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Abstract-The aim of this study is to provide an empirical 

evaluation of the influence of different aspects of design in the 

context of factor analysis in terms of model stability. The overall 

model stability of factor solutions was evaluated by the 

examination of the order for testing three levels of Measurement 
Invariance (MIV) starting with configural invariance (model 0). 

Model testing was evaluated by the Chi-square difference test 

(∆x2) between two groups, and Root Mean Square Error of 

Approximation (RMSEA), Comparative Fit Index (CFI), and 

Tucker-Lewis Index (TLI). Factorial invariance results revealed 

that the stability of the models was varying over increasing levels 

of measurement as a function of Variable-To-Factor (VTF) ratio, 

Subject-To-Variable (STV) ratio, and their interactions. There 

were invariant factor loadings and invariant intercepts among 

the groups indicating that measurement invariance was achieved. 

For VTF ratios 4:1, 7:1, and 10:1, the models started to show 

stability over the levels of measurement when the STV ratio was 

4:1. Yet, the frequency of stability models over 1000 replications 

increased (from 77% to 91%) as the STV ratio increased. The 
models showed more stability at or above 32:1 STV. 

Keywords-model stability; factorial invariance; level of 

measurement invariance; model design 

I. INTRODUCTION  

Confirmatory Factor Analysis (CFA) is a form of Factor 
Analysis (FA) that tests hypotheses regarding how well the 
measured indicator variables represent the number of 
constructs [1]. CFA is a confirmatory method a researcher can 
use to examine, evaluate, and/or test a number of hypothesized 
factors underlying the variance/covariances in a set of 
measured indicator variables. CFA allows the researcher to test 
hypothetical and plausible alternative latent variable structures 
for the observed indicator variance/covariances [2]. More 
recently, CFA has also been used in exploratory analysis too 
[3-9]. Three major concerns have emerged repeatedly in the 
literature related to the use and interpretation of FA in social 
science research: (a) determining an adequate number of 
indicator variables to describe the latent trait, (b) factoring a 
sufficient sample size to have reasonable confidence in the 
stability of the model estimate, and (c) establishing minimum 
communality levels to determine which indicator variables can 

represent a latent trait, especially in simulation studies [8, 10-
13]. FA assumes that the indicator variables used should be 
linearly related to one another. Otherwise, the number of 
extracted factors will be the same as the number of original 
variables [2, 15]. Survey instrument length and the number of 
variables differ based on discipline, purpose, sample frame, and 
method of data collection. Recently, the online survey has 
become an important method of data collection for a variety of 
reasons (e.g. online surveys are easy to design, conduct, and 
often they are the only option for data collection). According to 
SurveyMonkey the median length of its paid surveys was 10 
questions [9]. Industry-specific surveys and market-research 
surveys tend to have more questions while event surveys and 
just-for-fun surveys tend to be shorter (see Figure 1) [9]. If the 
length of the survey is about 10 questions or fewer, it can lead 
to a higher completion rate and increase the likelihood that 
people will choose to take more of the researcher’s surveys in 
the future. More recent studies of factor analysis do not include 
the VTF ratio 10:1 in their investigations [5, 12, 14-17], nor the 
way this number is relative to the sample size or the 
communality magnitude when factor analysis is conducted. 

II. LITERATURE REVIEW 

A. Observed Variables 

In FA, the observed indicator variables can be viewed as 
representing a sample of potential variables, all of which 
measure the same construct or factor [1, 14, 16, 17]. Authors in 
[18] examined the magnitude of the correlation between the 
observed variables and the factor components by manipulating 
sample size, number of variables, number of components, and 
component saturation. They concluded that the VTF ratio was 
important for factor stability, with more variables per factor 
yielding a more stable result. Authors in [19], partially 
confirmed this conclusion. They found that the necessary 
minimum indicator variables to attain factor solutions that are 
adequately stable relative to population factors are dependent 
on several aspects of any given study, including the level of 
communality and sample size. Similarly, authors in [20] found 
that when the VTF ratio increased the factor analysis solution 
improved. 
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Fig. 1.  Median survey length in different fields of disciplines. 

The issue of variable sampling has been used extensively in 
conceptual development but has received almost no empirical 
evaluation of those that has sampled indicator variables at 
random from the universe of variables. The assumption of 
random sampling is useful to minimize sampling issues and for 
developing generalizability rather than a prescription for 
applied research procedures. Authors in [21] examined the 
quality of factor analytic research published between 1999 and 
2009 in five leading developmental disabilities journals. They 
found 35% of the studies used some form of FA. However, the 
guidelines for using FA were largely ignored and failed to 
account for levels of overdetermination and commonalities 
among measured variables. Furthermore, the authors in [19] 
found that there was a lack of validity in some common 
practice rules used in FA. Thus, anything that influences or 
changes variance may affect the conclusions related to FA. 
Researchers should determine an adequate number of indicator 
variables that is required to produce a stable and precise model 
in order to describe the latent trait. Authors in [21] investigated 
the effects of indicator variables on pattern recovery to 
determine the sufficient number of indicator variables that is 
likely to produce patterns that closely approximate the 
population pattern. They reported that the number of indicator 
variables can strongly affect the degree to which a sample 
pattern reproduces the population pattern, and that a minimum 
of three variables per factor is critical. The information about 
the adequate number of indicator variables that is required to 
produce a stable and precise model can be used in the design of 
a study and, retrospectively, in the evaluation of an existing 
study. 

B. Adequate Sample Size 

Determining sample size requirements for FA is 
complicated because it is dependent on other aspects of design, 
such as VTF and h2. Previous studies in FA revealed several 
approaches that have been used to propose guidelines for the 
sample size. However, most of these approaches were 
concerned with identifying either the Subject-To-Variable 
(STV) ratio or the absolute sample size, regardless of the effect 
of these rules on WSV. The examples below describe some 
reported results about sample size in the context of FA. A 
larger sample size is better than a smaller sample size because 

it is minimizing misfit and the probability of errors. In many 
cases, increasing the sample size may not be possible. In 
medical research, it is very difficult to collect a large sample of 
patients suffering from a certain disease [19-21]. Investigating 
the minimum STV ratio or small absolute sample size to obtain 
the stability of the model is necessary. Only a very limited 
number of studies on the role of sample size in FA have 
investigated real or simulated small sample size. Authors in 
[17] investigated the minimum sample size necessary to obtain 
reliable factor solutions under various conditions. They 
concluded that under the conditions of high communality, high 
number of observed variables, and small number of factors, FA 
yields a stable estimate model for sample sizes below 50. 
Selecting the adequate sample size is an important decision in 
study design. A researcher must determine how large the 
sample should be and what is the most appropriate sampling 
frame. One problem is that the proposed recommendations vary 
dramatically. Clearly, the wide range in these recommendations 
causes them to be of rather limited value to empirical 
researchers. Yet, there is a need to conduct studies examining 
systematically the model estimate stability latent variable 
variance with different facets of study Experimental Design 
(ED) and Sampling Design (SD). 

Previous research has investigated the stability of factor 
solutions by the examination of chi-square value (χ� ) and 
Overall Model Fit (OMF) indices such as Goodness-of-Fit 
Index (GFI), Adjusted GFI (AGFI), Tucker-Lewis Index (TLI), 
Comparative Fit Index (CFI), Root Mean Square Error of 
Approximation (RMSEA), and Root Mean Square Residual 
(RMSR) [8, 10, 22-25]. OMF indices examined global 
measures of data-model fit. Examinations of Measurement 
Invariance (MIV) (configural, weak, and strong) were used to 
evaluate model stability. The effects of communality 
magnitude in FA have been mostly vague. Studies have 
revealed a varied range of communality magnitude and 
common practice rules [1, 3, 4, 16, 26, 27]. The communality 
measures the percent of variance in a given variable explained 
by the factors. If communalities are high, model stability in the 
sample data is normally very good [18, 26, 28, 29]. Authors in 
[20] investigated the quality of factor solutions. They found 
that when the communalities were high, sample size tended to 
have less influence on the quality of factor solutions than when 
communalities are low. Authors in [30] confirmed that 
communality magnitudes play an important role in determining 
the adequate sample size. Moreover, authors in [21] found that 
the communality magnitudes became most relevant in 
determining the sufficient sample size and the number of 
variables per component. 

III. METHODS 

A. Simulation Data 

Simulation data are used in social science to answer a 
particular research question, solve a statistical problem, or 
improve analysis procedure techniques. Statistical program 
developers and research designers usually perform simulation 
data techniques for several reasons: gathering real data may be 
difficult, time-consuming, expensive, or real data sometimes 
violate distributional assumptions. Simulation data often lead 
to greater understanding of an analysis and the results one can 
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expect from various oddities of real-life data [31]. Simulation 
may approximate real-world results yet requires less time and 
effort and gives the researcher a chance to experiment with 
data under various conditions. Data can be simulated by 
several methods. The Monte Carlo technique is one popular 
method that has been used in social science since the 1940s 
[28]. A Monte Carlo simulation is a numerical technique that 
can be used to conduct experiments and repeated random 
sampling to simulate data for a given mathematical model. 
The key point of the simulation model was the development of 
the matrices for a 5-factor domain as an example of the factor. 
The statistical software package SAS was used, and the syntax 
code was written by the researcher. 

B. Estimation Methods 

Maximum Likelihood (ML) is the most common method of 
factor extraction that estimates population values for FA by 
calculating loading that maximizes the probability of sampling 
the observed correlation matrix from a population [12] and is 
often used in CFA. The current study used ML as a method of 
factor extraction. Authors in [21] concluded that if the data are 
normally distributed, ML is the best estimation option because 
it allows the computation of a mixed range of indexes of the 
goodness of fit of the model. The ML estimation method 
assumes that the data are independently sampled from a 
multivariate normal distribution with mean µ and variance-
covariance matrix that takes this form: Σ = LL′+Ψ, where L is 
the matrix of factor loadings and ψ is the diagonal matrix of 
specific variances. Authors in [32] indicated that the ML 
estimation method is the most precise when the data are 
continuous and normally distributed, but it does not provide 
accurate results with ordinal data or when the data violate the 
assumption of multivariate normality. Table I illustrates the 
procedure for testing model stability starting with a CFA model 
relative to a known factor structure for each condition involved 
in the study separately. 

TABLE I.  PROCEDURE FOR TESTING MODEL STABILITY 

Test name Symbols Statistics guidelines 

Chi-square value χ�  

Tucker-Lewis index TLI ≥ 0.96 good fit 

Comparative fit index CFI > 0.95 good fit 

Root mean square error of 

approximation 
RMSEA 

0.00-0.05 very good fit 

0.05-0.08 fair fit 

0.08-0.10 mediocre fit 
 

C. Procedure for Testing Stability Across Models 

The procedure for testing measurement invariance was 
performed in order to evaluate the variation over increasingly 
levels of measurement invariance among models. There are 
different approaches that could be used to evaluate the 
measurement invariance among groups. The present study 
used a Multiple-Group Confirmatory Factor Analysis 
(MGCFA) model to test invariance among the levels of STV 
ratios. Table II illustrates the order for testing measurement 
invariance starting with configural invariance (model 0). 
Model testing was evaluated by the chi-square difference test 
(∆χ�) between two groups [20, 30, 33], and RMSEA, CFI, and 
TLI were used to evaluate all the model fits. As referenced 
above, the criteria values suggested in [20, 34] were used in 

this study: RMSEA: 0.00 - 0.05 very good fit, CFI > 0.95 good 
fit, and TLI ≥ 0.96 good fit. Three levels of MIV were tested. 

TABLE II.  PROCEDURE FOR STABILITY TESTING AMONG MODELS 
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configural invariance. For instance, if the χ�  was not 
significant, the indicator variables loaded to the same factors 
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D. Design 

The main research question was if the stability of the 
simulated models varies over increasing levels of measurement 
invariance as a function of the following conditions and their 
interactions:  

• Variable-To-Factor (VTF) ratio 

• Subject-To-Variables (STV) ratio 

• Communalities magnitude (h2) 

MGCFA was used to test the measurement invariance 
among the levels of STV ratios in order to evaluate model 
stability. Figure 2 illustrates the study design. Measurement 
invariance of the STV levels, as shown in Table III, were 
examined in each cell of the h� *VTF study. 

 

h� 4:1 7:1 10:1 

Mixed  VTF  

Fig. 2.  Design of interaction conditions. 

IV. RESULTS 

Table III presents the complete findings of measurement 
invariance for mixed communality among levels of STV over 
1000 replications where each significant p-value is marked 
with "*".  

TABLE III.  TEST OF FACTORIAL INVARIANCE FOR MIXED 

COMMUNALITY ACROSS VTF AND STV RATIOS AVERAGED OVER 

1000 REPLICATIONS 

VTF Between groups #� M ∆#� p-value 

RMSEA 

CFI 

TLI 

4:1 

STV=2:1 & 

STV=32:1 

369.18 M0 --- 0.0301* 

0.0201 

0.9893 

0.9874 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=16:1 

371.33 M0 --- 0.0252* 

0.0285 

0.9791 

0.9754 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=8:1 

375.77 M0 --- 0.0172* 

0.0399 

0.9602 

0.9530 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=4:1 

386.26 M0 --- 0.0065* 

0.0573 

0.9245 

0.9104 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=4:1 & 

STV=32:1 

340.29 M0 --- 0.2084 

0.0117 

0.9952 

0.9950 

356.07 M1-M0 15.78 0.3968 

0.0117 

0.9950 

0.9951 

370.63 M2-M1 14.56 0.4835 

0.0114 

0.9950 

0.9954 

STV=4:1 & 

STV=16:1 

342.43 M0 --- 0.1859 

0.0164 

0.9907 

0.9902 

358.02 M1-M0 15.59 0.4098 

0.0163 

0.9904 

0.9904 

372.60 M2-M1 14.58 0.4820 

0.0159 

0.9905 

0.9910 

STV=4:1 & 

STV=8:1 

346.89 M0 --- 0.1444 

0.0237 

0.9825 

0.9808 

362.81 M1-M0 15.92 0.3873 

0.0236 

0.9819 

0.9810 

377.46 M2-M1 14.65 0.4769 

0.0229 

0.9820 

0.9820 

STV=8:1 & 

STV=32:1 

329.85 M0 --- 0.3402 

0.0082 

0.9971 

0.9978 

345.07 M1-M0 15.22 0.4356 

0.0081 

0.9970 

0.9979 

360.13 M2-M1 15.06 0.4471 

0.0080 

0.9969 

0.9979 

STV=8:1 & 

STV=16:1 

331.88 M0 --- 0.3120 

0.0115 

0.9946 

0.9957 

346.96 M1-M0 15.08 0.4456 

0.0113 

0.9945 

0.9958 

362.06 M2-M1 15.1 0.4442 

0.0111 

0.9945 

0.9960 

STV=16:1& 

STV=32:1 

325.34 M0 --- 0.4066 

0.0063 

0.9980 

0.9990 

340.40 M1-M0 15.06 0.4471 

0.0062 

0.9980 

0.9990 

355.28 M2-M1 14.88 0.4600 

0.0061 

0.9980 

0.9991 

7:1 
STV=2:1 & 

STV=32:1 

1257.15 M0 --- 0.0006* 

0.0152 

0.9942 

0.9938 

--- M1-M0 --- --- 

--- 

--- 

--- 
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--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=16:1 

1262.68 M0 --- 0.0004* 

0.0213 

0.9888 

0.9879 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=8:1 

1262.65 M0 --- 0.0004* 

0.0213 

0.9888 

0.9879 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=4:1 

1310.82 M0 --- <0.0001* 

0.0425 

0.9579 

0.9544 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=4:1 & 

STV=32:1 

1170.54 M0 --- 0.0686 

0.0093 

0.9975 

0.9973 

1200.54 M1-M0 30 0.4656 

0.0092 

0.9975 

0.9974 

1230.60 M2-M1 30.06 0.4625 

0.0090 

0.9975 

0.9975 

STV=4:1 & 

STV=16:1 

1176.06 M0 --- 0.0549 

0.0130 

0.9952 

0.9949 

1206.12 M1-M0 30.06 0.4625 

0.0128 

0.9951 

0.9950 

1236.47 M2-M1 30.35 0.4478 

0.0127 

0.9951 

0.9951 

STV=4:1 & 

STV=8:1 

1191.49 M0 --- 0.0279* 

0.018 

0.9905 

0.9898 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=8:1 & 

STV=32:1 

1137.82 M0 --- 0.2086 

0.0062 

0.9986 

0.9987 

1167.98 M1-M0 30.16 0.4574 

0.0061 

0.9986 

0.9987 

1197.93 M2-M1 29.95 0.4682 

0.0061 

0.9986 

0.9987 

STV=8:1 & 

STV=16:1 
1143.33 M0 --- 0.1773 

0.0086 

0.9975 

0.9975 

1173.42 M1-M0 30.09 0.4610 

0.0085 

0.9975 

0.9976 

1203.61 M2-M1 30.19 0.4559 

0.0084 

0.9974 

0.9976 

STV=16:1 & 

STV=32:1 

1122.39 M0 --- 0.3133 

0.0044 

0.9991 

0.9993 

1152.28 M1-M0 29.89 0.4712 

0.0044 

0.9991 

0.9993 

1182.31 M2-M1 30.03 0.4641 

0.0044 

0.9991 

0.9994 

10:1 

STV=2:1 & 

STV=32:1 

2640.05 M0 --- <0.0001* 

0.01241 

0.9948 

0.9946 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=16:1 

2654.33 M0 --- <0.0001* 

0.0174 

0.9899 

0.9894 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=8:1 

2681.11 M0 --- <0.0001* 

0.0244 

0.9806 

0.9796 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=2:1 & 

STV=4:1 

2748.81 M0 --- <0.0001* 

0.0345 

0.9621 

0.9601 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=4:1 & 

STV=32:1 

2464.25 M0 --- <0.0001* 

0.0076 

0.9978 

0.9978 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=4:1& 

STV=16:1 

2478.53 M0 --- <0.0001* 

0.0108 

0.9958 

0.9956 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 
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STV=4:1 & 

STV=8:1 

2505.31 M0 --- 0.0059* 

0.0154 

0.9918 

0.9914 

--- M1-M0 --- --- 

--- 

--- 

--- 

--- M2-M1 --- --- 

--- 

--- 

--- 

STV=8:1 & 

STV=32:1 

2396.55 M0 --- 0.1648 

0.0047 

0.9989 

0.9990 

2441.69 M1-M0 45.14 0.4661 

0.0047 

0.9989 

0.9990 

2486.29 M2-M1 44.6 0.4470 

0.0046 

0.9989 

0.9990 

STV=8:1 & 

STV=16:1 

2410.83 M0 --- 0.1190 

0.0069 

0.9980 

0.9980 

2455.99 M1-M0 45.16 0.4652 

0.0068 

0.9980 

0.9980 

2500.68 M2-M1 44.69 0.4432 

0.0067 

0.9980 

0.9980 

STV=16:1 & 

STV=32:1 

2369.77 M0 --- 0.2782 

0.0034 

0.9993 

0.9995 

2413.98 M1-M0 44.21 0.5053 

0.0033 

0.9993 

0.9995 

2458.99 M2-M1 45.01 0.4715 

0.0033 

0.9993 

0.9995 

 

VTF (4:1). The examination of the measurement 
invariance, begins with configural (M0) to weak (M1) and 
strong (M2). The findings revealed that for VTF ratios (4:1), 

χ�
�$

 showed statistically significant results when testing 

configural invariance: (2:1 with 32:1); (2:1 with 16:1); (2:1 
with 8:1); and (2:1 with 4:1). Thus, non-invariance was 
established precluding further invariance testing, e.g., weak, 
strong, and structural. However, at higher STV ratios, e.g. 
groups (4:1 with 32:1); (4:1 with 16:1); (4:1 with 8:1); (8:1 
with 32:1), (8:1 with 16:1); (8:1 with 32:1); and (16:1 with 

32:1), χ�
�$

 was not statistically significant indicating 

configural invariance was established. Given the presence of 
configural invariance, testing for weak invariance was 

conducted. Again, chi-square difference between ∆��
�����

 

was not statistically significant supporting the hypothesis of 
weak factorial invariance between the two groups. After weak 
invariance was supported, the examination of the indicator 
intercepts was conducted. The results again supported the 
finding of strong invariance, e.g. the ∆��

�����
was not 

statistically significant. In conclusion, there were invariant 
factor loadings and invariant intercepts among the groups 
indicating that measurement invariance was achieved as 
described above.  

VTF (7:1). The model begins with configural (M0) to weak 
(M1) and strong (M2). The findings revealed that for VTF ratio 

(7:1), χ�
�$

 showed statistically significant results when testing 

configural invariance: (2:1 with 32:1); (2:1 with 16:1); (2:1 
with 8:1); (2:1 with 4:1); and (4:1 with 8:1). Thus, non-
invariance was established precluding further invariance 
testing, e.g. weak, strong, and structural. However, at higher 
STV ratios, e.g. groups (4:1 with 32:1); (4:1 with 16:1); (8:1 
with 32:1), (8:1 with 16:1); (8:1 with 32:1); and (16:1 with 

32:1), χ�
�$

 was not statistically significant indicating 

configural invariance was established. Given the presence of 
configural invariance, testing for weak invariance was 
conducted. Again, the chi-square difference between 

∆��
�����

 was not statistically significant supporting the 

hypothesis of weak factorial invariance between the two 
groups. After weak invariance was supported, the examination 
of the indicator intercepts was conducted. The results supported 
again the finding of strong invariance, e.g. the ∆��

�����
was 

not statistically significant. In conclusion, there were invariant 
factor loadings and invariant intercepts among the groups 
indicating that measurement invariance was achieved as 
described above.  

VTF (10:1). The findings revealed that for VTF ratios 

(10:1), χ�
�$

 showed statistically significant results when 

testing configural invariance: (2:1 with 32:1); (2:1 with 16:1); 
(2:1 with 8:1); (2:1 with 4:1); (4:1 with 8:1); (4:1 with 16:1); 
and (4:1 with 32:1). Thus, non-invariance was established 
precluding further invariance testing. However, at higher STV 
ratios, e.g. groups (8:1 with 16:1); (8:1 with 32:1); and (16:1 

with 32:1), χ�
�$

 was not statistically significant indicating 

configural invariance was established. Given the presence of 
configural invariance, testing for weak invariance was 

conducted. Again, chi-square difference between ∆��
�����

 

was not statistically significant supporting the hypothesis of 
weak factorial invariance between the two groups. After weak 
invariance was supported, examination of the indicator 
intercepts was conducted. The results supported again the 

finding of strong invariance, e.g. the ∆��
�����

was not 

statistically significant. In conclusion, there were invariant 
factor loadings and invariant intercepts among the groups 
indicating that measurement invariance was achieved as 
described above. 

Table IV presents a frequency analysis of a chi-square p-
values > 0.05 was tested against the null proportion p = 0.05 to 
determine if there was a statistically significant number of 
invariance failures. The factorial invariance result revealed that 
the stability of the models was varying over increasing levels of 
measurement as a function of VTF, STV, and their interactions. 

V. DISCUSSION 

The study findings refuted some of the guidelines found in 
the literature, e.g. authors in [18] reported that the sample size 
was not an important factor in determining model stability, and 
authors in [35] reported that the STV ratio should be no lower 
than 5.  

The results of the current study revealed that sample size 
did have a strong effect on stability of the simulated models. 
For instance, when VTF ratio was 4:1, the mean values related 
to data-model fit indices were adequate at STV ratio >= 4:1. 
However, looking at the frequency of rejections based on 
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conventional thresholds over the 1000 replications depicted a 
different conclusion. The percentage of stable (invariant) 
models ranged from 77% at 4:1 STV to 91% at 32:1 STV 
clearly indicating that larger STV ratios are related to higher 
stability levels with a model. These findings validated the 
results in [16] who reported that the percentage of invariance 
tests varied based on the sample size per group.  

TABLE IV.  Χ�
FREQUENCY AGAINST THE NULL PROPORTION OF 

STRUCTURAL MEAN INVARIANCE IN MIXED COMMUNALITY 

VTF Nested models Invariance status Frequency & percent p-value 

4:1 
STV=4:1 & 

STV=32:1 

Successful 
799 

79.90 
<0.0001* 

 Failures 
201 

20.10 

 
STV=4:1 & 

STV=16:1 

Successful 
765 

76.50 
<0.0001* 

 Failures 
235 

23.50 

 
STV=4:1 & 

STV=8:1 

Successful 
712 

71.20 
<0.0001* 

 Failures 
288 

28.80 

 
STV=8:1 & 

STV=32:1 

Successful 
899 

89.90 
<0.0001* 

 Failures 
101 

10.01 

 
STV=8:1 & 

STV=16:1 

Successful 
878 

87.80 
<0.0001* 

 Failures 
122 

12.20 

 
STV=16:1 & 

STV=32:1 

Successful 
933 

93.90 
<0.0001* 

 Failures 
67 

6.70 

7:1 
STV=4:1 & 

STV=32:1 

Successful 
569 

56.90 
<0.0001* 

 Failures 
431 

43.10 

 
STV=4:1 & 

STV=16:1 

Successful 
513 

51.30 
<0.0001* 

 Failures 
487 

48.70 

 
STV=8:1 & 

STV=32:1 

Successful 
790 

79.00 
<0.0001* 

 Failures 
210 

21.00 

 
STV=8:1 & 

STV=16:1 

Successful 
752 

75.20 
<0.0001* 

 Failures 
248 

24.80 

 
STV=16:1 & 

STV=32:1 

Successful 
868 

86.80 
<0.0001* 

 Failures 
132 

13.20 

10:1 
STV=8:1 & 

STV=32:1 

Successful 
734 

73.40 
<0.0001* 

 Failures 
266 

26.60 

 
STV=8:1 & 

STV=16:1 

Successful 
670 

67.00 
<0.0001* 

 Failures 
330 

33.00 

 
STV=16:1 & 

STV=32:1 

Successful 
840 

84.00 
<0.0001* 

 Failures 
160 

16.00 

The findings of the current study do agree with [36] where 
in some models an STV of 30:1 was needed to produce stable 
model and minimize the amount of misfit. The study findings 
also contradict some previous research that investigated the 
effect of VTF ratio on stability of factor solutions. The authors 
in [18] concluded that the VTF ratio was important for factor 
stability with more indicator variables per factor yielding more 
stable result.  

VI. CONCLUSION 

In general, this study provided an empirical evaluation of 
the stability of the data-model fit over increasing levels of 
factorial invariance for different features of design in FA. The 
study concluded that the stability of the models was varying 
over increasing levels of measurement as a function of VTF, 
STV, and their interactions. There were invariant factor 
loadings and invariant intercepts among the groups indicating 
that measurement invariance was achieved. For VTF ratios of 
4:1, 7:1, and 10:1 the models started to show stability over the 
levels of measurement when the STV ratio was 4:1. Yet, the 
frequency of stability models over 1000 replications increased 
(from 77% to 91%) as STV ratio increased. The models 
showed more stability at or above 32:1 STV. 
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