F on the BM algorithm. Third, the question of the existence of
a relation between the values of F and �. Fourth, how to use
the GPU to speedup the running time for the BM algorithm.
Fifth, how to speedup modular multi-exponentiation using the
BM algorithm and modular exponentiation.

ACKNOWLEDGEMENT

This work has been funded by the Scientific Research
Deanship at the University of Ha’il – Saudi Arabia through
project number RG-191309.

REFERENCES

[1] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic.
Cambridge ; New York: Cambridge University Press, 2010.

[2] E. S. I. Harba, "Secure Data Encryption Through a Combination of AES,

RSA and HMAC," Engineering, Technology & Applied Science
Research, vol. 7, no. 4, pp. 1781–1785, Aug. 2017, https://doi.org/

10.48084/etasr.1272.

[3] M. B. Apsara, P. Dayananda, and C. N. Sowmyarani, "A Review on
Secure Group Key Management Schemes for Data Gathering in

Wireless Sensor Networks," Engineering, Technology & Applied
Science Research, vol. 10, no. 1, pp. 5108–5112, Feb. 2020,

https://doi.org/10.48084/etasr.3213.

[4] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining
digital signatures and public-key cryptosystems," Communications of the

ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978, https://doi.org/10.1145/
359340.359342.

[5] K. A. Fathy, H. M. Bahig, and A. A. Ragab, "A Fast Parallel Modular

Exponentiation Algorithm," Arabian Journal for Science and
Engineering, vol. 43, no. 2, pp. 903–911, Feb. 2018, https://doi.org/

10.1007/s13369-017-2797-3.

[6] H. M. Bahig and K. A. Fathy, "An efficient parallel strategy for high-

cost prefix operation," The Journal of Supercomputing, Nov. 2020,
https://doi.org/10.1007/s11227-020-03473-x.

[7] G. Bilardi and L. De Stefani, "The I/O complexity of toom-cook integer

multiplication," in Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, USA, Jan. 2019, pp. 2034–2052.

[8] R. Brumnik, V. Kovtun, A. Okhrimenko, and S. Kavun, "Techniques for

Performance Improvement of Integer Multiplication in Cryptographic
Applications," Mathematical Problems in Engineering, vol. 2014, Feb.

2014, Art. no. 863617, https://doi.org/10.1155/2014/863617.

[9] S. A. Cook and S. O. Aanderaa, "On the Minimum Computation Time of
Functions on JSTOR," Transactions of the American Mathematical

Society, vol. 142, pp. 291–314, Aug. 1969, https://doi.org/10.2307/
1995359.

[10] A. De, P. P. Kurur, C. Saha, and R. Saptharishi, "Fast Integer

Multiplication Using Modular Arithmetic," SIAM Journal on
Computing, vol. 42, no. 2, pp. 685–699, Jan. 2013, https://doi.org/

10.1137/100811167.

[11] M. J. Fischer and L. J. Stockmeyer, "Fast on-line integer multiplication,"
in Proceedings of the fifth annual ACM symposium on Theory of

computing, New York, NY, USA, Apr. 1973, pp. 67–72, https://doi.org/
10.1145/800125.804037.

[12] M. Fürer, "Faster integer multiplication," in Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing, New York, NY,

USA, Jun. 2007, pp. 57–66, https://doi.org/10.1145/1250790.1250800.

[13] P. Gaudry, A. Kruppa, and P. Zimmermann, "A gmp-based
implementation of schönhage-strassen’s large integer

multiplication algorithm," in Proceedings of the 2007 international
symposium on Symbolic and algebraic computation, New York, NY,

USA, Jul. 2007, pp. 167–174, https://doi.org/10.1145/1277548.1277572.

Engineering, Technology & Applied Science Research Vol. 10, No. 6, 2020, 6533-6541 6541

www.etasr.com Bahig et al.: Speeding up the Multiplication Algorithm for Large Integers

[14] D. Harvey, J. van der Hoeven, and G. Lecerf, "Even faster integer
multiplication," Journal of Complexity, vol. 36, pp. 1–30, Oct. 2016,

https://doi.org/10.1016/j.jco.2016.03.001.

[15] A. A. Karatsuba and Y. P. Ofman, "Multiplication of many-digital
numbers by automatic computers," Doklady Akademii Nauk., vol. 145,

no. 2, pp. 293–294, 1962.

[16] C. Lüders, "Implementation of the DKSS Algorithm for Multiplication
of Large Numbers," in Proceedings of the 2015 ACM on International

Symposium on Symbolic and Algebraic Computation, New York, NY,
USA, Jun. 2015, pp. 267–274, https://doi.org/10.1145/

2755996.2756643.

[17] S. R. S. Rao, "Interesting Results Arising from Karatsuba Multiplication

- Montgomery family of formulae," in Proceedings of the Sixth
International Conference on Computer and Communication Technology

2015, New York, NY, USA, Sep. 2015, pp. 317–322, https://doi.org/
10.1145/2818567.2818666.

[18] A. Schönhage and V. Strassen, "Schnelle multiplikation grosser zahlen,"

Computing, vol. 7, no. 3–4, pp. 281–292, 1971.

[19] A. L. Toom, "The complexity of a scheme of functional elements
realizing the multiplication of integers," Soviet Mathematics Doklady,

vol. 3, no. 4, pp. 714–716, 1963.

[20] Y. Wu, "Strength reduction of multiplications by integer constants,"
ACM SIGPLAN Notices, vol. 30, no. 2, pp. 42–48, Feb. 1995,

https://doi.org/10.1145/199873.199880.

[21] A. Zanoni, "Iterative Toom-Cook methods for very unbalanced long
integer multiplication," in Proceedings of the 2010 International

Symposium on Symbolic and Algebraic Computation, New York, NY,
USA, Jul. 2010, pp. 319–323, https://doi.org/10.1145/1837934.1837995.

[22] L. De Stefani, "On the I/O complexity of hybrid algorithms for Integer

Multiplication," arXiv:1912.08045 [cs], Jul. 2020, Accessed: Nov. 28,
2020. [Online]. Available: http://arxiv.org/abs/1912.08045.

[23] A. Rezai and P. Keshavarzi, "Compact SD: a new encoding algorithm
and its application in multiplication," International Journal of Computer

Mathematics, vol. 94, no. 3, pp. 554–569, Mar. 2017, https://doi.org/
10.1080/00207160.2015.1119269.

[24] V. Bunimov and M. Schimmler, "Efficient Parallel Multiplication

Algorithm for Large Integers," in Euro-Par 2003 Parallel Processing,
Berlin, Heidelberg, 2003, pp. 923–928, https://doi.org/10.1007/978-3-

540-45209-6_127.

[25] B. P. Sinha and P. K. Srimani, "A new parallel multiplication algorithm
and its VLSI implementation," in Proceedings of the 1988 ACM

sixteenth annual conference on Computer science, New York, NY,
USA, Feb. 1988, pp. 366–372, https://doi.org/10.1145/322609.322777.

[26] J. V. Tembhurne, "Parallel Multiplication of Big Integer on GPU," in

Smart and Innovative Trends in Next Generation Computing
Technologies, Singapore, 2018, pp. 276–285, https://doi.org/10.1007/

978-981-10-8657-1_21.

[27] J. V. Tembhurne and S. R. Sathe, "Performance evaluation of long
integer multiplication using OpenMP and MPI on shared memory

architecture," in 2014 Seventh International Conference on
Contemporary Computing (IC3), Aug. 2014, pp. 283–288,

https://doi.org/10.1109/IC3.2014.6897187.

[28] C. K. Yuen and M. D. Feng, "Parallel multiplication: a case study in
parallel programming," ACM SIGPLAN Notices, vol. 29, no. 3, pp. 12–

17, Mar. 1994, https://doi.org/10.1145/181587.181589.

[29] L. De Stefani, "Communication-Optimal Parallel Standard and

Karatsuba Integer Multiplication in the Distributed Memory Model,"
arXiv:2009.14590 [cs], Sep. 2020, Accessed: Nov. 28, 2020. [Online].

Available: http://arxiv.org/abs/2009.14590.

[30] S. G. Akl, Parallel Computation: Models and Methods, 1st edition.
Upper Saddle River, NJ, USA: Prentice Hall, 1996.

[31] H. M. Bahig, H. M. Bahig, and K. A. Fathy, "Fast and scalable algorithm

for product large data on multicore system," Concurrency and
Computation: Practice and Experience, Apr. 2019, Art. no. e5259,

https://doi.org/10.1002/cpe.5259.

