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Abstract-The increasing complexity of the cryptographic 

modeling and security simulation of the Advanced Encryption 

Standard (AES) necessitate fast modeling and simulation security 
environment. The SystemC language is used in Electronic System 

Level (ESL) that allows cryptographic models to achieve high 

security and modeling simulation speed. Yet, the use of SystemC 

in the security simulation requires modifications of the original 

code which increases the modeling complexity. The Aspect-

Oriented Programming (AOP) can be used in the cryptographic 

modeling and security simulations without any code modification. 
In this paper, a new AES SystemC model using the AOP 

technique is presented. A functional verification environment is 

proposed to test the functionality of the AES SystemC AOP 

model, the impact of AOP on simulation time, and the size of the 

executable files. The design of the AES model is developed with 

the weaving of all modules by AspectC++ which is an AOP 

language. The Simulation results show the efficiency of the 
proposed AES model and the uses of the AOP technique do not 

have a significant impact on simulation time or on the size of the 
executable file. 

Keywords-security; cryptographic; AES; SystemC; AOP; high-

level 

I. INTRODUCTION  

Cryptographic systems are implemented in embedded 
systems to protect secret information. Those systems store the 
encryption key in conjunction with the cryptographic algorithm 
execution [1-3]. The modeling complexity of cryptographic 
systems is increasing more than the verification capability and 

the design of the developers [4]. SystemC is used for the 
modeling and verification of complex systems. It has been 
considered as a suitable language for developing cryptographic 
models. Yet, its uses need to modify the original SystemC code 
in order to weave any cryptographic modules [5, 6]. To avoid 
modifying the cryptographic algorithms code under test, a new 
technique is used: Aspect Oriented Programming (AOP). It 
consists of weaving a module into the original code without 
any modification [7, 8]. Until now, a few cryptographic models 
and verification security environments using SystemC and 
AOP have been presented. In [9], the authors presented a 
security SystemC benchmark for high-level synthesis. They 
developed a security benchmark suite in a behavioral language 
supported by all major HLS vendors with different types of 
trojan hardware which produce different effects. A security 
threat analysis using SystemC to simulate the power attacks is 
presented in [10]. The authors developed a new approach to 
simulate power attacks in early stages. The authors also 
developed a power consumption graphical interface to analyze 
the security of the elliptic curve cryptography and RSA 
encryption against simple power attacks and differential power 
attacks respectively. The authors in [7] proposed a new fault 
injection system based on aspect-oriented programming 
(AspectC++). This system allows an automated injection of 
errors without modifying the original code. The authors 
showed that their system provides automatisms to generate the 
test environment of embedded systems. 
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In this paper, we present a new AES SystemC model using 
the AOP technique. We summarize our contributions as: 

• AspectC++ has been used as an AOP technique to avoid 
modifying the cryptographic algorithm code. 

• A new cryptographic AES SystemC model using the AOP 
technique is proposed.  

• A functional verification environment is proposed to test 
the functionality of the AES SystemC AOP model.  

• The proposed AES SystemC-AOP model has been 
simulated in order to estimate the impact of AOP on 
simulation time and on the size of the executable files. 
Through the simulations, it was shown that the efficiency of 
the proposed AES model and the uses of AOP technique do 
not have a significant impact on simulation time and on the 
size of the executable file. 

II. ASPECT ORIENTED PROGRAMMING 

AOP is a programming technique based on the principle of 
the separation of concerns [7, 8]. In the AOP, an application is 
made up of classes and aspects. The transversal code linked to 
non-functional concerns is put into modules in the form of 
aspects. The aspects will then be weaved into the functional 
code in order to generate a complete application. Aspects are 
used to implement technical functionalities that are found to be 
dispersed in the code of an application. An aspect consists of 
two parts: Pointcut and advice code. 

• Pointcut allows defining the place where the code of the 
transverse functionality of the associated aspect will be 
applied. This is defined by one or more Join Points. Each 
Join Point represents a point in which the code of a 
transverse functionality will be inserted. There are two 
types of Join Points: call and execute. 

• An advice code is a part of the code that will be inserted in 
the places defined by the Join Points. It denotes the way in 
which cross functionality will be weaving. 

An aspect can include several advice codes at the same time 
where each advice is associated with a cut. There are three 
types of advice codes: 

• before: the code will be executed before the cut. 

• after: the code will be executed after the cut. 

• around: part of the code will be executed before the cut and 
another will be executed after. 

To weave a new feature like an aspect into the code of an 
application, junction points must be defined in the primary 
code to indicate where the aspect should act. Figure 1 shows 
how the aspect code of the new functionality is weaving into 
the application code. The AOP technique is widely used in the 
field of testing embedded programs written in C ++ and Java. 
In our work, in order to avoid the modifications of the source 
code when inserting the codes relating to the AES model and 
the analysis of the cryptographic system, the use of the AOP 
technique to design a new AES model is proposed. Since the 
AOP technique allows the separation of transversal concerns, 
we can obtain a new distribution of the cryptographic model. 
This distribution consists of class and aspects which present the 
codes relating to the modules to be inserted. 

 

 
Fig. 1.  Weaving aspect code into source code. 

 
Fig. 2.  Diagram of the AES SystemC AOP design. 
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Fig. 3.  Flowchart of the AES cryptosystem aspect. 

III. SYSTEMC AES MODELING 

The goal of this section is to design an AES model in 
SystemC using the AOP approach. For this purpose, the 
cryptographic operations performed by the AES cryptosystem 
were divided into several modules. Figure 2 presents a detailed 
description of the proposed AES model. The diagram of the 
AES SystemC model presents the different cryptographic 
modules as well as their interconnections using AspectC++ 
which is an AOP language. The AES SystemC AOP model is 
described in 7 modules: 

• AES  

• Key_generator 

• Controller_Unit 

• Input_Interface 

• Output_Interface 

• Fault_Detection_Scheme 

• Database 

Figure 3 presents the flowchart of the aspect used by the 
AES cryptosystem. The aspect code is woven by the aspectC++ 
weaver into original code. The SystemC-AOP flow has four 
main phases. The Aspect phase consists to create a new aspect 
for each AES cryptosystem module using AspectC++. The 
point-cutting phase consists to define the weaving location for 
each module. The third phase is to insert all modules in the 
pointcuts and then execute all functions:  

• The Input_Interface module reorganizes the input flow 
according to a standard format defined by the 
communications protocol. It executes the 
Input_Data_Buffer and Intput_Key_Buffer functions. 

• The Controller_Unit module is a state controller that allows 
the synchronization of all modules of AES cryptographic 
model. 

• The Database module stores all variables and constants 
used in the encryption and decryption process. It processes 
two functions: Variables and Constants. 

• The AES module is the main module, it performs the 
encryption and decryption processes via 7 operations: 
SubBytes, ShiftRows, ShiftRows, AddRoundKey, 
Inv_SubBytes, Inv_ShiftRows and Inv_MixColumns. 

• The Fault Detection sSheme (FDS) module is developed to 
protect the AES module against fault attacks. It executes 
Fault_Detection and Fault_Analysis functions. 

• The Output_Interface module reorganizes the encrypted 
stream according to a standard format defined by the 
communications protocol. It executes the 
Output_Data_Buffer function. 

In the fourth phase, after the weaving process, the resulting 
source code can be compiled by SystemC and AspectC++ 
compilers and the resulted executable file is therefore 
generated. 

IV. FUNCTIONAL VERIFICATION ENVIRONMENT 

In this section, the proposed functional verification 
environment developed to validate the AES model is presented. 
This environment is inspired by the transaction-based 
verification environment in the SystemC. The AES model 
verification environment includes a reference model that 
presents a high level design description. This model is executed 
in parallel with the proposed model in order to compare the 
output results during the simulation. The reference model often 
models the interaction between modules at the transactional 
level rather than at the signal level. In this case, this module is 
written in TLM. Figure 4 shows the proposed environment 
architecture. As presented by Figure 4, the testbench SCV is a 
module that randomly generates the encryption keys and 
plaintext for the proposed and the reference models. The 
transactor receives the stimuli from the testbench SCV and 
applies them to the inputs of the proposed model. At the end of 
each transaction, the outputs are compared and the results are 
generated by a comparator module. 
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Fig. 4.  Functional verification environment. 

(1) + (2): The stimuli are generated randomly by the 
testbench SCV towards the two cryptographic models: 
proposed and reference models. 

(3): The transactions are converted into signals by the 
transactor module to be adapted to the inputs of the non-TLM 
model (proposed model). 

(4) + (5): Both models use the Database. 

(6) + (8): The AES SystemC based AOP outputs and the 
transactor outputs are the inputs of the comparator module. 

(7): The TLM output of reference model 

(8): The transactions converted into signals by the 
transactor to be adapted to the outputs of the non-TLM model. 

(9): The comparison report results are generated. 

V. RESULTS AND DISCUSSION  

This section is devoted to the evaluation of the proposed 
SystemC-AOP model as well as to the analysis of the impact of 
using SystemC and AspectC++ at the ESL level on the 
cryptographic design. First, we will perform a series of 
simulations to validate the proposed SystemC-AOP model. 
This validation is performed using the functional verification 
environment where the proposed model is compared with the 
reference model. Secondly, we will analyze the impact of using 
the AOP technique on the simulation time and on the size of 
the executable file of cryptographic model. The modeling was 
carried out with SystemC 2.3.2 language and AspectC++ 2.2, 
and the validation of the AES SystemC AOP model was 
carried out on a PC equipped with the Ubuntu 18.4 operating 
system, an Intel Core I3-4010U 1.7GHz microprocessor, a 
RAM of 6GB, and the gcc 7.2.0 compiler. 

A. AES SystemC AOP Model Validation 

A series of simulations will be performed in order to 
validate the proposed SystemC-AOP model. The validation is 
performed using the functional verification environment. The 
keys and data randomly generated by the testbench module are 
distributed to the reference AES model and the proposed AES 
model through the transactor module. The two models are 
simulated with the same simulation model and using the same 
test conditions. The verification results show that the proposed 

AES SystemC model works perfectly and it provides the same 
results as the reference model. Figure 5 shows an extract of the 
report simulation results. 

 

 
Fig. 5.  AES SystemC AOP: Report simulation results. 

B. Impact of AOP on Simulation Time 

To analyze the impact of AOP on simulation time, a series 
of simulations were performed using the developed 
environment. This process consists of measuring kernel time 
(kTime) and user time (uTime) using two fault detection 
schemes. Note that kTime and uTime depend on the number of 
Join Points as well as the number of modules to be inserted via 
the AOP technique. Table I shows the simulation results in 
terms of kTime and uTime using two scenarios (SystemC and 
SystemC_AOP). We can see that the margin of error of the 
measurement tool (Linux commands) that was used is very low 
and does not affect the accuracy of the simulation results. 
These results show that the weaving of Key_generator, 
Controller_unit, Database, Input_interface, Output_interface 
and FDS modules into the SystemC model, using the AOP 
technique, does not affect simulation times. Another very 
important parameter for analyzing the impact of AOP is the 
size of the resulting executable file. Table II presents the size of 
the executable files generated by AspectC ++ and the SystemC 
kernel for the two scenarios. 

The simulation results show that even when the proposed 
model is modeled using two languages (SystemC and AspectC 
++) and that the weaving of all modules is carried out via the 
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AOP technique, the size of the executable files remains almost 
unchanged. This shows that the AOP does not have a 
significant impact on the size of the executable file. 

TABLE I. SIMULATION TIME ANALYSIS WITH AND WITHOUT AOP 

AES (SystemC AOP) 
kTime (s) uTime (s) 

SystemC SystemC_AOP SystemC SystemC_AOP 

AES model 

protected by FDS [1] 
0.039 0.041 2.133 2.135 

AES model 

protected by FDS 

[11] 

0.036 0.037 2.065 2.070 

AES model 

protected by FDS 

[12] 

0.041 0.038 2.259 2.265 

TABLE II. SIMULATION OF THE EXECUTABLE FILE WITH AND 
WITHOUT AOP 

AES (SystemC AOP) SystemC SystemC_AOP 

AES model protected by FDS [1] 1.226Mo 1.219Mo 
AES model protected by FDS [11] 1.305Mo 1.309Mo 
AES model protected by FDS [12] 1.346Mo 1.350Mo 

 

VI. CONCLUSION 

In this paper a new AES SystemC model using the AOP 
technique at the Electronic System Level was presented. A 
functional verification environment was proposed to test the 
functionality of the AES SystemC AOP model, the impact of 
AOP on simulation time and on size of the executable files. 
The simulation results show the efficiency of the proposed 
AES model and the weaving of AES modules using the 
AspectC++ does not have a significant impact on simulation 
time and on the size of the executable file. 
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