
ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 90

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

Prograph Based Analysis of Single Source Shortest

Path Problems with Few Distinct Positive Lengths

Biswajit Bhowmik
Assistant Professor

Dpt of Computer Science & Engineering

Bengal College of Engineering and Technology

Durgapur – 713 212

India

biswajitbhowmik@gmail.com

Sreyasi Nag Chowdhury
Dpt of Computer Science & Engineering

Bengal College of Engineering and Technology

Durgapur – 713 212

India

sreyasi_nc@yahoo.com

Abstract — In this paper we propose an experimental study

model
23PS of a fast fully dynamic programming algorithm

design technique in finite directed graphs with few distinct

nonnegative real edge weights. The Bellman-Ford’s approach for

shortest path problems has come out in various implementations.

In this paper the approach once again is re-investigated with

adjacency matrix selection in associate least running time. The

model tests proposed algorithm against arbitrarily but positive

valued weighted digraphs introducing notion of ographPr

that speeds up finding the shortest path over previous

implementations. Our experiments have established abstract

results with the intention that the proposed algorithm can

consistently dominate other existing algorithms for Single Source

Shortest Path Problems. A comparison study is also shown

among Dijkstra’s algorithm, Bellman-Ford algorithm, and our

algorithm.

Keywords — shortest Path; negative weight cycle; weight

matrix; variants; program-graph; SPL; dense network; scanned

vertices; relaxation.

I. INTRODUCTION

Computation of Shortest Path)(SP is one of the most

fundamental problems in graph theory. Both in operations
research over and above theoretical computer science areas, the

Single Source Shortest Path Problem)(SSSPP is an

extremely well-studied problem because of its broad
applicability in a wide range of domains [1, 2]. The wide
spectrum of its applications ranges from the routing problem in
communication networks to robot motion planning, highway
and power line engineering etc. Many optimization problems
solved by dynamic programming or more complicated matrix
searching techniques, such as the 0/1 knapsack problem,
construction of optimal inscribed polygons, sequence
alignment in molecular biology, length-limited Huffman
coding etc, are expressed as shortest path problems. These also
include scheduling problems such as critical path computation
in PERT [3] charts. Moreover, the shortest-path problem as
well has numerous variations such as the minimum weight
problem, the quickest path problem etc. Our motivation for
focusing on the algorithmic processes of these shortest path

problems with few distinct edge lengths initiates from a
problem that arises in social networks [1-7]. The Shortest Path

Problems)(SPPs have been, and still is, investigated by

many researchers and mathematicians. With the rapid
advancements and developments in communication, computer
science and transportation systems, more variants of the

SPPs have appeared. Some of these are the traveling

salesman problem, K-shortest paths, constrained shortest-path
problem, multi-objective shortest path problem, network flow

problems, and so forth including our key SSSPP [2, 4, 8]. In

this paper, we propose a model
23PS that provides an

algorithm similar to classical Bellman-Ford procedure that

solves SSSPP . The model is represented with a digraph with

few positive real edge weights introducing

GraphogramPr or simply ographPr [9, 10] where

each computation is performed at every node. The paper has
been organized in the following sections.

• Problem Definition.

• Negative Weight Cycle.

• Representation of Weight Matrix.

• Mathematical Background.

• Shortest Path Variations.

• Proposed Work.

• Experimental Results.

• Comparison Study.

• Conclusion.

The Bellman-Ford’s approach for shortest path problems
has come into practice with different tools. The approach in
this paper is re-investigated with adjacency matrix selection in

associate least running time. The proposed model
23PS on

experiments has established abstract results with the intention
that the proposed algorithm can consistently dominate other
existing algorithms for the underlying problem. A comparison

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 91

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

study is shown among Dijkstra’s algorithm, Bellman-Ford
algorithm and our algorithm.

II. STATEMENT OF PROBLEM

Let us consider a weighted directed graph

),,(WEVG = with vertex set V of size n , edge (or simply

arc) set E of size m , and weight function

REW →: assigning a real valued weight (cost) to each edge

in G . Then, a directed Shortest Path Length)(SPL from a

given source (starting) vertex s to each other vertex v in

G can be defined in (1) as:

∞

∃→=
otherwise

vtosfrompathaifvspW
vsSPL

p

,

,):)(min(
),((1)

Here, >=< kvvvp ,....., 21 is a Shortest Path)(SP from

vertex 1v to vertex nkvk ≤≤1, . Therefore, SPL (also

termed weight) of p is the sum of the weight of its constituent

edges. Thus,

),()(
1

1
1∑

−

=
+

=
k

i
ii vvWpW (2)

As a consequence, SPL from vertex s to v in G means

any path p with weight,),()(vsSPLpW = [4, 11, 12].

III. NEGATIVE WEIGHT CYCLE

We assume that all vertices are reachable from s otherwise

unreachable vertices can be deleted from G in a linear-time at

preprocessing steps. In some instances of SSSPP , there may

be edges whose weights are negative. If the graph G has either

no negative-weight edges, or no reachable negative-weight

cycles from s then Vv ∈∀ , the),(vsSPL remains well

defined during computation even if it has a negative value;

otherwise SPLs are not well defined. No path from s to a

vertex on the cycle in this case can be a shortest path and a
lesser-weight path can always be found that follows the

proposed shortest path and then traverses the negative-

weight cycle. If there is a negative-weight cycle on some path

from vertex s to v , we define −∞=),(vsSPL . Illustration in

Figure 1 exemplifies the effect of negative weights and
negative-weight cycles on shortest path weights.

(a)

(b)

Fig. 1. Directed Weighted Graph with Negative Weight Cycle.

Within each vertex its shortest-path weight from source s is

shown. Vertices e and f appear in a negative-weight cycle

reachable from s , so they have shortest-path weights of ∞− .

Because vertex g is reachable from a vertex whose shortest-

path weight is ∞− , it, too, has a shortest-path weight of ∞− .

Vertices h , i , and j are not reachable from s , and so their

shortest-path weights are ∞ , even though they lie on a
negative-weight cycle [1, 8, 11, 13, 14].

IV. WEIGHT MATRIX REPRESENTATION

Edge weights),(jiW for the edges),(ji can be

interpreted as metrics (adjacency matrix, adjacency list etc) [8,
11, 15] other than distances. They are often used to represent
time, cost, penalties, loss, or any other quantity that
accumulates linearly along a path and that one wishes to

minimize. In a weighted digraph G , W has been defined in (3)

using adjacency matrix description of G as:

∞

∈

=

=

otherwise

Ejiedgetheoftc

ji

jiW

,

),(cos,

,0

),(
 (3)

Consider a digraph shown in Figure 2.

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 92

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

Fig. 2. Digraph without any self loop and negative weight

By definition in (3), weight matrix (also called cost matrix)
would be constructed in Table I below.

TABLE I. ADJACENCY MATRIX OF THE GRAPH SHOWN IN FIGURE 2

V. MATHEMATICAL INTERPRETATION

Shortest-paths algorithms typically rely on the property that
a shortest path between two vertices contains other shortest
paths within it.

Consider any i and j such that vjis ≤≤≤ , let

>=< jij vvvp ,....., 21 is the sub-path of),(jiSPL . Then,

ijp is a shortest path from vertex iv to jv . Let,][vSPLk
be

SPL of vertex k from s under the constraint that SPL

contains at most k edges. Obviously,

nvvsWvSPL ≤≤= 1],][[][1
. Our goal is to compute

VvvSPLk ∈∀− ,][1
 assuming this SPL contains at most

1−k edges and there are no cycles of negative length possible.

Taking strength (advantages) of dynamic programming [4], the
following observations [8, 11, 16] can be made.

•][][1 vSPLvSPL kk −= , if SPL has at most k edges

has no more than 1−k edges.

• }}]][[][{min,][min{][11 viWvSPLvSPLvSPL k

i

kk += −−

, if some intermediate vertex i enters in SPL .

Both Figure 3 and Figure 4 [17, 18] in sections VI and VII
respectively give an idea about the above discussion.

Fig. 3. How an edge enters the solution

Thus, the above observations could be a symbol of the

following recurrence relation for SPL .

1k2,}}]][[{min,][min{][11 −≤≤+= −− nviWSPLvSPLvSPL k

i

kk (4)

VI. VARIANTS

A number of variations are possible depending on the type
of network and costs involved, and source/destination pairs of
vertices (nodes) for which we need solution [4, 8, 11, 19].

• Cyclic or Acyclic problems – Graph with at least one
cycle. Otherwise, acyclic.

• %on-negative or %egative distance problems – If the
distances (edge weights) are non-negative or if there is
at least one negative distance.

• %on-negative cyclic or %egative cyclic problems –
cyclic problems with non-negative length of all cycles
or with at least one cycle has negative length.

• Sparse or Dense network problem – A network

with m , number of edges, closer to
2n (n is the

number of nodes) is a dense network.

• Single-source shortest path problem – shortest paths
from a source vertex s to all other vertices in the
graph.

• All-pairs shortest path problem – shortest paths

between every pair of vertices v , 'v in the graph.

• Single destination shortest path problem – shortest
paths from all vertices in the graph to a single

destination vertex d .

Thus, a problem of finding a shortest path in many network
as well as transportation related problems may arise as a main
decision question or as a step in some situation.

VII. PROPOSED WORK

The literature on the SSSPP is large, since computing

shortest paths in a given graph (both directed and undirected)
can be done in various ways. For example, consider Figure 4

[18]. It shows how an intermediate vertex Vk ∈ enters into a

tentative solution of shortest path from a source vertex s to

target vertex v . As one of the fundamental problems,

 Vi \ Vj V1 V2 V3 V4

 V1 0 26 14 ∞

W[i][j] = V2 21 0 9 22

 V3 11 8 0 ∞

 V4 ∞ 12 ∞ 0

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 93

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

competent way for finding SPL is still an important field of

research in computer science.

Fig. 4. Various ways to compute shortest path from source

The proposed algorithm for
23PS model is based on

computation of cost of each vertex independently. The

algorithm maintains a cost][vSPL for each vertex

v tentatively, such that some path from s to v has total

cost][vSPL . As the algorithm proceeds, these costs will

decrease in succession until for each vertex v ,][vSPL is the

cost of a minimum-cost path from s to v . Instead of normal

termination, the proposed algorithm finishes execution at the
moment when two successive stages of the algorithm, i.e. two

consequent instances of the ographPr of the given G, have

the same shortest path cost][vSPL for each vertex v .

Initially, it is assigned that 0][=sSPL and ∞=][vSPL for

every Vsv ∈≠ [13]. The algorithm maintains n partitions

at most of the n vertices. Each partition consists of each vertex

v and its corresponding adjacent vertices. Each partition acts

as respective node of our ographPr with node s as its root.

Still, these n partitions can be sub-grouped into three states:

• Unlabeled Vertices: those with infinite provisional
costs.

• Labeled Vertices: those with finite provisional cost
whose minimum cost is so far unknown.

• Scanned Vertices: those whose minimum cost is
known.

We start with s as labeled root node and all other vertices

are as unlabeled. The Prograph Based Shortest Path Algorithm

named as ()__Pr PathShortestograph described below

executes comparable to Bellman-Ford approach to some extent.

A variety of methods and algorithms are available for the

solution of SSSPPs depending on the nature of specific

problem [19]. Because of the nature of our problem, the
algorithm suggested in this paper consists of the following
steps and repeats till all vertices are scanned:

Algorithm: Prograph_Shortest_Path (G, E, V, W)

 Where G = weighted connected graph

 E = set edges in G.

 V = set of vertices in G.

 W = weight matrix (in adjacency matrix form).

Assumptions: Negative weighted edge (s) and self loop(s)

are removed.

(1) Initialize: p = q = 1

(2) Set i = source_vertex = 1

(3) Repeat for i = 1 to |E|

(4) Source[p++] = source_vertex (Ei) // keep source

// vertices

(5) End[q++] = terminal_vertex (Ei) // keep terminal

// vertices

(6) M=1 // determines number of nodes in prograph

(7) Repeat for j = 1 to |E|

(8) If i = Source(j)

(9) Continue

(10) Else

(11) i= Source(j)

(12) M++

(13) Set i = 1 // source vertex

(14) SPL[i] = 0 // source distance is 0

(15) k = 1

(16) X[k++] = Y[k++] = 0 // lists to check

// termination condition

(17) Repeat for i = 2 to |V|

(18) SPL[i] = ∞ // initialize shortest path to

// all vertices from source

// with unknown value.

(19) X[k++] = Y[k++] = 0

(20) Z = 1

(21) T = 0 // termination condition

(22) N = 1 // node 1 of prograph

(23) k = j = i = 1

(24) Repeat while Source[j] = i through line 32

// compute SPL from N to its adjacents

(25) If End[j] = source_vertex

(26) j++

(27) Continue // skip edge (Source(j), End(j))

(28) SPL[End(j)] = min{SPL[End(j)], SPL[Source(j)]

 + W(Source(j), End(j)}

(29) Y[k++] =1

(30) j++

(31) i = Source[j]

(32) N = N + 1

(33) If N ≤ M

(34) Go to line 24.

(35) Repeat for i = 1 to |Y|

(36) If X[i] ≠ Y[i]

(37) T = 1

(38) Break

(39) Repeat for i = 1 to |Y|

(40) X[i] = Y[i]

(41) If T = 1

(42) Z++ // determines number of iterations

(43) Go to line 21.

(44) Exit

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 94

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

Complexity Analysis: The running time complexity of the

()__Pr PathShortestograph algorithm could be

analyzed in the following ways: (1) The number of edges E
with non-negative weight can be found in Ω(|E|) time. (2) Lines
3 – 5 enqueue source and terminal vertices in two lists needed
for Relaxation [8] and needs Ω(|E|) time. (3) Lines 6 – 12
compute number of nodes M which are to be in

our ographPr . This can also be computed in Ω(|E|) time. (4)

Now, M ≤ |V|, before relaxation of edges, all the vertices are
assumed to have unknown cost (shortest path reachable from
source) with reachable path length of source vertex s

is 0]1[=Source . These initializations necessitate Ω(|V|)

time. (5) Whenever two consecutive instances of the

ographPr of the underlying problem are identical, relaxation

is stopped. This checking is done Z (a constant) times. This

Z naturally is reasonably a very small non-negative integer

number. Generally Z is 2. (6) Reachable tentative path lengths
from source vertex s to other vertices v are computed through

lines 21 – 43. These relaxations will be continued till YX = .
Thus, overall running time complexity of the algorithm

executes in Θ(Z|V||E|) time. Since Z is a constant and has
numerical value 2 in general, thus the proposed algorithm runs
in Θ(|V||E|) time.

VIII. EXPERIMENTAL RESULTS

In this section we will now look at an example of how our
suggested algorithm works on a weighted digraph shown in

Figure 5 to solve SSSPP in optimal way with ographPr .

Fig. 5. Weighted Digraph for SPL computation

 Now, the edge set E = {(V1,V2), (V1,V4), (V1,V5),
(V2,V1), (V2,V3), (V2,V4), (V3,V1), (V3,V4), (V3,V5),
(V4,V2), (V4,V3), (V4,V5), (V5,V3), (V5,V4)}.

When there are no cycles of negative length, we know that
there is a shortest path between two vertices. The digraph in

Figure 5 contains 5== Vn vertices. So, a SPL between

any vertices has at most 1−n edges on it. The proposed

algorithm during execution examines updating SPL on the

cost matrix W constructed in Table II along with its reflection

on the nodes of the ographPr worked out in sequence from

Figure 7 through Figure 12.

TABLE II. ADJACENCY MATRIX OF THE GRAPH SHOWN IN FIGURE 5

Suppose, 1Vs = , the first vertex (source of journey) is

appeared in SPL . We follow the convention vertex iV simply

as vertex i . So, path length for s is 0]1[]1[== SPLVSPL .

For simplicity, we need to have SPL from this s to

remaining vertices. Typical initial configuration of the

ographPr would look like as Figure 6.

Fig. 6. Initial arrangement of Prograph for SPL from vertex 1

Node 1 consists of source vertex s and its adjacent vertices.

Similarly, it is applicable to other nodes. However, each node
each is related in top-down manner. Tentative path length value

of a vertex in a node of the ographPr will be treated with its

present value in next node if the vertex appears. But source
vertex s would not be appeared as adjacent of the current

 Vi \ Vj V1 V2 V3 V4 V5

 V1 0 4 ∞ 5 14

W[i][j] = V2 2 0 8 7 ∞

 V3 8 ∞ 0 1 3

 V4 ∞ 9 5 0 2

 V5 ∞ ∞ 7 3 0

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 95

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

vertex in current node. Following iterations give details how to

compute SPL from s through Relaxation [8] of edges in E .

Iteration I:

X[1… n] = Y[1… n] = {0}

Compute Node 1 (N1) relaxing edges with starting vertex 1

i.e. 1V

SPL [2] = min {SPL [2], SPL [1] + W [1][2]}

 = min {∞, 0 + 4}

 = 4

Y[2] = 1

SPL [4] = min {SPL [4], SPL [1] + W [1][4]}

 = min {∞, 0 + 5}

 = 5

Y[3] = 1

SPL [5] = min {SPL [5], SPL [1] + W [1][5]}

 = min {∞, 0 + 14}

 = 14

Y[4] = 1

Fig. 7. Computation at Node 1

Relaxing edges with starting vertex 2 i.e. 2V

SPL [3] = min {SPL [3], SPL [2] + W [2][3]}

 = min {∞, 4 + 8}

 = 12

Y[5] = 1

SPL [4] = min {SPL [4], SPL [2] + W [2][4]}

 = min {5, 4 + 7}

 = 5

Y[6] = 1

Fig. 8. Computation at Node 2

Relaxing edges with starting vertex 3 i.e. 3V

SPL [4] = min {SPL [4], SPL [3] + W [3][4]}

 = min {5, 12 + 1}

 = 5

Y[7] = 1

SPL [5] = min {SPL [5], SPL [3] + W [3][5]}

 = min {14, 12 + 3}

 = 14

Y[8] = 1

Fig. 9. Computation at Node 3

Relaxing edges with starting vertex 4 i.e. 4V

SPL [2] = min {SPL [2], SPL [4] + W [4][2]}

 = min {4, 5 + 9}

 = 4

Y[9] = 1

SPL [3] = min {SPL [3], SPL [4] + W [4][3]}

 = min {12, 5 + 5}

 = 10

Y[10] = 1

SPL [5] = min {SPL [5], SPL [4] + W [4][5]}

 = min {14, 5 + 2}

 = 7

Y[11] = 1

Fig. 10. Computation at Node 4

Relaxing edges with starting vertex 5 i.e. 5V

SPL [3] = min {SPL [3], SPL [5] + W [5][3]}

 = min {10, 7 + 7}

 = 10

Y[12] = 1

SPL [4] = min {SPL [4], SPL [5] + W [5][4]}

 = min {5, 7 + 3}

 = 5

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 96

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

Y[13] = 1

Fig. 11. Computation at Node 5

Now Y is compared with X . If both are same, no further

visit of nodes in the ographPr takes place. Otherwise

content of Y is transferred to X follow by start computing

SPL from s again as the above procedure. In Iteration I it is

just observed that YX ≠ . Computation needs again relaxation
beginning with first edge (Source [1], End [1]). After Iteration I

the ographPr would look like as illustrated in Figure 12.

Fig. 12. Shortest Path Length from Vertex V1 to Others in Iteration I

Minimum path length in terms of edge cost from source

vertex 1V to all remaining vertices is shown in association

with starting vertex of every node Vi%i ≤≤1, .

Proceeding in the same way (Z times) we would have our

preferred solution. As 2=Z , the ographPr of the final

solution would be same as portrayed in Figure 12 at the end of

Iteration II, since no change does takes place. Thus, SPL from

source vertex s to rest of the vertices can be viewed at a glance

like as Figure 13.

Fig. 13. Shortest Path Length from Vertex V1 to Others Fig. 5

Every node):(c%i in Figure 13 represents a node

Vi%i ≤≤1, and its associated cost say c

)..(SPLei from s .

IX. COMPARISON STUDY

The
23PS model could be solved easily with BFS [8, 16]

graph traversal algorithm under a special case when all weights
are 1 or shortest paths with unweighted graphs [12].
Theoretically, most efficient known algorithm for the problem
was devised by Dijkstra in the year 1959 and since then it is
known as the Dijkstra’s algorithm [8, 16]. It is believed that
first polynomial run time algorithm for Shortest Path Problem
which is based on Greedy approach is this Dijkstra’s algorithm.
Dijkstra's original algorithm runs in O(n

2
) time. Later the

algorithm has been implemented more efficiently in O((m +
n)logn) ≈ O(mlogn) time. However, this algorithm does not
work on the digraphs with negative edge weights. Richard
Bellman, Samuel End and Lester Ford Jr. solved the underlined
problem with more powerful approach called Dynamic
Programming [8, 11, 16]. And the algorithm they devised is
popular as Bellman-Ford algorithm. It runs in Θ(n

3
) time and

Θ(mn) time whenever adjacency matrix and adjacency list are
used correspondingly [16]. Although few non-negative edge

weights have been considered in the proposed
23PS model, it

allows negative edge weights without any “Loss of Generality”
[8, 11] of the Dynamic Programming Approach. Therefore, this
algorithm which also runs in Θ(mn) time using adjacency
matrix, should be considered preferable due to its open
acceptability and powerfulness of Dynamic Programming [4]
and superb easy understandable way to represent solution using

ographPr . The illustration computes a shortest-path tree

similar to BFS tree.

X. CONCLUDING REMARKS

 Our optimization technique is to detect vertices with exact
distance labels from source vertex s . It should be noted that the

proposed algorithm is competitive to algorithms used
commonly in practice for shortest path computations. We
implemented our approach without adjacency list
representation of cost matrix and are able to estimate overall

complexity in Θ(|V||E|) time. Two lists X and Y in this paper

ETASR - Engineering, Technology & Applied Science Research Vol. 1, �o. 4, 2011, 90-97 97

www.etasr.com Bhowmik and �ag Chowdhury: Prograph Based Analysis of SSSPPs with Few Distinct Positive Lengths

have replaced the significance of the adjacency list. We showed
that our algorithm has better time complexity over classical
Bellman-Ford algorithm. Still no algorithm is known that is

asymptotically faster for this SSSPP . Before we draw a

concluding remark it should have to be brought up to date that
our algorithm suggests and in addition yields exact result
whenever negative weighted edges are allowed.

ACKNOWLEDGMENT

The first author would like to express heartily gratitude to
his beloved Madhurima Mondal and her friends, B.Tech 3

rd

Year Students, Department of Computer Science &
Engineering, Bengal College of Engineering and Technology,
Durgapur, India for their useful notes with solved assignments
without which the draft of this paper would not be completed in
time. The author would also like to convey his thankfulness to
Dr. S. Ranbir Singh, Assistant Professor, Department of
Computer Science & Engineering, Indian Institute of
Technology Guwahati for his valuable suggestions, and
remarks.

REFERENCES

[1] James B. Orlin, Kamesh Madduri, K. Subramani, M. Williamson , “A
faster algorithm for the single source shortest path problem with few
distinct positive lengths”, Journal of Discrete Algorithms, Elsevier, Vol.
3, No. 1, pp. 1-10, 2009

[2] Ammar W. Mohemmed, Nirod Chandra Sahoo, “Efficient Computation
of Shortest Paths in Networks Using Particle Swarm Optimization and
Noising Metaheuristics”, Discrete Dynamics in Nature and Society,
Vol. 2007, No. 4, pp. 1-25, 2007

[3] Rogger S. Pressman, Software Engineering – A Practioner’s Approach,
Mc-Graw Hill, 2001

[4] Biswajit Bhowmik, “Dynamic Programming – Its Principles,
Applications, Strengths, and Limitations”, International Journal of
Engineering Science and Technology, Vol. 2, No. 9, pp. 4822 – 4826,
2010

[5] F. B. Zahn, C. E. Noon, “Shortest path algorithms: an evaluation using
real road networks”, Transportation Science, Vol. 32, No. 1, pp. 65–73,
1998

[6] G. Desaulniers, F. Soumis, “An efficient algorithm to find a shortest
path for a car-like robot”, IEEE Transactions on Robotics and
Automation, Vol. 11, No. 6, pp. 819–828, 1995

[7] David Eppstein, “Finding the k Shortest Paths”, 1997, available at
http://www.ics.uci.edu/»eppstein/.

[8] Thomas H. Coremen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein, Introduction to Algorithms, PHI, 2008

[9] Biswajit Bhowmik, “Studies on Dimultigraph and Prograph Based
Applications of Graph Theory in Computer Science”, International

Journal of Computer and Communication Technology, Vol. 1, No. 2, 3,
4, pp. 57-61, 2010

[10] N. Deo, Graph Theory with Applications to Engineering and Computer
Science, PHI, 2002

[11] Biswajit Bhowmik, Design and Analysis of Algorithms, S. K. Kataria
and Sons, 2011

[12] http://gabrielistrate.weebly.com

[13] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, Robert E. Tarjan,
“Faster Algorithms for the Shortest Path Problem”, Journal of the
Association for Computing Machinery, Vol. 37, No. 2, pp. 213-223,
1990

[14] M.H. Alsuwaiyel , Algorithms Design Techniques and Analysis, PHEI,
2003

[15] D. Samanta, Classic Data Structures, PHI, 2010

[16] Ellis Horowitz, Sartaj Sahani, Sanguthevar Rajasekaran, Fundamentals
of Computer Algorithms, Golgotia, 1998

[17] Surender Baswana, Tobias Friedrich, Somenath Biswas, Piyush P.
Kurur, Benjamin Doerr, Frank Neumann, “Computing Single Source
Shortest Paths using Single-Objective Fitness Functions”, FOGA’09,
January 9–11, 2009

[18] http://theory.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/13-sssp.pdf

[19] Farrukh Shehzad, Muhammad Akbar Ali Shah, “Evaluation of Shortest
Paths in Road Network”, Pakistan Journal of Commerce and Social
Sciences Vol. 3, pp. 67 – 79, 2009

AUTHORS PROFILE

Biswajit Bhowmik is a very renowned faculty member currently with Bengal
College of Engineering and Technology, Durgapur, India as Assistant
Professor in the Department of Computer Science & Engineering. He is a
member of different professional bodies such as IEEE, IACSIT, IAENG,
PASS, IAOE, and UACEE. He is also member of some leading professional
societies such as IEEE Computer Society, IEEE Communications Society,
IAENG Society of Computer Science, IAENG Society of Software
Engineering, IAENG Society of Wireless Networks, and IAENG Society of
Artificial Intelligence. He is reviewer of several international journals such as
IJCSIC, IJCSIS, JACSM, IJoAT, JWMC etc in the area of computer science.
He has authored a book titled Design and Analysis of Algorithms. He has
many publications in international journals including international conference
proceedings on the subjects ranging from Algorithms Analysis, Graph Theory,
Compiler Design, and Mobile Computing. In addition his area of interests
includes Data Structures & Algorithms, Software Engineering, Computational
Geometry, and Green Computing. He has guided several projects at under
graduate level.

Sreyasi 3ag Chowdhury is a 3rd Year UG (B.Tech) student in the
Department of Computer Science & Engineering at Bengal College of
Engineering and Technology, Durgapur, India.

