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Abstract-In this paper, a variable-volume Continuously Stirred 
Tank Reactor (CSTR) deterministic exothermic model has been 

formulated based on the Reynold Transport Theorem. The 

numerical analysis of the formulated model and the identifiability 

of its physical parameters are done by using the least squares and 

the Delayed-Rejection Adaptive Metropolis (DRAM) method. 

The least square estimates provide the prior information for the 

DRAM method. The overall numerical results show that the 
model gives an insight in describing the dynamics of CSTR 

processes, and 14 parameters of the CSTR are well identified 

through DRAM convergence diagnostic tests, such as trace, 

scatter, autocorrelation, histograms, and marginal density plots. 

Global sensitivity analysis was further performed, by using the 

partial rank correlation coefficients obtained from the Latin 

hypercube sampling method, in order to study and quantify the 
impact of estimated parameters, uncertainties on the model 

outputs. The results showed that 7 among the 14 estimated model 

parameters are very sensitive to the model outcomes and so those 
parameters need to be handled and treated carefully. 

Keywords-parameter identifiability; variable volume; 

exothermic; CSTR; RTT; MCMC; DRAM 

I. INTRODUCTION 

During the past decades, Continuously Stirred Tank 
Reactors (CSTRs) have gained research momentum as 
important industrial and chemical production tools. For 
controlling the reactors, various methods have been proposed 
to tackle the complexity and the non-linearity operational 
behaviors that are present in the tank reactor during the 
production processes [1-6]. Discussions about CSTRs seem to 

be broad and range from general to specific purposes. For 
example, mathematical modeling and numerical simulations of 
two-phases which are gas-liquid flow in the CSTR can be 
found in [7] and the Fokker-Plank Equation was applied for a 
two-state stochastic CSTR system in [8]. In [9], the robust 
feedback linearization of an isothermal CSTR was conducted 
by using the mixed sensitivity synthesis and iteration 
approaches in the presence of uncertainties. A one state 
variable, temperature, of a non-isothermal CSTR was analyzed 
by using Proportional Integral Derivative (PID) and fuzzy logic 
controllers, and the results from simulations and temperature 
control show that fuzzy logic can be adopted as a good 
controller of the process compared with the PID controller [10, 
17]. The effects of hydrodynamic shear on biogas production in 
the CSTR using the Metzner-Otto method were analyzed and 
discussed in [11]. The Bayesian approach was used in [12] as 
the sorption parameter identifiability tool. The research outputs 
showed that the Bayesian inference is a more preferable 
method for the analysis of CSTR experiments as per numerical 
identifiability as well as the sorption parameter identifiability. 
The efficient Azo Dye color identification in the CSTR with 
the built-in bio-electrochemical system was developed for Azo 
dye alizarin Yellow R (AYR) which in turn can help in waste-
water treatment [13]. Authors in [14] investigated the 
performance of CSTR as bioreactor for producing biohydrogen 
from water melon waste in the anaerobic digester. The 
Lyapunov-based stochastic non-linear model predictive control 
was used in [15] to shape the state probability density functions 

in the CSTR with the exothermic reaction 
k

A B→ , where � is 
the reaction rate, � is the reactant and � is the product. The 
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Luenberger fuzzy observer with and without sliding modes, the 
Walcott-Zak fuzzy observer, and the Utkin fuzzy observer were 
adopted and used as fault detection sensors of the CSTR in 
[16]. A two state CSTR stochastic model was studied and 
analyzed in [18] by using the Approximate Expectation 
Maximization (AEM) and Bayesian algorithms. It was revealed 
that the Bayesian algorithm is an effective method to be applied 
on the CSTR's stochastic model since it provided more accurate 
parameter estimates compared with AEM, and it is even more 
applicable for an unknown system with a small number of data 
sets. Authors in [19] used Monod and Haldane kinetics 
methods to perform the stability analysis of a system that 
models the formation of biofilms inside the CSTR during the 
waste-water treatment process. Even though both methods 
performed well, still the Monod kinetics provided biofilms 
formation in a shorter time compared to the opponent method. 

The effect of operating conditions on the CSTR's 
performance with a saponification experiment was conducted 
in [20] and the results showed that the increase in conversion 
scale may depend on the increase in CSTR's volume. The 
neural network approach was used in [21] in order to identify 
the dynamics of two states, namely the temperature and the 
concentration of the CSTR's model, and reasonable and precise 
results were obtained. Three-dimensional Computational Fluids 
Dynamics (CFD) simulations were carried out [22] in order to 
identify the flow behaviors in the CSTR. Authors in [23] used 
the cascade control strategy to control the temperature of the 
exothermic CSTR with a cooling jacket. The stability analysis 
of the system was investigated with the Routh-Hurwitz and 
Argand diagram techniques. As a result, the cascade control 
was pointed out to be an efficient control method for the CSTR 
processes. A modified CSTR model for the neutralization 
process was studied and analyzed in [24]. This model has been 
used to assess the effects of strong acid (HCl) and strong base 
(NaOH) on the flow rates of ionic concentrations [24]. First-
order and higher-order sliding mode observer methods were 
used in [25] in order to design and estimate states and unknown 
inputs of the CSTR, and it was shown that higher-order sliding 
modes may be adopted to reduce the noise into the system 
compared with the first-order sliding mode. Parameter 
estimation of non-linear chemical and biological processes with 
non-measured variables from a number of data sets was 
performed in [26] using the Bayesian approach. Furthermore, a 
mathematical model and simulation of reactors with the 
production experiment of hexane from benzene were conducted 
in [27] and the numerical investigation of phenol oxidation 
from waste-water inside a reactor was carried out in [28]. Non-
parametric and non-linear stochastic dynamical model along 
with the behavior analysis of a class of the single state 
isothermal CSTR was also studied and analyzed in [29]. The 
adaptive method with recursive identification and the 
polynomial synthesis with placement of poles were applied on 
the CSTR system to determine its dynamics, however this 
method provided inappropriate control responses and 
overshoots [30]. The problem of characterizing the global 
dynamics of a single state non-linear stochastic CSTR system 
was addressed in [29] using the Fokker-Plank as the state 
probability distribution function, but the study of a several-state 
non-linear stochastic system is paramount as recommended in 

this article. In the same way, different types of reactors and 
types of reactions in the chemical engineering processes are 
widely defined, explained and described in [31]. The modeling 
and control of the CSTR were also conducted based on a mixed 
logical dynamical model which resulted in a satisfactory 
performance of the tank [32]. In [33], the general model of the 
CSTR was developed and the transient behavior for irreversible 
non-linear polymerization process in the CSTR was studied 
and analyzed. Chemical process hazards, causes and proposed 
measures of safety of batch and semi-batch processes were 
discussed in [34]. The dynamical behavior of the CSTR 
through a single first order reaction was researched and 
analyzed in [35]. The limitations of CSTRs' performance due to 
cooling jacket dynamics with both open and closed loops are 
well explained and discussed in [36]. Authors in [37] 
performed multivariate character and stability analysis of 
irreversible exothermic CSTRs. The signal flow diagram and 
the equilibrium states were determined by taking into 
consideration the first and the second-order reactions. 

Often, the volume is treated as a constant [4, 25, 38, 39], 
however, in reality the tanks may expand and lead to variable 
volume. Moreover, the parameters are randomly assumed and 
the estimation of physical parameters that are very influential 
in the system variation using MCMC methods is lagging 
behind. It is with these reasons this paper aims to treat the 
CSTR volume as a variable and identify 14 CSTR physical 
parameters.  

II. MODEL FORMULATION 

The assumptions on the parameters and physical properties 
inside and outside the tank have been considered during model 
formulation and are adopted from [25, 38-40], except for the 
volume which is considered to be a variable. To depict the 
problem, the CSTR dynamics are schematically illustrated 
using the CSTR and the Reynold Transport Theorem (RTT) 
diagrams.  

A. Assumptions 

The CSTRs under investigation assume perfect mixing to 
avoid spatial gradients of velocity, temperature, concentration 
and of other properties of the mixture. 

• The CSTRs assume non-viscous liquid and gas phases 
which are frequently supplied in it and a static mixer which 
makes the shaft work produced by the stirring process to be 
negligible. 

• No pressure drop is taking place in the CSTRs, i.e. CSTRs 
work at a constant pressure. 

• Kinetic energy, potential energy, and other forms of 
external energy are infinitesimally small compared to the 
heat exchange and the heat from the chemical reactions. 

• The wall is isolated and its temperature is negligible. Only 
the heat exchange is channelled through the designed area. 

• The CSTRs assume the volume variation. 

• The CSTRs assume density	� and specific heat capacitiy �� 
to be constants. 
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• Since there is negligible external stress acting on the 
system, it is assumed that there is also a negligible 
momentum on the system. 

B. Formulation 

Based on schematic diagrams presented in Figures 1 and 2, 
considering the above listed assumptions, and according to the 
transport phenomena, mass and energy conservation, the 
variable-volume exothermic CSTR model formulated is given 
by the system of equations (1): 
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where Vis the tank volume, Fin = F is the feeding velocity, Fout 
is the outlet velocity, Cin is the feeding concentration, C is the 
mixture concentration, E is the activation energy, T is the 
temperature of the tank, Tin is the feeding temperature, Tmean is 
the reference temperature, H*

 is the reaction enthalpy, ρ is the 
density, Cp is the heat capacity, U is the heat transfer 
coefficient, A is the cross-sectional area, Tc is the cooling 
temperature, Fc is the cooling velocity, Vc is the jacket volume, 

inc
T is the feeding coolant temperature, ρc is the coolant density, 

cp
C is the jacket's heat capacity, and � � �
�

����
�
��

�
�����

�
 is the 

Arrhenius equation [41], with � being the gas law constant and 
�
 the pre-Arrhenius frequency factor. 

 

 
Fig. 1.  Schematic diagram that describes the dynamics of CSTR. 

 
Fig. 2.  Schematic illustration of the RTT. 

III. MATERIALS AND METHODS 

A. Markov Chain Monte Carlo Method 

The Markov Chain Monte Carlo (MCMC) is a numerical 
analysis method used as a statistical and Bayesian technique to 
identify the complex ordinary differential equations' parameters 
that fit the dynamics of chemical and biological models [42-
44]. In this paper, the DRAM method is used to estimate 14 
parameters of the model (1). The Bayesian inference, qualified 
to be a very powerful statistical technique, has been widely 
used to identify the model's parameters � which are obtained 
after evaluating the parameters' posterior density ���/
	��� , �� , … , ��"�, where ��� , �� ,… , ��"   are the 

measurement points of the chemical process. For the model (1), 

� � #$%&' , $, �
, (, )*+,- ,.∗	, �, ��, 0,�,$1, 21 , �1 , ��34  and 

�� � �2, �, ),)5�. 

Further, the MCMC method is a sampling technique that 
combines Monte Carlo integration and Markov chains [45]. 
The overall implementation process starts from proposing a 
suitable distribution, called proposal distribution, and drawing 
samples from it [46]. The proposal distribution sometimes 
depends on the present value to form the chain, which in turn is 
considered as a Markov chain. The acceptance or rejection 
mechanisms are employed in the simulation to rectify the trial 
proposal distribution which ends up with the target distribution. 
In the end, a simulated chain of parameters (drawn 
samples, 	�6, �7 , … , �" ) can be used to approximate the 
intractable integral (distribution), as: 

(#8���/	��� , �� ,… , �"�4 9
6
"
∑ 8��;"
;<6 �    

where (#8���/	��� , �� , … , �"�4is the expectation and 8��;� 
is the density function. 

The Metropolis algorithm, Metropolis Hastings, 
Hamiltonian Monte Carlo, Gibbs Sampler, Reversible Jump 
Monte Carlo, Metropolis Adjusted Langevin, Slice Sampling, 
Multiple Try Metropolis, and Delayed Rejection Metropolis are 
among the most used MCMC algorithms [47, 48]. However, 
the method considered in this paper is the DRAM, presented in 
Algorithm 1 since it has the desirable feature of tuning the 
reliable proposal distribution without defining it manually [45, 
46]. This method overcomes the tedious task of trial and error 
of tuning the suitable proposal distribution that may appear in 
the Metropolis-Hastings technique [49]. In this case, the 
Gaussian distribution is mostly used as a proposal distribution. 
For a startup, MCMC needs the initial parameter values and a 
proposal distribution. The DRAM method is used to propose a 
distribution and its initial parameter values are computed using 
the classical least square method. The details of the numerical 
results obtained from the least squares and the MCMC methods 
are well explained and discussed in Section IV. 

B. Least Squares Method  

The model in (1) is a system of time dependent differential 
equations of the form:  

=>?
='

@��, �A , B;C � 0  

where	� is the number of state variable and �� is the vector of 
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state variables. For the model (1), � � 4,	 B;  is the discrete time 
sampling, and	�� � �2, �, ), )5), �A is the set of parameters of 
the model to be identified, where	F � 1,2, . . . ,14. So, in this 
paper, the 14 parameters to be identified are: 

�A = [$%&' , $, �
, (, )*+,- , .∗	, �, ��, 0, �, $1 , 21, �1 , ��3] 
The least squares method one of  the classical optimization 

methods with the purpose of minimizing the sum of squared 
residuals. To obtain the residuals, a predictive model is 
described as: 

J�; = K@��;, �A , B; C + M�;   
where J�;  represents the observations, K@��; , �A , B;C	 are the 
solutions of the model (1) at time B;  starting from a fixed set of 
parameters �
, and M�;  is the residual term. 

The sum of squared residuals function is obtained by taking 
the sum of squares of M�; 	: 

N. N. �	 � 	∑ �M�;�7 � ∑ �J�; −*
;<6

*
;<6 K@��; , �A, B;C)7   

Hence, the least square method searches the best fitting 
parameters that minimize the N. N. �  taken as the likelihood 
function. Thus, the fitting set of parameters �A	can be obtained 
after solving (2): 

P�Q.Q.R�
PST

� 0 ≡ P(∑ (V?W�WX� �Y@>?W ,ST,'WC) 
PST = 0    (2) 

simultaneously. Almost all chemical processes are intractable 
and complex due to their non-linearity behaviors. In fact, 
stepping back to the model (1) with 14 parameters of interest, if 
we could manually solve (2), we would end up with solving 14 
nonlinear equations simultaneously, which is a complicated 
task. As a simplification, the numerical simulations become a 
usual way of solving the problem. 

C. Delayed Adaptive Markov Chain Monte Carlo 

In this paper, the delayed-rejection adaptive metropolis 
(DRAM) algorithm is used for the parameter identifiability of 
the deterministic variable-volume exothermic CSTR model 
described in (1). The DRAM algorithm is chosen since it 
combines and utilizes both the Delayed-Rejection (DR) and the 
Adaptive Metropolis (AM) methods to efficiently improve and 
speed-up the computation process for a slow-start adaptation. 
The inputs of the algorithm are the initial values of the 
parameters and all of them are the least square optimal 
parameter values shown in Table II. The proposed distribution 
which is a Gaussian with mean 0 and standard deviation Σ
 

taken as the initial covariance matrix, Σ
 �
6
[\]T
^A

, has been 

used, where j is the length of model’s parameters to be 
estimated, and _A � _A×A which is an F × F identity matrix. 

1) Algorithm 1: DRAM 

Draw the initial point	�
 , from initial distribution �
���. 
Set an initial non-adaptive period a
  and initial covariance 
matrix Σ
. 

For b � 1, 2, … perform the following: 
(i) Sample a current point �c from the proposal distribution 

d(�c/�;�6) 
(ii) Compute the acceptance probability using: 

e@�;�6 , �cC = min	�1, �(�c/��� , �� , … , ��")d(�;�6/	�c�
���;�6/��� , �� , … , ��")d(�c/�;�6)) 

(iii) Acceptance/rejection rule by setting: 

�; = h �c, b8	i < 	e@�;�6 , �cC	kℎ�M�	i~n�0, 1)	
�;�6,																								oBℎ�Mkbp�.																								  

(iv) If q
 ≪ b (or after every q
's  iterations), then update 
the covariance matrix by using: 

Σ; � �ot��
, �6, … , �;) + u_=  
where _= is an v × v  identity matrix and u is a small positive 
number that makes the matrix Σ;  to be non-singular [46, 52, 
53].  

(v) i ← i+1 

TABLE I.  VARIABLES, CONSTANTS, AND PARAMETERS VALUES 

Parameters and variables 

Symbol Unit Physical meaning Values Source 

�;- 
wxyz
x{|	x} Feeding concentration 316.8 [50] 

�
 
wxyz
x{|	x} Initial concentration 316.8 [50] 

� 
wxyz
x{|	x} Mixture concentration State variable Simulated 

);- ~ Feeding temperature 298.35 [50] 

)
 ~ Initial temperature 298.35 [50] 

) ~ Mixture temperature State variable Simulated 

.∗ w��z
wxyz

 Enthalpy -1004.3×103 [50] 

)1�  K Initial cool temperature 288.15 [50] 

)1W� ~ Feeding cool temperature 293 [38] 

)1 ~ Jacket temperature State variable Simulated 

� 
w�

~	wxyz
 Gas constant 8.314 [50] 

2
 x} Initial tank volume 100 [51] 

2 x} Tank volume State variable Simulated 

( w�
wxyz

 Activation energy 0.5 [50] 

)*+,-  ~ Reference temp 298.15 [50] 

�� 
w��z
~	w�

 Heat capacity 4186 [50] 

0 
w�

~	x{|	x� Heat transfer coefficient 100000 Assumed 

$1 
x}

x{|
 Cooling velocity 46.5×10

-6
 [50] 

21 x} Jacket volume 50×10-6 [50] 

�1 
w�
x} Density of the coolant 1000 [51] 

��3  
w��z
~	w�

 Heat capacity of jacket 4186 [50] 

$%&' 
m�

min
 Outlet velocity 130×10

-6
 [50] 

$ m�

min
 Feeding velocity 130×10-2 Assumed 

�
 min
-1 

Pre-Arrhenius factor 0.9 [50] 

� 
kg
m�  Density 1000 [51] 

� m7 Area 0.015 [50] 
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IV. NUMERICAL ANALYSIS OF THE MODEL AND DISCUSSION 

The formulated model (1) is solved numerically by the 
4's order Runge-Kutta method which is the ode45 solver 
available in Matlab R2016b software package. The parameter 
identifiability is done using the least squares and MCMC. 

A. Numerical Simulations 

Due to lack of actual information (real data) about the 
system, the model (1) is simulated by using literature and 
assumed values (Table I), the discrete sampling time points are 
100, and 100×4 numerical solutions of the model J�; presented 
in (1) are obtained. The numerical results from the subplot 1 of 
Figure 3 reveal that the volume of tank reactor increases from 
100m

3
 to approximately 126m

3
 and this is an indication of 

having non-constant flow rates of reactants due change at both 
the inlets and outlets. 

 

 
Fig. 3.  Numerical solutions of the model. 

Figure 3 also shows that the reactants are consumed inside 
the reacting tank as its concentration approaches zero, which 
means the complete mixing and at the same time symbolizes a 
non-partial conversion of reactants into products that may lead 
to time residence distribution analysis as one of the 
inconveniences of CSTRs. Along this process, there is a 
covering cooling jacket that communicates with the reacting 
tank through a designed cross-sectional area of 0.015m

2
 to cool 

down the rising temperature inside the reacting tank. The 
covering cooling jacket contains the substance whose 
temperature is initially lower than the starting temperature of 
the reacting tank to disable the explosion of the reaction. 
During this process, the temperature of the reacting tank rises 
from 298.35K to its operating working temperature that 
is373.48K. Meanwhile, the cooling temperature of the covering 
cooling jacket also rises from its initial temperature 288.15K 
until it reaches 363.14K. As a result, if this scenario is selected 
to be a piloting tank, then all the simulated information and the 
working conditions that are described above have to be taken 
into consideration quantitatively. 

B. Least Square Results  

The deterministic variable-volume exothermic CSTR 
model presented in (1) has been numerically analyzed by using 
the least square method and 14 parameters of the model were 

optimized from the noisy measurements of the system. The 
noisy measurements are obtained after corrupting the obtained 
empirical data with Gaussian noise of 0.05 standard deviation. 
The obtained results are presented in Figure 4, and the 14 
estimated parameters and their corresponding initial values are 
also presented in Table II. According to the results, all 
parameters relatively converge to their corresponding initial 
values and the measurements fit the exothermic CSTR model 
as can be viewed from fitted state variables shown in Figure 4. 

 

 
Fig. 4.  Least square fitting model. We can see that the measurements fit 

the model well as parameters vary. 

C. Markov Chain Monte Carlo Results 

The initial values for the MCMC are estimated using the 
least squares method. Since we have fourteen parameters to be 
estimated, a sample consisting of 100,000 ×14 parameters has 
been generated during simulations and the method has been 
adapted 100 times. Also the initialized covariance matrix of 

MCMC is chosen to be	Σ
 �
6
[\]�\`�\

√6�
. Details of the MCMC 

results are discussed by the following MCMC diagnostic tests. 

1) MCMC Diagnostics  

The identifiability of the model parameters is mainly based 
on the convergence of the MCMC. There are several statistical 
and graphical convergence tests for the MCMC methods [54-
57]. In this paper, we use the common statistical inference and 
graphical analyses of the trace (time series plots), scatter plots, 
autocorrelation plots, histograms, and the marginal density 
distributions for each drawn sample of the parameters to 
identify the model and diagnose the convergence of the 
generated MCMC samples. 

2) Trace Plots 

One way to analyze the convergence of the MCMC is to 
check the mixing of the generated sample of posteriors through 
trace plots. If the generated chain of posteriors becomes 
stationary for several initial values, and there are no obvious 
spikes, it is an indication of having a good mixing which is a 
good sign of convergence. In Figure 5 we can see that the 
mixing of samples is very good so the chain converges, and the 
14 sampled values of posteriors are the means (centers) of the 
samples. 
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TABLE II.  THE STATISTICAL INFERENCE ON THE ESTIMATED PARAMETERS BY USING THE LEAST SQUARE AND MCMC  METHODS 

Param 

LSQ and MCMC estimates 

Initial 

values 

LSQ 

estim 

MCMC 

posterior mean 

MCMC posterior 

median 
Cred interv Std MCerr tau geweke Kurtosis Skewness 

$%&'  130×10-6 130.016×10-6 130.015×10-6 130.016×10-6 
[130.015×10

-6
, 

130.016×10
-6
] 

7.32 ×10-8 1.0633×10-9 41.003 0.99994 2.9626 -0.0630 

$ 130×10-2 130.09×10-2 129.971139×10-2 129.9704569×10-2 
[129.9705396×10

-2
, 

129.9716882×10
-2
] 

0.00093 3.9735×10-5 62.713 0.99997 3.0915 -0.0225 

�
 0.9 0.900553 0.900592376 0.900596750 
[0.900586482, 

0.900598270] 
0.000951 2.2856×10

-5
 50.329 0.99994 3.0930 -0.0016 

( 0.5 0.493183 0.493486288 0.493470050 
[0.493480384, 

0.493492191] 
0.0009525 1.7754×10

-5
 46.313 0.9985 3.1854 0.0934 

)*+,- 298.15 298.147 298.151888471 298.151879315 
[298.151882554, 

298.151894388] 
0.00095466 1.9926×10-5 58.812 1 3.0988 -0.0220 

.∗ -1004.3×10
3
 1026.03×10

3
 

-1028032.32 

9702401 

-1028032.329 

677610 

[-1028032.32970, 

-1028032.3296 

966452] 

0.00095973 3.2217×10
-5
 57.28 1 3.1340 0.0125 

� 1000 1017.16 1026.121280804 1026.121304498 
[1026.121274963, 

1026.121286644] 
0.00094236 2.9081×10

-5
 59.644 1 3.0811 -0.0299 

�� 4186 4231.14 4217.368624072 4217.368601824 
[4217.368617960, 

4217.368630185] 
0.00098619 2.1133×10

-5
 48 1 3.3398 0.0578 

0 100,000 100681 
100098.50255273

8 
100098.502551528 

[100098.502547056, 

100098.502558419] 
0.00091663 4.2388×10

-5
 69.113 1 3.2362 0.0790 

� 0.015 0.0151979 0.014959065 0.014962113 
[0.014953136, 

0.014964995] 
0.00095668 3.0706×10

-5
 53.978 0.99458 3.0965 -0.0279 

$1  46.5×10
-6
 46.7705×10

-6
 74.7936×10

-5
 62.4641×10

-5
 

[74.4298×10-5, 

75.1574×10
-5
] 

0.00058698 3.7635×10
-5
 85.568 0.21093 3.9661 1.0355 

21  50×10-6 49.6872×10-6 76.2673×10-5 63.7067×10-5 
[75.8967×10

-5
, 

76.6379××10
-5
] 

0.00059791 3.2879×10-5 69.882 0.41264 3.8227 1.0014 

�1  1000 987.751 994.859555082 994.859566589 
[994.859549347, 

994.859560817] 
0.00092534 2.464×10

-5
 63.819 1 3.2461 0.0145 

��3  4186 4134.6 4163.918586616 4163.918608754 
[4163.918580689, 

4163.918592542] 
0.00095621 1.7679×10

-5
 45.604 1 3.0466 -0.0150 

Note: Param=Parameters, LSQ=least squares, estim=estimates, Cred interv=Credible interval, Std=Standard deviation, MCerr=MCMC error 

 

 

 
Fig. 5.  The trace plots of the samples. 

3) Scatter Plots (pairs) 

A poor convergence of MCMC method inventively leads to 
high correlation between estimated parameters. Since there are 

14 parameters to be identified, then there are 91 scatter plots 
which we need to investigate if there are strong correlations 
between them. Figure 6 shows the scatter plots for the first 10 
sampled parameters equivalent to 45 scatter plots and how 
these posterior samples correlate to each other. We observe that 
there is no high correlation between the pairs of the estimated 
parameters and so the parameters of the model (1) are 
adequately identified. 

4) Autocorrelation Plots 

Figure 7 determines and examines the correlation between 
consecutive samples during posteriors chain sampling. We can 
see that the coefficients of autocorrelation functions of all 
generated samples (x-axis) tend to zero as the number of lags 
(y-axis) increases and get stationary around zero after 100 lags. 
That is an indication of having a good mix. 

5) Marginal Distribution (Density) of the Sampled 

Parameters 

Another diagnostic test is to plot the posteriors density 
distributions. Normally for better mixing we expect the 
distributions of all density estimations to follow a Gaussian 
distribution. Figure 8 depicts how density distributions of all 
estimated parameters follow Gaussian distribution and their 
values are taken as means of distributions. 
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Fig. 6.  The scatter plots of pairs of sampled parameters. We can see that none of the parameters #$%&' , $, �
, (, )*+,- , .∗ 	, �, ��, 0, �4 is correlated to the others 
because there are no correlation patterns observed. 

 

 
Fig. 7.  Autocorrelation plots of the sampled parameters. 

 
Fig. 8.  The marginal density distribution of the sampled parameters. 
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Fig. 9.  Histograms of the 14 sampled parameters. 

 

Fig. 10.  Parameter PRCCs' plot for the model outputs. 

6) Histograms of the Sampled Parameters 

From Figure 9, we can see that almost all parameter values 
follow the normal distribution. The MCMC's convergence 
tends to be bad for $1 and	21. However, the other 12 parameters 
are fine. This could be caused by different and uncertain 
reasons. It may stem from either the complexity of the model, 
the little information about their mean values, or the method 
itself has failed to sample well these two parameters from the 
proposed distribution. 

The results in Table II show that almost all parameters 
converge to their initial values and posterior means are within 
their credible intervals. We can see that the posterior means 
and posterior medians are nearly equal. We can in addition 
observe that the Markov chain errors and the standard deviation 
of the model parameters are significantly small which shows 
that the method performed well in identifying the best 
estimates. The computed autocorrelation time (tau) values are 
small with the significance of having independence in sampling 
the successive posteriors as well as the convergence of the 
method. All Geweke values are almost 1, except 0.21093 for $1  
and 0.41264 for 21 with the indication of having non-stationary 
means values by default for the start (10%) and the end (50%) 

of sampling of these two parameters. In reality, the skewness 
and kurtosis values for the Gaussian distribution are 
approximately expected to be 0 and 3 respectively. So, the 
skewness and kurtosis values for the obtained samples show 
that only $1  and 21  values are somehow skewed in the right 
hand side and do not incorporate the exact features of the 
Gaussian distribution. 

D. Global Sensitivity Analysis 

To quantify the uncertainty effects of estimated parameters 
on the model outputs, we performed global sensitivity analysis 
by using Latin hypercube sampling method. This method 
computes the Partial Rank Correlation Coefficients (PRCCs) 
and determines which parameters are globally very sensitive to 
the model. PRCCs values vary between -1 and +1 with high 
sensitivity index for values approaching ±1 and low sensitivity 
index for values which are far from ± 1. The PRCCs values are 
graphically displayed in Figure 10 and their results can be seen 
in Table III. 

From Figure 10, we observe that the 1st parameter 
significantly and negatively affects the model volume outputs. 
The increase in that parameter decreases the volume. From 
subplot 2, the 3

rd
 parameter, which is �
 , has high negative 

effect on the concentration outputs of the model. The increase 
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of the temperature profiles positively depends on the increase 
in the 6th, 7th and 8th parameter values whereas the increase of 
the 8

th
 and 10

th
 parameter values decreases and increases the 

cooling temperature profiles respectively. So, in total there are 
7 identified parameters that may have a great impact on the 
model response and their values are represented by (*) in Table 
III. 

TABLE III.  PRCC RESULTS 

Parameter 

Partial rank correlation coefficient values 

for each variable 

� � � �� 

$%&'  −0.9847�∗) 0.2545 −0.0479 −0.0429 $ −0.0269 0.4127 0.1482 −0.0119 
�
 −0.1060 −0.7418�∗) 0.0302 −0.0761 
( 0.0070 0.3054 −0.0743 −0.0973 )*+,- −0.1713 −0.0515 −0.2141 0.0032 
.∗ 0.0813 −0.1444 0.6114�∗) −0.3979 
� 0.0819 −0.3102 0.5000(∗) −0.2924 
�� −0.0345 −0.2137 0.6391(∗) −0.5186(∗) 
0 0.0232 −0.0547 −0.1470 0.4348 � −0.0091 0.0298 −0.2086 0.5232(∗) 
$1  0.1761 −0.2802 0.0415 −0.3810 21  0.0038 −0.0401 −0.1139 0.1187 �1  0.0928 −0.0246 0.1285 −0.2502 ��3  −0.0655 −0.2189 0.0294 −0.3894 

 

V. CONCLUSION 

This paper focused on the mathematical formulation of the 
deterministic variable-volume exothermic CSTR model, and its 
numerical simulations were tested to supplement the theoretical 
results as applications using literature values. The 
identifiability of the parameters required real system 
measurements, but due to the absence of real data, the system 
measurements were simulated, i.e. the numerical solutions 
were empirical data corrupted with Gaussian noise with a 
standard deviation of 0.05. 

The identifiability of the physical parameters of the 
formulated model was numerically carried out by using the 
least squares and DRAM. The least square estimates converged 
to the literature values and were treated as prior information for 
the DRAM method. The generated DRAM samples were 
graphically and statistically analyzed to test the convergence. 
The results show that the model was solved and its physical 
parameters were well identified. To study and quantify the 
associated parameter uncertainties to the model outcomes, 
global sensitivity analysis was performed by using the Latin 
hypercube sampling method. Seven parameters among the 14 
estimated model parameters were found to be very sensitive to 
the model outputs and therefore, these parameters need to be 
controlled effectively. 
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