
Engineering, Technology & Applied Science Research Vol. 11, No. 1, 2021, 6719-6723 6719

www.etasr.com Mestiri et al.: AES High-Level SystemC Modeling using Aspect Oriented Programming Approach

AES High-Level SystemC Modeling using Aspect
Oriented Programming Approach

Hassen Mestiri
Prince Sattam bin Abdulaziz University, College of

Computer Engineering and Sciences, Department of Computer
Engineering, Alkharj, Saudi Arabia

and
Higher Institute of Applied Sciences and Technology of

Sousse, University of Sousse, Tunisia
and

Electronics and Micro-Electronics Laboratory, Faculty of
Sciences of Monastir, University of Monastir, Tunisia

h.mestiri@psau.edu.sa

Imen Barraj
METS Research Group, Electrical Engineering Department,

National Engineers School of Sfax
University of Sfax, Tunisia

and
Higher Institute of Computer Science and Multimedia of Gabes

University of Gabes, Tunisia
imen.barraj@gmail.com

Mohsen Machhout
Electronics and Micro-Electronics Laboratory

Faculty of Sciences of Monastir
University of Monastir
Monastir, Tunisia

mohsen.machhout@fsm.rnu.tn

Abstract-The increasing complexity of the cryptographic

modeling and security simulation of the Advanced Encryption

Standard (AES) necessitate fast modeling and simulation security
environment. The SystemC language is used in Electronic System

Level (ESL) that allows cryptographic models to achieve high

security and modeling simulation speed. Yet, the use of SystemC

in the security simulation requires modifications of the original

code which increases the modeling complexity. The Aspect-

Oriented Programming (AOP) can be used in the cryptographic

modeling and security simulations without any code modification.
In this paper, a new AES SystemC model using the AOP

technique is presented. A functional verification environment is

proposed to test the functionality of the AES SystemC AOP

model, the impact of AOP on simulation time, and the size of the

executable files. The design of the AES model is developed with

the weaving of all modules by AspectC++ which is an AOP

language. The Simulation results show the efficiency of the
proposed AES model and the uses of the AOP technique do not

have a significant impact on simulation time or on the size of the
executable file.

Keywords-security; cryptographic; AES; SystemC; AOP; high-

level

I. INTRODUCTION

Cryptographic systems are implemented in embedded
systems to protect secret information. Those systems store the
encryption key in conjunction with the cryptographic algorithm
execution [1-3]. The modeling complexity of cryptographic
systems is increasing more than the verification capability and

the design of the developers [4]. SystemC is used for the
modeling and verification of complex systems. It has been
considered as a suitable language for developing cryptographic
models. Yet, its uses need to modify the original SystemC code
in order to weave any cryptographic modules [5, 6]. To avoid
modifying the cryptographic algorithms code under test, a new
technique is used: Aspect Oriented Programming (AOP). It
consists of weaving a module into the original code without
any modification [7, 8]. Until now, a few cryptographic models
and verification security environments using SystemC and
AOP have been presented. In [9], the authors presented a
security SystemC benchmark for high-level synthesis. They
developed a security benchmark suite in a behavioral language
supported by all major HLS vendors with different types of
trojan hardware which produce different effects. A security
threat analysis using SystemC to simulate the power attacks is
presented in [10]. The authors developed a new approach to
simulate power attacks in early stages. The authors also
developed a power consumption graphical interface to analyze
the security of the elliptic curve cryptography and RSA
encryption against simple power attacks and differential power
attacks respectively. The authors in [7] proposed a new fault
injection system based on aspect-oriented programming
(AspectC++). This system allows an automated injection of
errors without modifying the original code. The authors
showed that their system provides automatisms to generate the
test environment of embedded systems.

Corresponding author: Hassen Mestiri

Engineering, Technology & Applied Science Research Vol. 11, No. 1, 2021, 6719-6723 6720

www.etasr.com Mestiri et al.: AES High-Level SystemC Modeling using Aspect Oriented Programming Approach

In this paper, we present a new AES SystemC model using
the AOP technique. We summarize our contributions as:

• AspectC++ has been used as an AOP technique to avoid
modifying the cryptographic algorithm code.

• A new cryptographic AES SystemC model using the AOP
technique is proposed.

• A functional verification environment is proposed to test
the functionality of the AES SystemC AOP model.

• The proposed AES SystemC-AOP model has been
simulated in order to estimate the impact of AOP on
simulation time and on the size of the executable files.
Through the simulations, it was shown that the efficiency of
the proposed AES model and the uses of AOP technique do
not have a significant impact on simulation time and on the
size of the executable file.

II. ASPECT ORIENTED PROGRAMMING

AOP is a programming technique based on the principle of
the separation of concerns [7, 8]. In the AOP, an application is
made up of classes and aspects. The transversal code linked to
non-functional concerns is put into modules in the form of
aspects. The aspects will then be weaved into the functional
code in order to generate a complete application. Aspects are
used to implement technical functionalities that are found to be
dispersed in the code of an application. An aspect consists of
two parts: Pointcut and advice code.

• Pointcut allows defining the place where the code of the
transverse functionality of the associated aspect will be
applied. This is defined by one or more Join Points. Each
Join Point represents a point in which the code of a
transverse functionality will be inserted. There are two
types of Join Points: call and execute.

• An advice code is a part of the code that will be inserted in
the places defined by the Join Points. It denotes the way in
which cross functionality will be weaving.

An aspect can include several advice codes at the same time
where each advice is associated with a cut. There are three
types of advice codes:

• before: the code will be executed before the cut.

• after: the code will be executed after the cut.

• around: part of the code will be executed before the cut and
another will be executed after.

To weave a new feature like an aspect into the code of an
application, junction points must be defined in the primary
code to indicate where the aspect should act. Figure 1 shows
how the aspect code of the new functionality is weaving into
the application code. The AOP technique is widely used in the
field of testing embedded programs written in C ++ and Java.
In our work, in order to avoid the modifications of the source
code when inserting the codes relating to the AES model and
the analysis of the cryptographic system, the use of the AOP
technique to design a new AES model is proposed. Since the
AOP technique allows the separation of transversal concerns,
we can obtain a new distribution of the cryptographic model.
This distribution consists of class and aspects which present the
codes relating to the modules to be inserted.

Fig. 1. Weaving aspect code into source code.

Fig. 2. Diagram of the AES SystemC AOP design.

Engineering, Technology & Applied Science Research Vol. 11, No. 1, 2021, 6719-6723 6721

www.etasr.com Mestiri et al.: AES High-Level SystemC Modeling using Aspect Oriented Programming Approach

Fig. 3. Flowchart of the AES cryptosystem aspect.

III. SYSTEMC AES MODELING

The goal of this section is to design an AES model in
SystemC using the AOP approach. For this purpose, the
cryptographic operations performed by the AES cryptosystem
were divided into several modules. Figure 2 presents a detailed
description of the proposed AES model. The diagram of the
AES SystemC model presents the different cryptographic
modules as well as their interconnections using AspectC++
which is an AOP language. The AES SystemC AOP model is
described in 7 modules:

• AES

• Key_generator

• Controller_Unit

• Input_Interface

• Output_Interface

• Fault_Detection_Scheme

• Database

Figure 3 presents the flowchart of the aspect used by the
AES cryptosystem. The aspect code is woven by the aspectC++
weaver into original code. The SystemC-AOP flow has four
main phases. The Aspect phase consists to create a new aspect
for each AES cryptosystem module using AspectC++. The
point-cutting phase consists to define the weaving location for
each module. The third phase is to insert all modules in the
pointcuts and then execute all functions:

• The Input_Interface module reorganizes the input flow
according to a standard format defined by the
communications protocol. It executes the
Input_Data_Buffer and Intput_Key_Buffer functions.

• The Controller_Unit module is a state controller that allows
the synchronization of all modules of AES cryptographic
model.

• The Database module stores all variables and constants
used in the encryption and decryption process. It processes
two functions: Variables and Constants.

• The AES module is the main module, it performs the
encryption and decryption processes via 7 operations:
SubBytes, ShiftRows, ShiftRows, AddRoundKey,
Inv_SubBytes, Inv_ShiftRows and Inv_MixColumns.

• The Fault Detection sSheme (FDS) module is developed to
protect the AES module against fault attacks. It executes
Fault_Detection and Fault_Analysis functions.

• The Output_Interface module reorganizes the encrypted
stream according to a standard format defined by the
communications protocol. It executes the
Output_Data_Buffer function.

In the fourth phase, after the weaving process, the resulting
source code can be compiled by SystemC and AspectC++
compilers and the resulted executable file is therefore
generated.

IV. FUNCTIONAL VERIFICATION ENVIRONMENT

In this section, the proposed functional verification
environment developed to validate the AES model is presented.
This environment is inspired by the transaction-based
verification environment in the SystemC. The AES model
verification environment includes a reference model that
presents a high level design description. This model is executed
in parallel with the proposed model in order to compare the
output results during the simulation. The reference model often
models the interaction between modules at the transactional
level rather than at the signal level. In this case, this module is
written in TLM. Figure 4 shows the proposed environment
architecture. As presented by Figure 4, the testbench SCV is a
module that randomly generates the encryption keys and
plaintext for the proposed and the reference models. The
transactor receives the stimuli from the testbench SCV and
applies them to the inputs of the proposed model. At the end of
each transaction, the outputs are compared and the results are
generated by a comparator module.

Engineering, Technology & Applied Science Research Vol. 11, No. 1, 2021, 6719-6723 6722

www.etasr.com Mestiri et al.: AES High-Level SystemC Modeling using Aspect Oriented Programming Approach

Fig. 4. Functional verification environment.

(1) + (2): The stimuli are generated randomly by the
testbench SCV towards the two cryptographic models:
proposed and reference models.

(3): The transactions are converted into signals by the
transactor module to be adapted to the inputs of the non-TLM
model (proposed model).

(4) + (5): Both models use the Database.

(6) + (8): The AES SystemC based AOP outputs and the
transactor outputs are the inputs of the comparator module.

(7): The TLM output of reference model

(8): The transactions converted into signals by the
transactor to be adapted to the outputs of the non-TLM model.

(9): The comparison report results are generated.

V. RESULTS AND DISCUSSION

This section is devoted to the evaluation of the proposed
SystemC-AOP model as well as to the analysis of the impact of
using SystemC and AspectC++ at the ESL level on the
cryptographic design. First, we will perform a series of
simulations to validate the proposed SystemC-AOP model.
This validation is performed using the functional verification
environment where the proposed model is compared with the
reference model. Secondly, we will analyze the impact of using
the AOP technique on the simulation time and on the size of
the executable file of cryptographic model. The modeling was
carried out with SystemC 2.3.2 language and AspectC++ 2.2,
and the validation of the AES SystemC AOP model was
carried out on a PC equipped with the Ubuntu 18.4 operating
system, an Intel Core I3-4010U 1.7GHz microprocessor, a
RAM of 6GB, and the gcc 7.2.0 compiler.

A. AES SystemC AOP Model Validation

A series of simulations will be performed in order to
validate the proposed SystemC-AOP model. The validation is
performed using the functional verification environment. The
keys and data randomly generated by the testbench module are
distributed to the reference AES model and the proposed AES
model through the transactor module. The two models are
simulated with the same simulation model and using the same
test conditions. The verification results show that the proposed

AES SystemC model works perfectly and it provides the same
results as the reference model. Figure 5 shows an extract of the
report simulation results.

Fig. 5. AES SystemC AOP: Report simulation results.

B. Impact of AOP on Simulation Time

To analyze the impact of AOP on simulation time, a series
of simulations were performed using the developed
environment. This process consists of measuring kernel time
(kTime) and user time (uTime) using two fault detection
schemes. Note that kTime and uTime depend on the number of
Join Points as well as the number of modules to be inserted via
the AOP technique. Table I shows the simulation results in
terms of kTime and uTime using two scenarios (SystemC and
SystemC_AOP). We can see that the margin of error of the
measurement tool (Linux commands) that was used is very low
and does not affect the accuracy of the simulation results.
These results show that the weaving of Key_generator,
Controller_unit, Database, Input_interface, Output_interface
and FDS modules into the SystemC model, using the AOP
technique, does not affect simulation times. Another very
important parameter for analyzing the impact of AOP is the
size of the resulting executable file. Table II presents the size of
the executable files generated by AspectC ++ and the SystemC
kernel for the two scenarios.

The simulation results show that even when the proposed
model is modeled using two languages (SystemC and AspectC
++) and that the weaving of all modules is carried out via the

Engineering, Technology & Applied Science Research Vol. 11, No. 1, 2021, 6719-6723 6723

www.etasr.com Mestiri et al.: AES High-Level SystemC Modeling using Aspect Oriented Programming Approach

AOP technique, the size of the executable files remains almost
unchanged. This shows that the AOP does not have a
significant impact on the size of the executable file.

TABLE I. SIMULATION TIME ANALYSIS WITH AND WITHOUT AOP

AES (SystemC AOP)
kTime (s) uTime (s)

SystemC SystemC_AOP SystemC SystemC_AOP

AES model

protected by FDS [1]
0.039 0.041 2.133 2.135

AES model

protected by FDS

[11]

0.036 0.037 2.065 2.070

AES model

protected by FDS

[12]

0.041 0.038 2.259 2.265

TABLE II. SIMULATION OF THE EXECUTABLE FILE WITH AND
WITHOUT AOP

AES (SystemC AOP) SystemC SystemC_AOP

AES model protected by FDS [1] 1.226Mo 1.219Mo
AES model protected by FDS [11] 1.305Mo 1.309Mo
AES model protected by FDS [12] 1.346Mo 1.350Mo

VI. CONCLUSION

In this paper a new AES SystemC model using the AOP
technique at the Electronic System Level was presented. A
functional verification environment was proposed to test the
functionality of the AES SystemC AOP model, the impact of
AOP on simulation time and on size of the executable files.
The simulation results show the efficiency of the proposed
AES model and the weaving of AES modules using the
AspectC++ does not have a significant impact on simulation
time and on the size of the executable file.

ACKNOWLEDGMENT

This publication was supported by the Deanship of
Scientific Research at Prince Sattam bin Abdulaziz University,
Alkharj, Saudi Arabia.

REFERENCES

[1] H. Mestiri, N. Benhadjyoussef, and M. Machhout, “Fault Attacks
Resistant AES Hardware Implementation,” in 2019 IEEE International
Conference on Design Test of Integrated Micro Nano-Systems (DTS),
Gammarth-Tunis, Tunisia, Apr. 2019, https://doi.org/10.1109/DTSS.
2019.8914979.

[2] J. Zhang, N. Wu, F. Zhou, F. Ge, and X. Zhang, “Securing the AES
Cryptographic Circuit Against Both Power and Fault Attacks,” Journal
of Electrical Engineering & Technology, vol. 14, no. 5, pp. 2171–2180,
Sep. 2019, https://doi.org/10.1007/s42835-019-00226-6.

[3] E. S. I. Harba, “Secure Data Encryption Through a Combination of AES,
RSA and HMAC,” Engineering, Technology & Applied Science

Research, vol. 7, no. 4, pp. 1781–1785, Aug. 2017, https://doi.org/
10.48084/etasr.1272.

[4] A. Alamer and B. Soh, “Design and Implementation of a Statistical
Testing Framework for a Lightweight Stream Cipher,” Engineering,
Technology & Applied Science Research, vol. 10, no. 1, pp. 5132–5141,
Feb. 2020, https://doi.org/10.48084/etasr.3250.

[5] B. Lin and F. Xie, “SCBench: A benchmark design suite for SystemC
verification and validation,” in 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), Jeju, South Korea, Jan. 2018, pp.
440–445, https://doi.org/10.1109/ASPDAC.2018.8297363.

[6] S. Aygün, L. Kouhalvandi, B. Örs, and E. O. Güneş, “Karatsuba Ofman
Multiplication implementation on SystemC for Diffie-Hellman Key

Exchange algorithm,” in 2017 IEEE 4th International Conference on
Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran,
Dec. 2017, pp. 0641–0645, https://doi.org/10.1109/KBEI.2017.8324878.

[7] U. T. Gabor, C. von Egidy, and O. Spinczyk, “Interface Injection with
AspectC++ in Embedded Systems,” in 2019 IEEE 19th International
Symposium on High Assurance Systems Engineering (HASE),
Hangzhou, China, Jan. 2019, pp. 131–138, https://doi.org/10.1109/
HASE.2019.00028.

[8] C. Borchert and O. Spinczyk, “Hardening an L4 Microkernel Against
Soft Errors by Aspect-Oriented Programming and Whole-Program
Analysis,” ACM SIGOPS Operating Systems Review, vol. 49, no. 2, pp.
37–43, Jan. 2016, https://doi.org/10.1145/2883591.2883600.

[9] N. Veeranna and B. C. Schafer, “S3CBench: Synthesizable Security
SystemC Benchmarks for High-Level Synthesis,” Journal of Hardware
and Systems Security, vol. 1, no. 2, pp. 103–113, Jun. 2017,
https://doi.org/10.1007/s41635-017-0014-1.

[10] J. Treus and P. Herber, “Early Analysis of Security Threats by Modeling
and Simulating Power Attacks in SystemC,” in 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), Antwerp,
Belgium, May 2020, pp. 1–5, https://doi.org/10.1109/VTC2020-
Spring48590.2020.9129426.

[11] M. Bedoui, H. Mestiri, B. Bouallegue, and M. Machhout, “A reliable
fault detection scheme for the AES hardware implementation,” in 2016
International Symposium on Signal, Image, Video and Communications

(ISIVC), Tunis, Tunisia, Nov. 2016, pp. 47–52, https://doi.org/10.1109/
ISIVC.2016.7893960.

[12] M. Bedoui, H. Mestiri, B. Bouallegue, M. Marzougui, M. Qayyum, and
M. Machhout, “An improved and efficient countermeasure against fault
attacks for AES,” in 2017 2nd International Conference on Anti-Cyber
Crimes (ICACC), Abha, Saudi Arabia, Mar. 2017, pp. 209–212,
https://doi.org/10.1109/Anti-Cybercrime.2017.7905292.

