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Abstract-Factor Analysis (FA) is the study of variance within a 

group. Within-Subject Variance (WSV) is affected by multiple 

features in a study context such as the Experimental Design (ED) 

or the Sampling Design (SD). The aim of this study is to provide 

an empirical evaluation of the influence of different aspects of ED 
and SD on WSV in the context of FA in terms of model precision. 

The study results showed that the precisions of the overall model 

fit indices TLI and CFI, as functions of VTF, STV, h2, and their 

interaction, varied, as did the precisions of the overall model fit 

indices GFI, AGFI, and RMSEA as functions of VTF, STV, and 

their interactions. Overall, when the VTF is 4:1 or 7:1, the 

required STV is 16:1 or above 32:1 or above to show precision in 
factor solution. 

Keywords-model-precision; factor-analysis; model-fit; model-
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I. INTRODUCTION  

Factor Analysis (FA) is a useful and flexible analytic family 
of methods that plays a critically important role in many 
empirical applications. FA is the study of variance within a 
group, as opposed to statistical analysis, which focuses on 
partitioning variance among groups [1]. FA is extensively 
applied in education and behavioral science research. A recent 
two-year analysis (from 2003 to 2005) of the use of FA 
methods as indexed by the PsycINFO database revealed that 
more than 1,700 studies used some form of FA [2]. However, 
FA is a generic term for a family of statistical techniques, 
including Exploratory FA (EFA) and Confirmatory FA (CFA). 
The fundamental purpose of EFA is to identify unknown latent 
constructs in a relatively large set of measured indicator 
variables that can summarize (or reproduce) the observed 
covariance or correlation pattern among a set of indicator 
variables. EFA is often used when the researcher may not have 
specific expectations of the number of constructs or factors 
underlying the dimensional structure of the observed 
correlational pattern, or even in cases when the researcher has 
emergent ideas about the underlying dimensional structure of 
the observed correlational pattern among a larger set of 
indicator variables [1-3]. When conducting an EFA study or 
analysis, the researcher faces a multitude of methodological 
and technical decisions. For example, there are two different 

EFA statistical models to choose from: (a) the full component 
model, or (b) the common factor model [4-6]. The implications 
of choosing either one need to be well understood. CFA is a 
form of factor analysis that tests hypotheses regarding how 
well the measured indicator variables represent the number of 
constructs [7, 8]. CFA is a confirmatory method that can be 
used to examine, evaluate, and/or test the number of 
hypothesized factors underlying the variance/covariance in a 
set of measured indicator variables. CFA allows testing 
hypothetical and plausible alternative latent variable structures 
for the observed indicator variance/covariance [9, 10]. More 
recently, CFA has also been used in exploratory analysis too. 
Both EFA and CFA attempt to understand the variance of the 
observed indicator variables through studying the Within-
Subject Variance (WSV). It is well understood that WSV is 
affected by many features of the study conduct, such as the 
study Experimental Design (ED) and the Sampling Design 
(SD). Thus, anything that influences or changes variance may 
affect the conclusions related to FA. Previous studies have 
isolated one or two elements within ED and SD [8, 11, 12]. 
However, to the best of our knowledge, no study provided a 
comprehensive examination of multiple WSV factors, yet this 
is precisely what a researcher must do when planning a WSV 
study. 

To understand the impact of ED and SD or other influences 
on WSV, a systematic structure for evaluating WSV changes is 
necessary. One possibility to evaluate WSV systematically is to 
use Factorial Invariance (FIV) [13-17]. The FIV methods offer 
a structure that allows disentangling measurement elements 
from structural elements in the factor model. Via FIV and the 
evaluation of data-model fit, the impact of ED and SD on WSV 
can be compared among groups by examination of model 
precision [1, 12, 13, 18, 19]. Previous researches investigated 
the precision of factor solutions by the examination of chi-
square value (χ�) and Overall Model Fit (OMF) indices such as 
Goodness-of-Fit Index (GFI), Adjusted GFI (AGFI), Tucker-
Lewis Index (TLI), Comparative Fit Index (CFI), and Root 
Mean Square Error of Approximation (RMSEA) [3, 9, 20-22]. 
The overall model fit indices examine the global measures of 
data-model fit. 
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There are three key features of design that are of paramount 
importance and generally overshadow all the technical 
decisions a researcher faces. These three features are: (a) the 
selection and the number of indicator variables, (b) the nature 
and size of the sample, and (c) the communality magnitude. 
Understanding the impact of Variable-To-Factor (VTF) ratio, 
sample size or Subject-To-Variable (STV) ratio, and 
communalities (h

2
) magnitude in FA analysis is relevant 

because these features affect the model precision and 
operationalized (measured) latent variable (factor) variance, 
which determines the model invariance of FA findings. The 
benefit of FA is based on its ability to produce well-built, 
reliable, and understandable estimates of factor loadings [23]. 
Therefore, understanding how VTF, STV, and h

2
 interact in FA 

and how they possibly influence or change the model precision 
and operationalized (measured) latent variable (factor) variance 
is the basic problem investigated in this study.  

The model precision in this research is operationalized 
along psychometric and not statistical lines. Statistically, 
precision is inversely related to the standard error of the 
sampling distribution and related to the minimizing of the 
standard error of a statistic. Psychometrically, precision can 
mean this, but additionally, in a reliability context, it can also 
refer to the accuracy of the estimator to be near (or the same) as 
the theoretical latent variable (e.g. the true score) [9, 13]. Thus, 
as the standard error of measurement decreases the 
precision/accuracy of the observed scores converges to the true 
score. However, no comprehensive study has been found in the 
existing literature to have systematically examined the 
incremental or combined impacts of two features of ED and SD 
and the optimum way to estimate the model. Therefore, 
evaluating the impact of ED and SD effects on WSV in FA 
findings is the basis of the proposed Monte Carlo simulation 
study [24, 25]. 

II. ED: VARIABLE-TO-FACTOR RATIO 

Previous research indicates that CFA yields more precise 
results when each common factor is represented by multiple 
indicator variables in the analysis [5, 21, 26]. While this 
concern is related to model identification [1, 14, 18, 27, 28], 
this is not the focus given here. Specifically, given an identified 
model, the way the sample and number of indicator variables 
inform the understanding of the latent factor is an important 
question which has not received great attention in the CFA 
literature [2, 12, 17, 28-30]. Authors in [18] concluded that the 
VTF ratio was important for factor stability with more indicator 
variables per factor yielding more stable result. However, the 
researchers who investigated VTF ratio have not reached a 
mutual decision on an optimal VTF. Authors in [18, 31] 
concluded that a VTF of 3:1 is sufficient for factorial precision, 
whereas authors in [11] found that 24.6% of the studies 
published in Journal of Personality and Social Psychology 
(JPSP) and 34.4% of the studies published in Journal of 
Applied Psychology (JAP) have VTF ratio of 4:1 or less. 
However, other researchers who have investigated the effects 
of indicator variable sampling did not attempt to systematically 
manipulate conditions that could potentially affect the pattern 
stability of CFA findings. The issue of variable sampling has 
been used extensively in conceptual development, but the 

existing literature has received almost no empirical evaluation 
that generally has sampled indicator variables at random from 
the universe of variables. The assumption of random sampling 
is useful to minimize sampling issues and for developing 
generalizability rather than a prescription for applied research 
procedures. 

III. UNDERLYING FACTOR STRUCTURE 

One of the broad domains in social science is the Big Five 
Personality Traits, which is used to describe human personality 
and includes extraversion, agreeableness, openness, 
conscientiousness, and neuroticism. Most commonly used in 
academic psychology, this model incorporates five different 
factors into a conceptual model for describing personality traits 
[3, 8, 32]. It has been selected as the structural model for this 
study because of its wide use in social sciences. The model 
structure of the Big Five Personality Traits theory has received 
favorable attention from researchers in the psychological 
discipline. The author in [3] concluded that the measurement 
structure of the Big Five Personality Traits is an orthogonal 
solution and the variation on each one of the Big Five 
Personality Trait dimensions is commonly proposed to be 
independent of variation on each of the others. 

IV. SD: SUBJECT-TO-VARIABLE RATIO 

Authors in [4, 12, 13, 15, 18-19, 22, 26, 33-36] found a 
mixed range in FA sample sizes described by either the 
absolute size of the sample or the STV ratio. Authors in [37] 
reviewed 60 studies utilizing FA and found the average 
minimum sample size was 42, and the minimum STV ratio was 
3.25:1, with most of the studies using a STV ratio less than 5:1. 
Similarly, authors in [11] reviewed FA studies published in 
JPSP and JAP (from 1991 to 1995) and found that 18.9% of the 
published articles utilizing FA in JPSP and 13.8% in JAP had 
an average minimum sample size of 100 or less. Authors in [2] 
examined publications utilizing FA from the PsychINFO 
database between 2003 and 2005. They found that 15.4% of the 
studies reported STV from 10 to 20:1 and only 3% of the 
studies used a STV of 20-100:1. High absolute sample size or 
STV ratio is important to predict precise outcomes, increase the 
generalizability of the findings, and maximize the accuracy of 
population estimates [2, 4, 7, 22, 29]. There are many common 
practice rules of sample size in the literature, most of them not 
empirically based [18]. Moreover, a limited number of studies 
have empirically investigated the effect of STV on model 
precision [38]. Selecting the adequate sample size is an 
important decision in study design. The researcher must 
determine how large the sample should be and what is the most 
appropriate sampling frame. There are tremendous guidelines 
for estimating an adequate sample size for FA [2, 4, 11, 35, 
39]. 

V. SD: COMMUNALITIES (ℎ�) MAGNITUDE 

The communality of a variable can be interpreted as the 
proportion of variation estimated by the common factors. 
Communalities range from 0 to 1, where 0 means that the 
factors do not explain any of the variances and 1 means that all 
the variances are explained by the factors. A large value of 
communality suggests a strong effect by an underlying 
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construct [7, 20, 40]. Communality is the sum of the squared 
factor loadings for observed variables variances accounted for 
by all the factors [17, 19]. Communality measures the 
percentage of variance in the observed variables explained by 
all the factors. The larger the communality for each variable, 
the more successful the factor analysis solution is, and the 
smaller the communality, the more questionable the solution [4, 
31, 39, 41]. Communality ranges between 0 and 1. If the 
communality exceeds 1.0, there is something wrong with the 
data, which may reflect model specification or SD problems. 
Low values of communalities across the set of observed 
variables indicate the variables are marginally related to each 
other and the factors provide little explanation of the variance 
in the observed variables [2, 20, 26, 39]. 

VI. METHODS 

The current study was designed to investigate the empirical 
evaluation of the influence of different aspects of ED and SD 
on WSV in terms of model precision and operationalized 
(measured) latent variable (factor) variance relative to a known 
factor structure via Monte Carlo simulations. The study 
manipulated: (a) the VTF ratio (4:1, 7:1, and 10:1) randomly 
sampled from a population of 100 indicator variables, (b) the 
STV ratio from 2:1 to 32:1 in multiples of 2 (2:1, 4:1, 8:1, 16:1, 
and 32:1), and (c) the communality magnitude (high, moderate, 
low, and mixed). These factors were varied in a known factor 
structure with: (a) continuous variables (measurement scale), 
(b) normal distribution, (c) 5-factor solutions (common factor), 
and (d) orthogonal solution (factor structure). The precision of 
factor solution was evaluated by the examination of CFA for an 
orthogonal 5-factor (common factor) model. Chi-squared value 
and overall model fit indices criteria were used to evaluate the 
models for all conditions. Chi-squared value and four model fit 
indices were treated as Dependent Variables (DVs) in three-
way Analysis of Variance (ANOVA) using the level of h

2
, VTF 

ratio, and STV ratio as independent variables. Figure 1 
illustrates the study design.  

 

 
Fig. 1.  Design of interaction conditions. 

VII. RESULTS 

The Monte Carlo simulation populated 60 three-way cells 
between subjects’ factorial design matrix: h

2
 (high, moderate, 

low, and mixed) by VTF ratio (4:1, 7:1, and 10:1) and STV 
ratio (2:1, 4:1, 8:1, 16:1, and 32) with 1000 replicate samples 
(see Figure 1). Chi-squared values and overall model fit indices 

(GFI, RMSEA, TLI, and CFI) were treated as DVs in parallel 
three-way ANOVA. To control for multiplicity among DVs a 
type I error rate was adjusted by a Bonferroni correlation: 
0.05/7=0.007. 

A. Chi-squared Test (��) 

The descriptive statistics for the chi-squared values among 

all design cells are presented in Table I. 

TABLE I.  DESCRIPTIVE STATISTICS FOR �� AVERAGED OVER 1000 
REPLICATIONS 

VTF STV 

h
2
 

High Moderate Low Mixed 

M 

SD 

4:1 

2:1 
220.0 

23.8 

219.86 

24.60 

219.37 

23.41 

220.42 

23.53 

4:1 
190.8 

20.9 

190.00 

20.53 

189.98 

20.92 

189.54 

20.48 

8:1 
179.3 

19.2 

179.20 

19.64 

180.09 

19.59 

178.70 

19.13 

16:1 
174.2 

19.2 

174.41 

18.70 

174.69 

19.18 

174.07 

18.33 

32:1 
171.7 

18.6 

171.53 

19.68 

172.81 

18.08 

171.63 

17.72 

7:1 

2:1 
709.5 

43.6 

709.71 

42.05 

705.16 

43.12 

709.22 

42.58 

4:1 
620.0 

38.2 

621.19 

36.03 

618.77 

37.49 

622.59 

37.60 

8:1 
588.4 

34.5 

589.28 

36.56 

587.06 

34.58 

589.76 

36.09 

16:1 
573.3 

34.5 

574.42 

34.97 

573.77 

34.94 

574.10 

34.05 

32:1 
566.2 

33.9 

566.33 

33.26 

568.73 

33.68 

568.56 

33.57 

10:1 

2:1 
1471.88 

61.4 

1469.46 

59.60 

1473.04 

60.34 

1472.52 

60.92 

4:1 
1298.02 

55.8 

1297.31 

52.89 

1296.04 

53.45 

1296.67 

52.45 

8:1 
1231.67 

49.5 

1230.17 

49.97 

1228.86 

51.12 

1228.82 

50.92 

16:1 
1203.03 

48.4 

1203.64 

50.24 

1201.30 

50.37 

1201.90 

48.66 

32:1 
1186.37 

47.6 

1187.40 

49.00 

1188.81 

50.89 

1187.65 

49.20 

 

The overall ANOVA findings for the ��  revealed the 
statistically significant model, F(59,59940)=137546, p<0.0001. 
As can be seen in Table II, there were statistically significant 
results for the main effects of VTF and STV, and a statistically 
significant interaction between VTF*STV. Surprisingly, no 
statistically significant main effect or interaction involving 
communality was found. 

TABLE II.  THREE-WAY ANOVA FOR �� BY CONDITIONS 

Conditions df F p-value 

h2 3 0.49 0.6876 

VTF 2 3967031 <0.0001 

h
2
*VTF 6 1.39 0.2143 

STV 4 32825.9 <0.0001 

h
2
*STV 12 0.94 0.5024 

VTF*STV 8 6224.92 <0.0001 

h2*VTF*STV 24 0.70 0.8589 

h
2
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Post hoc analysis of the VTF*STV interaction focused on 
splitting out the levels of STV and examined five one-way 
ANOVAs for the levels of VTF. Visual examination of the 
mean ��  values suggests a small, but significant decrease in 
mean �� values as STV increases among all levels of VTF that 
decreased in magnitude as VTF increased (see Figure 2). Table 
III presents the simple ANOVA effect on VTF for each STV 
level. Pairwise comparisons among the levels of VTF at each 
level of STV, e.g. VTF 4:1 vs. 7:1 @ STV=2:1, were 
statistically significant with all p-values <0.0001, and the 
directional pattern in means confirmed the decreasing trends 
seen in Figure 2. 

 

 
Fig. 2.  �� mean values of interaction between STV and VTF ratios. 

TABLE III.  ONE-WAY ANOVA SIMPLE EFFECT OF STV BY LEVELS OF 

VTF 

STV df SS MS F p-value 

2:1 2 3184 1592 104503 <0.0001 

4:1 2 2490 1245 817419 <0.0001 

8:1 2 2243 1121 736161 <0.0001 

16:1 2 2149 1074 705261 <0.0001 

32:1 2 2096 1048 688051 <0.0001 

 

B. Goodness-of-Fit Index  

The averaged GFI statistics over 1000 replications for the 
60 cells in the three-way design are presented in Table IV. The 
standard threshold of acceptable fit percentage is 0.90. 

The overall ANOVA findings for GFI revealed an overall 
statistically significant model, F(59,59940)=138368, p<0.0001. 
As can be seen in Table V, there were statistically significant 
main effects of VTF and STV, and a statistically significant 
interaction between VTF*STV. Once again, the communality 
factor was not significant.  

Post hoc analysis of VTF*STV interaction focused on 
splitting out the levels of STV and examined five one-way 
ANOVAs for the levels of VTF. Visual examination of the 
mean GFI values suggests a significant increase in mean GFI 
values as STV increases mixed with decreasing mean GFI as 
VTF ratios increased (see Figure 3). 

TABLE IV.  DESCRIPTIVE STATISTICS FOR GIF AVERAGED OVER 1000 

REPLICATIONS 

VTF STV 

h
2
 

High Moderate Low Mixed 

M 

P 

4:1 

2:1 
0.69 

0.00 

0.69 

0.00 

0.69 

0.00 

0.69 

0.00 

4:1 
10.82 

0.00 

0.82 

0.00 

0.82 

0.00 

0.82 

0.00 

8:1 
0.90 

65.60 

0.90 

65.70 

0.90 

61.60 

0.90 

68.00 

16:1 
0.94 

100.00 

0.94 

100.00 

0.94 

100.00 

0.94 

100.00 

32:1 
0.97 

100.00 

0.97 

100.00 

0.97 

100.00 

0.97 

100.00 

7:1 

2:1 
0.68 

0.00 

0.68 

0.00 

0.68 

0.00 

0.68 

0.00 

4:1 
0.81 

0.00 

0.81 

0.00 

0.81 

0.00 

0.81 

0.00 

8:1 
0.90 

28.80 

0. 90 

30.90 

0. 90 

31.70 

0.90 

28.60 

16:1 
0.94 

100.00 

0.94 

100.00 

0.94 

100.00 

0.94 

100.00 

32:1 
0.97 

100.00 

0.97 

100.00 

0.97 

100.00 

0.97 

100.00 

10:1 

2:1 
0.67 

0.00 

0.67 

0.00 

0.67 

0.00 

0.67 

0.00 

4:1 
0.80 
0.00 

0.80 
0.00 

0.80 
0.00 

0.80 
0.00 

8:1 
0.90 

7.60 

0. 90 

7.80 

0. 90 

9.10 

0.90 

8.80 

16:1 
0.94 

100.00 

0.94 

100.00 

0.94 

100.00 

0.94 

100.00 

32:1 
0.97 

100.00 

0.97 

100.00 

0.97 

100.00 

0.97 

100.00 

TABLE V.  THREE-WAY ANOVA FOR GFI BY CONDITIONS 

Conditions df F p-value 

h
2
 3 1.27 0.2820 

VTF 2 6671.43 <0.0001 

h
2
*VTF 6 1.52 0.1683 

STV 4 2036352 <0.0001 

h
2
* STV 12 1.41 0.1534 

VTF *STV 8 610.99 <0.0001 

h
2
* VTF *STV 24 0.85 0.6733 

 

 
Fig. 3.  Goodness-of-fit index of interaction between STV and VTF ratios. 

Table VI presents the simple ANOVA effect on the VTF 
for each STV level. Pairwise comparisons among the levels of 
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VTF at each level of STV, e.g. VTF 4:1 vs. 7:1 @ STV=2:1, 
were statistically significant with all p-values <0.0001, and the 
directional pattern in means confirmed the patterns seen in 
Figure 3. 

TABLE VI.  ONE-WAY ANOVA SIMPLE EFFECT OF STV BY LEVELS OF 

VTF 

STV df SS MS F  p-value 

2:1 2 0.7851 0.3925 4941.23 <0.0001 

4:1 2 0.4301 0.2150 2707.26 <0.0001 

8:1 2 0.1641 0.0820 1032.93 <0.0001 

16:1 2 0.0537 0.0268 338.14 <0.0001 

32:1 2 0.0152 0.0076 95.83 <0.0001 

 

C. Root Mean Square Error of Approximation  

RMSEA statistics were averaged over 1000 replications for 
the 60 cells in the three-way design and are presented in Table 
VII. The standard threshold of acceptable fit is 0.05. The 
overall ANOVA findings for RMSEA revealed an overall 
statistically significant model, F(59,59940)=4901.85, 
p<0.0001. As can be seen in Table VIII, there were statistically 
significant main effects VTF and STV, and a statistically 
significant interaction between VTF*STV. Once again, the 
communality factor was not significant. 

TABLE VII.  DESCRIPTIVE STATISTICS FOR RMSEA AVERAGED OVER 

1000 REPLICATIONS 

VTF STV 

h
2
 

High Moderate Low Mixed 

M 

P 

4:1 

2:1 
0.08 

7.50 

0.08 

8.80 

0.08 

7.10 

0.08 

6.70 

4:1 
0.03 

73.80 

0.03 

75.50 

0.03 

75.70 

0.03 

76.00 

8:1 
0.01 

99.90 

0.01 

99.70 

0.01 

99.60 

0.01 

99.90 

16:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

32:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

7:1 

2:1 
0.06 

11.50 

0.06 

8.80 

0.06 

13.20 

0.06 

10.60 

4:1 
0.02 

100.00 

0.02 

100.00 

0.02 

100.00 

0.02 

100.00 

8:1 
0.01 

100.00 

0.01 

100.00 

0.01 

100.00 

0.01 

100.00 

16:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

32:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

10:1 

2:1 
0.05 

47.20 

0.05 

45.20 

0.05 

47.20 

0.05 

46.70 

4:1 
0.02 

100.00 

0.02 

100.00 

0.02 

100.00 

0.02 

100.00 

8:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

16:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

32:1 
0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

0.00 

100.00 

 
Post hoc analysis of VTF*STV interaction focused on 

splitting out the levels of STV and examined five one-way 

ANOVAs for the levels of VTF. The visual examination of the 
mean RMSEA values suggests a significant decrease in mean 
RMSEA values as STV increases and an increasing mean 
RMSEA as VTF ratios decreased (see Figure 4). 

TABLE VIII.  THREE-WAY ANOVA FOR RMSEA BY CONDITIONS 

Conditions  df F  p-value 

h2 3 0.41 0.7467 

VTF 2 6698.38 <0.0001 

h2*VTF 6 1.45 0.1919 

STV 4 66127.9 <0.0001 

h2* STV 12 0.75 0.7077 

VTF *STV 8 1408.03 <0.0001 

h
2
* VTF *STV 24 0.72 0.8337 

 

 
Fig. 4.  RMSEA of interaction between STV and VTF ratios. 

Table IX presents the simple ANOVA effect on the VTF 
for each STV level. Pairwise comparisons among the levels of 
VTF at each level of STV, e.g. VTF 4:1 vs. 7:1 @ STV=2:1, 
were statistically significant with all p-values <0.0001, and the 
directional pattern in means confirmed the patterns seen in 
Figure 4. 

TABLE IX.  ONE-WAY ANOVA SIMPLE RFFECT OF STV BY LEVELS OF 

VTF 

STV df SS MS F p-value 

2:1 2 2.3236 1.1618 10188.3 <0.0001 

4:1 2 0.3222 0.1611 1413.01 <0.0001 

8:1 2 0.1021 0.0510 447.68 <0.0001 

16:1 2 0.0436 0.0218 191.23 <0.0001 

32:1 2 0.0206 0.0103 90.34 <0.0001 

 

D. Non-Normed-Fit Index  

Non-normed-fit index (or Tucker-Lewis Index-TLI) 
statistics were averaged over 1000 replications for the 60 cells 
in the three-way design and are presented in Table X. 
Additionally, the percentage of TLI statistics meeting the 
standard threshold of acceptable fit, e.g. 0.96, was tabulated. 

The overall ANOVA findings for TLI revealed an overall 
statistically significant model, F(59,59940)=4556.25, 
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p<0.0001. As can be seen in Table XI, there were statistically 
significant main effects and interactions, including a 
statistically significant triple interaction between 
h
2
*VTF*STV. The visual examination of the mean TLI values 

reveals a differential increase in mean TLI within levels of 
STV as a function of h2 magnitude. In the h2=high condition, 
the mean TLI values show minimal gains even between 2:1 and 
4:1 STV levels. Within the mixed and moderate h

2
 conditions, 

the mean TLI values show asymptotic gains after STV>4:1. 
However, in the low h2 condition, the mean TLI values were 
markedly lower in the 2:1 and 4:1 STV levels, only showing 
asymptotic values when STV>8:1 (see Figure 5). 

TABLE X.  DESCRIPTIVE STATISTICS FOR TLI AVERAGED OVER 1000 

REPLICATIONS 

VTF STV 

h
2
 

High Moderate Low Mixed 

M 

P 

4:1 

2:1 
0.92 

15.90 

0.81 

4.60 

0.53 

1.90 

0.82 

3.90 

4:1 
0.98 

93.10 

0.95 

48.50 

0.86 

22.90 

0.96 

50.90 

8:1 
0.99 
100.00 

0.98 
91.30 

0.96 
48.20 

0.99 
94.40 

16:1 
0.99 

100.00 

0.99 

99.90 

0.99 

77.20 

0.99 

100.00 

32:1 
0.99 

100.00 

0.99 

100.00 

0.99 

95.90 

0.99 

100.00 

7:1 

2:1 
0.93 

10.50 

0.86 

0.20 

0.60 

0.00 

0.90 

1.60 

4:1 
0.98 

99.90 

0.97 

71.80 

0.88 

14.70 

0.97 

94.50 

8:1 
0.99 

100.00 

0.99 

100.00 

0.97 

63.20 

0.99 

100.00 

16:1 
0.99 

100.00 

0.99 

100.00 

0.99 

95.60 

0.99 

100.00 

32:1 
0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

10:1 

2:1 
0.94 

7.30 

0.88 

0.00 

0.68 

0.00 

0.91 

0.20 

4:1 
0.98 

100.00 

0.97 

87.60 

0.91 

10.80 

0.98 

99.90 

8:1 
0.99 

100.00 

0.99 

100.00 

0.98 

86.50 

0.99 

100.00 

16:1 
0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

32:1 
0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

TABLE XI.  THREE-WAY ANOVA FOR TLI BY CONDITIONS 

Conditions df F p-value 

h2 3 13451.2 <0.0001 

VTF 2 1437.33 <0.0001 

h
2
*VTF 6 211.73 <0.0001 

STV 4 36383.3 <0.0001 

h
2
* STV 12 5964.08 <0.0001 

VTF *STV 8 659.74 <0.0001 

h
2
* VTF *STV 24 80.84 <0.0001 

 

Post hoc analysis of the 3-way interaction of h
2
*VTF*STV 

first focused on the simple effect interaction of h2*VTF after 
blocking on STV, specifically the test of 2-way interaction 
h
2
*VTF at each level of STV. The results revealed statistically 

significant 2-way interactions at all STV levels: STV=(2:1), 

F(6,11988)=160.34, p<0.0001; STV=(4:1), F(6,11988)=40.07, 
p<0.0001; STV=(8:1), F(6,11988)=18.51, p<0.0001; 
STV=(16:1), F(6,11988)=3.48, p=0.0019; and STV=(32:1), 
F(6,11988)=0.43, p=0.0115. Further analysis of the four by 
three 2-way interactions focused on the simple-simple effects 
of STV blocking on the STV*h2 interaction. Specifically, the 
analysis examined differences in mean TLI values among VTF 
levels for each STV*h

2
 interaction. Table XII presents these 

findings.  

 

 
Fig. 5.  Non-normal-fit index mean values for the interaction between STV 

and VTF ratios at different levels of communalities. 

TABLE XII.  SIMPLE-SIMPLE EFFECT OF STV*VTF*h
2 
SLICED BY 

STV*h
2
 

h
2
 STV df F p-value 

VTF 

4:1vs7:1 4:1vs10:1 7:1vs10:1 

Low 

2 2 344 <0.001 <0.0001 <0.0001 <0.0001 

4 2 69.7 <0.001 <0.0001 <0.0001 <0.0001 

8 2 28.9 <0.001 <0.0001 <0.0001 0.0023 

16 2 5.1 0.005 0.3846 0.0041 0.1474 

32 2 3.4 0.031 0.6692 0.0266 0.1945 

Moderate 

2 2 446 <0.001 <0.0001 <0.0001 <0.0001 

4 2 85.3 <0.001 <0.0001 <0.0001 0.0563 

8 2 19.7 <0.001 <0.0001 <0.0001 0.2112 

16 2 3.7 0.023 0.1040 0.0251 0.8368 

32 2 0.1 0.932 -- -- -- 

High 

2 2 156 <0.001 <0.0001 <0.0001 0.2111 

4 2 35.2 <0.001 <0.0001 <0.0001 0.0470 

8 2 6.3 0.001 0.1169 0.0011 0.2606 

16 2 0.6 0.522 -- -- -- 

32 2 0.2 0.797 -- -- -- 

Mixed 

2 2 1304 <0.001 <0.0001 <0.0001 0.0008 

4 2 204 <0.001 <0.0001 <0.0001 0.0322 

8 2 43.2 <0.001 <0.0001 <0.0001 0.1836 

16 2 9.26 <0.001 0.0025 0.0002 0.7672 

32 2 1.02 0.3604 -- -- -- 
 

E. Comparative-Fit Index (CFI) 

CFI values were averaged over 1000 replications for the 60 
cells in the three-way design and are presented in Table XIII. 
Additionally, the percentage of CFI values meeting the 
standard threshold of acceptable fit, e.g. 0.95 was tabulated. 
The overall ANOVA findings for CFI revealed an overall 
statistically significant model, F(59,59940)=6535.47, 
p<0.0001. As can be seen in Table XIV, there were statistically 
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significant main effects and interactions, including the 
statistically significant triple interaction h2*VTF*STV.  

TABLE XIII.  DESCRIPTIVE STATISTICS FOR CFI AVERAGED OVER 1000 

REPLICATIONS 

VTF STV 

h
2
 

High Moderate Low Mixed 

M 

P 

4:1 

2:1 
0.93 

28.90 

0.83 

6.10 

0.57 

2.30 

0.84 

5.60 

4:1 
0.98 

99.20 

0.95 

61.90 

0.85 

25.70 

0.96 

67.00 

8:1 
0.99 

100.00 

0.98 

97.90 

0.95 

55.40 

0.98 

98.90 

16:1 
0.99 

100.00 

0.99 

100.00 

0.98 

85.80 

0.99 

100.00 

32:1 
0.99 

100.00 

0.99 

100.00 

0.99 

99.60 

0.99 

100.00 

7:1 

2:1 
0.94 

30.90 

0.87 

0.70 

0.62 

0.00 

0.91 

6.60 

4:1 
0.98 

100.00 

0.97 

91.20 

0.89 

18.50 

0.98 

99.40 

8:1 
0.99 

100.00 

0.99 

100.00 

0.96 

67.40 

0.99 

100.00 

16:1 
0.99 

100.00 

0.99 

100.00 

0.98 

99.20 

0.99 

100.00 

32:1 
0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

10:1 

2:1 
0.94 

41.00 

0.88 

0.00 

0.69 

0.00 

0.92 

3.00 

4:1 
0.98 

100.00 

0.97 

98.70 

0.91 

18.90 

0.98 

100.00 

8:1 
0.99 

100.00 

0.99 

100.00 

0.97 

96.20 

0.99 

100.00 

16:1 
0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

32:1 
0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

0.99 

100.00 

TABLE XIV.  THREE-WAY ANOVA FOR CFI BY CONDITIONS 

Conditions  df F  p-value 

h2 3 21591.5 <0.0001 

VTF 2 2208.58 <0.0001 

h2*VTF 6 359.17 <0.0001 

STV 4 51446.3 <0.0001 

h
2
* STV 12 8444.73 <0.0001 

VTF *STV 8 626.81 <0.0001 

h
2
* VTF *STV 24 87.90 <0.0001 

 

Visual examination of the mean CFI values reveals a 
differential increase in mean CFI within the levels of STV as a 
function of h2 magnitude. In the h2 = high condition, the mean 
CFI values evidence minimal gains even between 2:1 and 4:1 
STV levels. Within the mixed and moderate h

2
 conditions, the 

mean CFI values show asymptotic gains after STV>4:1. 
However, in the low h2 condition, the mean CFI values were 
markedly lower in the 2:1 and 4:1 STV levels, only showing 
asymptotic values when STV>8:1 (see Figure 6).  

Post hoc analysis of the 3-way interaction h2*VTF*STV 
first focused on the simple effect interaction h

2
*VTF after 

blocking on STV, specifically the test of 2-way interaction 
h2*VTF at each level of STV. The results revealed statistically 
significant 2-way interactions at all STV levels: STV=(2:1), 

F(6,11988)=168.36, p<0.0001; STV=(4:1), F(6,11988)=93.29, 
p<0.0001; STV=(8:1), F(6,11988)=109.95, p<0.0001; 
STV=(16:1), F(6,11988)=96.87, p<0.0001; and STV=(32:1), 
F(6,11988)=92.47, p<0.0001. Further analysis of the four by 
three 2-way interactions focused on the simple-simple effects 
of STV blocking on the STV*h2 interaction. Specifically, the 
analysis examined the differences in mean TLI values among 
VTF levels for each STV*h

2
 interaction. Table XV presents 

these findings. 

 

 
Fig. 6.  Comparative-fit index mean values for the interaction between 

STV and VTF ratios at different levels of communalities. 

TABLE XV.  SIMPLE-SIMPLE EFFECT OF STV*VTF*h2 SLICED BY 
STV*h

2
 

h2 STV df F p-value 
VTF 

4:1vs7:1 4:1vs10:1 7:1vs10:1 

Low 

2 2 354 <0.001 <0.0001 <0.0001 <0.0001 

4 2 163 <0.001 <0.0001 <0.0001 <0.0001 

8 2 179 <0.001 <0.0001 <0.0001 <0.0001 

16 2 156 <0.001 <0.0001 <0.0001 <0.0001 

32 2 150 <0.001 <0.0001 <0.0001 <0.0001 

Moderate 

2 2 355 <0.001 <0.0001 <0.0001 <0.0001 

4 2 142 <0.001 <0.0001 <0.0001 0.0345 

8 2 131 <0.001 <0.0001 <0.0001 0.0012 

16 2 134 <0.001 <0.0001 <0.0001 0.0105 

32 2 138 <0.001 <0.0001 <0.0001 0.0127 

High 

2 2 95.3 <0.001 <0.0001 <0.0001 <0.0001 

4 2 50.4 <0.001 <0.0001 <0.0001 0.0327 

8 2 59.6 <0.001 <0.0001 <0.0001 0.0015 

16 2 81.8 <0.001 <0.0001 <0.0001 0.0004 

32 2 87.1 <0.001 <0.0001 <0.0001 <0.0001 

Mixed 

2 2 1151 <0.001 <0.0001 <0.0001 <0.0001 

4 2 334 <0.001 <0.0001 <0.0001 0.0120 

8 2 251 <0.001 <0.0001 <0.0001 0.0024 

16 2 216 <0.001 <0.0001 <0.0001 0.0164 

32 2 206 <0.001 <0.0001 <0.0001 0.0037 

 

VIII. DISCUSSION 

The study findings refuted some of the guidelines found in 
the literature, e.g. authors in [18] reported that sample size was 
not an important factor in determining model stability, and 
authors in [4] reported that the subject-to-variable ratio should 
be no lower than 5. The results of the current study revealed 
that sample size did have a strong effect on both stability and 
precision of the simulated models. For instance, when the VTF 
ratio was 4:1, the mean values related to data-model fit indices 
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were adequate at STV ratio >= 4:1. However, looking at the 
frequency of rejections based on conventional thresholds over 
the 1000 replications depicted a different conclusion. The 
percentage of stable (invariant) models ranged from 77% at 4:1 
STV to 91% at 32:1 STV clearly indicating that larger STV 
ratios are related to higher stability levels with a model. These 
findings validated the authors in [42], who reported that the 
percentage of invariance tests varied depending on the sample 
size of the group. The findings of the current study do agree 
with those in [43], where in some models a STV of 30:1 was 
needed to produce a stable model and minimize the amount of 
misfit.  

The study findings also contradicted some previous 
research on the effect of VTF ratio on the precision and 
stability of factor solutions. Authors in [18] concluded that the 
VTF ratio was important for factor stability with more indicator 
variables per factor yielding more stable result. In the current 
study, there was a trend in the findings over all RQ1 analyses 
that suggests that data-model fit diminished as VTF increased. 
Most probably this is a result of the increasing complexity of 
the measurement models, i.e. the number of paths. For 
example, in the 10:1 VTF condition there are 100 estimated 
paths, whereas in the 4:1 condition there are 40 estimated 
paths. The accumulation of many small deviations from the 
population correlation matrix impacted negatively the global fit 
statistics more in the high VTF conditions than in the low VTF 
conditions. The overall model fit indices TLI and CFI all varied 
as functions of VTF, STV, h

2
, and their interaction. Chi-square 

value and overall model fit indices GFI, and RMSEA only 
varied as functions of VTF, STV, and their interactions. 

IX. CONCLUSION 

This study provided empirical evaluation of the influence of 
ED and SD on WSV in terms of model precision relative to a 
known factor structure via Monte Carlo simulations. The 
results revealed that the means of ��  and RMSEA values 
significantly decrease as STV increases and increase as VTF 
ratio decreased. However, the examination suggests significant 
increase in mean GFI values as STV increased, and decreasing 
mean GFI values as VTF ratio increased. 

Overall, when the VTF is 4:1 an STV ratio of 16:1 or above 
is required to show precision in factor solution and stability of 
the model as indicated by four fit indices. When the VTF ratio 
is 7:1 or 10:1, an STV ratio of 32:1 or above is required to 
show precision in factor solution and the stability of the model. 
If a researcher is interested in minimizing misfits or meeting 
more than four overall model fit indices criteria, STV and VTF 
ratios more than 32:1 and 10:1 respectively would be necessary 
in order to gain a precise and stable model. 
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