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Abstract — In this paper we propose an experimental study 

model 
23PS of a fast fully dynamic programming algorithm 

design technique in finite directed graphs with few distinct 

nonnegative real edge weights. The Bellman-Ford’s approach for 

shortest path problems has come out in various implementations. 

In this paper the approach once again is re-investigated with 

adjacency matrix selection in associate least running time. The 

model tests proposed algorithm against arbitrarily but positive 

valued weighted digraphs introducing notion of ographPr  

that speeds up finding the shortest path over previous 

implementations. Our experiments have established abstract 

results with the intention that the proposed algorithm can 

consistently dominate other existing algorithms for Single Source 

Shortest Path Problems. A comparison study is also shown 

among Dijkstra’s algorithm, Bellman-Ford algorithm, and our 

algorithm. 

Keywords — shortest Path; negative weight cycle; weight 

matrix; variants; program-graph; SPL; dense network; scanned 

vertices; relaxation. 

 

I. INTRODUCTION 

Computation of Shortest Path )(SP is one of the most 

fundamental problems in graph theory. Both in operations 
research over and above theoretical computer science areas, the 

Single Source Shortest Path Problem )(SSSPP  is an 

extremely well-studied problem because of its broad 
applicability in a wide range of domains [1, 2]. The wide 
spectrum of its applications ranges from the routing problem in 
communication networks to robot motion planning, highway 
and power line engineering etc. Many optimization problems 
solved by dynamic programming or more complicated matrix 
searching techniques, such as the 0/1 knapsack problem, 
construction of optimal inscribed polygons, sequence 
alignment in molecular biology, length-limited Huffman 
coding etc, are expressed as shortest path problems. These also 
include scheduling problems such as critical path computation 
in PERT [3] charts. Moreover, the shortest-path problem as 
well has numerous variations such as the minimum weight 
problem, the quickest path problem etc. Our motivation for 
focusing on the algorithmic processes of these shortest path 

problems with few distinct edge lengths initiates from a 
problem that arises in social networks [1-7]. The Shortest Path 

Problems )(SPPs have been, and still is, investigated by 

many researchers and mathematicians. With the rapid 
advancements and developments in communication, computer 
science and transportation systems, more variants of the 

SPPs  have appeared. Some of these are the traveling 

salesman problem, K-shortest paths, constrained shortest-path 
problem, multi-objective shortest path problem, network flow 

problems, and so forth including our key SSSPP [2, 4, 8]. In 

this paper, we propose a model 
23PS that provides an 

algorithm similar to classical Bellman-Ford procedure that 

solves SSSPP . The model is represented with a digraph with 

few positive real edge weights introducing 

GraphogramPr  or simply ographPr [9, 10] where 

each computation is performed at every node. The paper has 
been organized in the following sections.  

• Problem Definition. 

• Negative Weight Cycle. 

• Representation of Weight Matrix. 

• Mathematical Background.  

• Shortest Path Variations. 

• Proposed Work. 

• Experimental Results. 

• Comparison Study. 

• Conclusion. 

The Bellman-Ford’s approach for shortest path problems 
has come into practice with different tools. The approach in 
this paper is re-investigated with adjacency matrix selection in 

associate least running time. The proposed model 
23PS on 

experiments has established abstract results with the intention 
that the proposed algorithm can consistently dominate other 
existing algorithms for the underlying problem. A comparison 
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study is shown among Dijkstra’s algorithm, Bellman-Ford 
algorithm and our algorithm. 

II. STATEMENT OF PROBLEM 

Let us consider a weighted directed graph 

),,( WEVG = with vertex set V  of size n , edge (or simply 

arc) set E of size m , and weight function 

REW →: assigning a real valued weight (cost) to each edge 

in G . Then, a directed Shortest Path Length )(SPL from a 

given source (starting) vertex s to each other vertex v in 

G can be defined in (1) as: 


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Here, >=< kvvvp ,....., 21  is a Shortest Path )(SP from 

vertex 1v  to vertex nkvk ≤≤1,  . Therefore, SPL  (also 

termed weight) of p  is the sum of the weight of its constituent 

edges. Thus,   
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As a consequence, SPL from vertex s to v in G means 

any path p  with weight, ),()( vsSPLpW = [4, 11, 12]. 

III. NEGATIVE WEIGHT CYCLE 

We assume that all vertices are reachable from s  otherwise 

unreachable vertices can be deleted from G  in a linear-time at 

preprocessing steps. In some instances of SSSPP , there may 

be edges whose weights are negative. If the graph G has either 

no negative-weight edges, or no reachable negative-weight 

cycles from s  then Vv ∈∀ , the ),( vsSPL remains well 

defined during computation even if it has a negative value; 

otherwise SPLs are not well defined. No path from s  to a 

vertex on the cycle in this case can be a shortest path and a 
lesser-weight path can always be found that follows the 

proposed shortest  path and then traverses the negative-

weight cycle. If there is a negative-weight cycle on some path 

from vertex s  to v , we define −∞=),( vsSPL . Illustration in 

Figure 1 exemplifies the effect of negative weights and 
negative-weight cycles on shortest path weights. 

 

(a) 

 

(b) 

Fig. 1.  Directed Weighted Graph with Negative Weight Cycle. 

Within each vertex its shortest-path weight from source s is 

shown. Vertices e and f  appear in a negative-weight cycle 

reachable from s , so they have shortest-path weights of ∞− . 

Because vertex g  is reachable from a vertex whose shortest-

path weight is ∞− , it, too, has a shortest-path weight of ∞− . 

Vertices h , i , and j  are not reachable from s , and so their 

shortest-path weights are ∞ , even though they lie on a 
negative-weight cycle [1, 8, 11, 13, 14]. 

IV. WEIGHT MATRIX REPRESENTATION 

Edge weights ),( jiW for the edges ),( ji can be 

interpreted as metrics (adjacency matrix, adjacency list etc) [8, 
11, 15] other than distances. They are often used to represent 
time, cost, penalties, loss, or any other quantity that 
accumulates linearly along a path and that one wishes to 

minimize. In a weighted digraph G , W has been defined in (3) 

using adjacency matrix description of G as: 
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Consider a digraph shown in Figure 2.  
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Fig. 2.  Digraph without any self loop and negative weight  

 

By definition in (3), weight matrix (also called cost matrix) 
would be constructed in Table I below. 

TABLE I.  ADJACENCY MATRIX OF THE GRAPH SHOWN IN FIGURE 2 

 

V. MATHEMATICAL INTERPRETATION 

Shortest-paths algorithms typically rely on the property that 
a shortest path between two vertices contains other shortest 
paths within it.  

Consider any i  and j  such that vjis ≤≤≤ , let 

>=< jij vvvp ,....., 21 is the sub-path of ),( jiSPL . Then, 

ijp is a shortest path from vertex iv to jv . Let, ][vSPLk
be 

SPL of vertex k from s  under the constraint that SPL  

contains at most k edges. Obviously, 

nvvsWvSPL ≤≤= 1],][[][1
. Our goal is to compute 

VvvSPLk ∈∀− ,][1
  assuming this SPL contains at most 

1−k edges and there are no cycles of negative length possible. 

Taking strength (advantages) of dynamic programming [4], the 
following observations [8, 11, 16] can be made.  

• ][][ 1 vSPLvSPL kk −= , if SPL  has at most k  edges 

has no more than 1−k edges.  

• }}]][[][{min,][min{][ 11 viWvSPLvSPLvSPL k

i

kk += −−

, if some intermediate vertex i  enters in SPL .  

Both Figure 3 and Figure 4 [17, 18] in sections VI and VII  
respectively give an  idea about the above discussion. 

 

Fig. 3.  How an edge enters the solution  

Thus, the above observations could be a symbol of the 

following recurrence relation for SPL . 

1k2,}}]][[{min,][min{][ 11 −≤≤+= −− nviWSPLvSPLvSPL k

i

kk       (4) 

VI. VARIANTS 

A number of variations are possible depending on the type 
of network and costs involved, and source/destination pairs of 
vertices (nodes) for which we need solution [4, 8, 11, 19]. 

• Cyclic or Acyclic problems – Graph with at least one 
cycle. Otherwise, acyclic. 

• %on-negative or %egative distance problems – If the 
distances (edge weights) are non-negative or if there is 
at least one negative distance. 

• %on-negative cyclic or %egative cyclic problems – 
cyclic problems with non-negative length of all cycles 
or with at least one cycle has negative length. 

• Sparse or Dense network problem – A network 

with m , number of edges, closer to 
2n ( n is the 

number of nodes) is a dense network. 

• Single-source shortest path problem – shortest paths 
from a source vertex s to all other vertices in the 
graph.  

• All-pairs shortest path problem – shortest paths 

between every pair of vertices v , 'v  in the graph.  

• Single destination shortest path problem – shortest 
paths from all vertices in the graph to a single 

destination vertex d .  

Thus, a problem of finding a shortest path in many network 
as well as transportation related problems may arise as a main 
decision question or as a step in some situation. 

VII. PROPOSED WORK 

The literature on the SSSPP  is large, since computing 

shortest paths in a given graph (both directed and undirected) 
can be done in various ways. For example, consider Figure 4 

[18]. It shows how an intermediate vertex Vk ∈ enters into a 

tentative solution of shortest path from a source vertex s  to 

target vertex v . As one of the fundamental problems, 

 Vi \ Vj V1 V2 V3 V4 

 V1 0 26 14 ∞ 

W[i][j] = V2 21 0 9 22 

 V3 11 8 0 ∞ 

 V4 ∞ 12 ∞ 0 
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competent way for finding SPL  is still an important field of 

research in computer science.  

 

Fig. 4.  Various ways to compute shortest path from source   

The proposed algorithm for 
23PS model is based on 

computation of cost of each vertex independently. The 

algorithm maintains a cost ][vSPL for each vertex 

v tentatively, such that some path from s to v  has total 

cost ][vSPL . As the algorithm proceeds, these costs will 

decrease in succession until for each vertex v , ][vSPL is the 

cost of a minimum-cost path from s to v . Instead of normal 

termination, the proposed algorithm finishes execution at the 
moment when two successive stages of the algorithm, i.e. two 

consequent instances of the ographPr of the given G, have 

the same shortest path cost ][vSPL  for each vertex v . 

Initially, it is assigned that 0][ =sSPL and ∞=][vSPL for 

every Vsv ∈≠ [13]. The algorithm maintains n  partitions 

at most of the n  vertices. Each partition consists of each vertex 

v  and its corresponding adjacent vertices. Each partition acts 

as respective node of our ographPr with node s  as its root. 

Still, these n  partitions can be sub-grouped into three states:  

• Unlabeled Vertices: those with infinite provisional 
costs. 

• Labeled Vertices: those with finite provisional cost 
whose minimum cost is so far unknown.  

• Scanned Vertices: those whose minimum cost is 
known.  

We start with s  as labeled root node and all other vertices 

are as unlabeled. The Prograph Based Shortest Path Algorithm 

named as ()__Pr PathShortestograph described below 

executes comparable to Bellman-Ford approach to some extent.  

A variety of methods and algorithms are available for the 

solution of SSSPPs  depending on the nature of specific 

problem [19]. Because of the nature of our problem, the 
algorithm suggested in this paper consists of the following 
steps and repeats till all vertices are scanned: 

Algorithm: Prograph_Shortest_Path (G, E, V, W) 

 Where G = weighted connected graph  

     E = set edges in G. 

    V = set of vertices in G. 

   W = weight matrix (in adjacency matrix form). 

Assumptions: Negative weighted edge (s) and self loop(s) 

are removed. 

 

(1) Initialize: p = q = 1 

(2) Set i = source_vertex = 1   

(3) Repeat for i = 1 to |E| 

(4) Source[p++] = source_vertex (Ei)    // keep source  

// vertices 

(5) End[q++] = terminal_vertex (Ei) // keep terminal  

// vertices  

(6) M=1  // determines number of nodes in prograph 

(7) Repeat for j = 1 to |E| 

(8) If  i = Source(j) 

(9)      Continue 

(10) Else 

(11)      i= Source(j) 

(12)      M++ 

(13) Set i = 1  // source vertex 

(14) SPL[i] = 0 // source distance is 0 

(15) k = 1 

(16) X[k++] = Y[k++] = 0    // lists to check  

// termination condition 

(17) Repeat for i = 2 to |V|  

(18) SPL[i] = ∞      // initialize shortest path to  

// all vertices from source   

// with unknown value. 

(19) X[k++] = Y[k++] = 0 

(20) Z = 1 

(21) T = 0   // termination condition 

(22) N = 1   // node 1 of prograph 

(23) k = j = i = 1 

(24) Repeat while  Source[j] = i through line 32     

// compute SPL from N to its adjacents  

(25) If End[j] = source_vertex 

(26)       j++ 

(27)       Continue  // skip edge (Source(j), End(j)) 

(28) SPL[End(j)] = min{SPL[End(j)], SPL[Source(j)]   

                             + W(Source(j), End(j)} 

(29) Y[k++] =1 

(30)  j++ 

(31) i = Source[j] 

(32) N = N + 1 

(33) If N ≤ M 

(34) Go to line 24.  

(35) Repeat for  i = 1 to |Y|  

(36) If X[i] ≠ Y[i]   

(37)     T = 1 

(38)     Break 

(39) Repeat for i = 1 to |Y| 

(40) X[i] = Y[i]   

(41) If T = 1 

(42) Z++ // determines number of iterations 

(43) Go to line 21. 

(44) Exit 
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Complexity Analysis: The running time complexity of the 

()__Pr PathShortestograph  algorithm could be 

analyzed in the following ways: (1) The number of edges E 
with non-negative weight can be found in Ω(|E|) time. (2) Lines 
3 – 5 enqueue source and terminal vertices in two lists needed 
for Relaxation [8] and needs Ω(|E|) time. (3) Lines 6 – 12 
compute number of nodes M which are to be in 

our ographPr . This can also be computed in Ω(|E|) time. (4) 

Now, M ≤ |V|, before relaxation of edges, all the vertices are 
assumed to have unknown cost (shortest path reachable from 
source) with reachable path length of source vertex s  

is 0]1[ =Source . These initializations necessitate Ω(|V|) 

time. (5) Whenever two consecutive instances of the 

ographPr  of the underlying problem are identical, relaxation 

is stopped. This checking is done Z (a constant) times. This 

Z  naturally is reasonably a very small non-negative integer 

number. Generally Z  is 2. (6) Reachable tentative path lengths 
from source vertex s to other vertices v are computed through 

lines 21 – 43. These relaxations will be continued till YX = . 
Thus, overall running time complexity of the algorithm 

executes in Θ(Z|V||E|) time. Since Z  is a constant and has 
numerical value 2 in general, thus the proposed algorithm runs 
in Θ(|V||E|) time. 

VIII. EXPERIMENTAL RESULTS 

In this section we will now look at an example of how our 
suggested algorithm works on a weighted digraph shown in 

Figure 5 to solve SSSPP  in optimal way with ographPr .   

 

Fig. 5.  Weighted Digraph for SPL computation 

 Now, the edge set E = {(V1,V2), (V1,V4), (V1,V5), 
(V2,V1), (V2,V3), (V2,V4), (V3,V1), (V3,V4), (V3,V5), 
(V4,V2), (V4,V3), (V4,V5), (V5,V3), (V5,V4)}. 

When there are no cycles of negative length, we know that 
there is a shortest path between two vertices. The digraph in 

Figure 5 contains 5== Vn vertices. So, a SPL  between 

any vertices has at most 1−n  edges on it. The proposed 

algorithm during execution examines updating SPL  on the 

cost matrix W  constructed in Table II along with its reflection 

on the nodes of the ographPr worked out in sequence from 

Figure 7 through Figure 12. 

TABLE II.  ADJACENCY MATRIX OF THE GRAPH SHOWN IN FIGURE 5 

 

Suppose, 1Vs = , the first vertex (source of journey) is 

appeared in SPL . We follow the convention vertex iV simply 

as vertex i . So, path length for s is 0]1[]1[ == SPLVSPL . 

For simplicity, we need to have SPL  from this s  to 

remaining vertices. Typical initial configuration of the 

ographPr would look like as Figure 6. 

 

Fig. 6.   Initial arrangement of  Prograph for SPL from vertex 1 

Node 1 consists of source vertex s and its adjacent vertices. 

Similarly, it is applicable to other nodes. However, each node 
each is related in top-down manner. Tentative path length value 

of a vertex in a node of the ographPr  will be treated with its 

present value in next node if the vertex appears. But source 
vertex s would not be appeared as adjacent of the current 

 Vi \ Vj V1 V2 V3 V4 V5 

 V1 0 4 ∞ 5 14 

W[i][j] = V2 2 0 8 7 ∞ 

 V3 8 ∞ 0 1 3 

 V4 ∞ 9 5 0 2 

 V5 ∞ ∞ 7 3 0 
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vertex in current node. Following iterations give details how to 

compute SPL from s through Relaxation [8] of edges in E . 

Iteration I:  

X[1… n] = Y[1… n] = {0} 

Compute Node 1 (N1) relaxing edges with starting vertex 1 

i.e. 1V   

SPL [2] = min {SPL [2], SPL [1] + W [1][2]}     

             = min {∞, 0 + 4} 

      = 4 

Y[2] =  1 

SPL [4] = min {SPL [4], SPL [1] + W [1][4]}  

      = min {∞, 0 + 5} 

      = 5 

Y[3] =  1 

 

SPL [5] = min {SPL [5], SPL [1] + W [1][5]}  

      = min {∞, 0 + 14} 

      = 14 

Y[4] =  1 

 
Fig. 7.  Computation at Node 1  

Relaxing edges with starting vertex 2 i.e. 2V  

 

SPL [3] = min {SPL [3], SPL [2] + W [2][3]}

 = min {∞, 4 + 8} 

 = 12 

Y[5] =  1 

SPL [4] = min {SPL [4], SPL [2] + W [2][4]}

 = min {5, 4 + 7} 

 = 5 

Y[6] =  1 

 

 

Fig. 8.  Computation at Node 2 

Relaxing edges with starting vertex 3 i.e. 3V  

SPL [4] = min {SPL [4], SPL [3] + W [3][4]}

 = min {5, 12 + 1} 

 = 5 

Y[7] =  1 

SPL [5] = min {SPL [5], SPL [3] + W [3][5]}

 = min {14, 12 + 3} 

 = 14 

Y[8] =  1 

 
 

Fig. 9.  Computation at Node 3 

Relaxing edges with starting vertex 4 i.e. 4V  

SPL [2] = min {SPL [2], SPL [4] + W [4][2]}

 = min {4, 5 + 9} 

 = 4 

Y[9] =  1 

SPL [3] = min {SPL [3], SPL [4] + W [4][3]}

 = min {12, 5 + 5} 

 = 10 

Y[10] =  1 

 

SPL [5] = min {SPL [5], SPL [4] + W [4][5]}

 = min {14, 5 + 2} 

 = 7 

Y[11] =  1 

 

Fig. 10.  Computation at Node 4 

Relaxing edges with starting vertex 5 i.e. 5V  

SPL [3] = min {SPL [3], SPL [5] + W [5][3]}

 = min {10, 7 + 7} 

 = 10 

Y[12] =  1 

SPL [4] = min {SPL [4], SPL [5] + W [5][4]}

 = min {5, 7 + 3} 

 = 5 
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Y[13] =  1 

 
 

Fig. 11.  Computation at Node 5 

Now Y  is compared with X . If both are same, no further 

visit of nodes in the ographPr  takes place. Otherwise 

content of Y  is transferred to X  follow by start computing 

SPL  from s again as the above procedure. In Iteration I it is 

just observed that YX ≠ . Computation needs again relaxation 
beginning with first edge (Source [1], End [1]). After Iteration I 

the ographPr  would look like as illustrated in Figure 12. 

 

Fig. 12.  Shortest Path Length from Vertex V1 to Others in Iteration I   

 

Minimum path length in terms of edge cost from source 

vertex 1V  to all remaining vertices is shown in association 

with starting vertex of every node Vi%i ≤≤1, .  

Proceeding in the same way ( Z times) we would have our 

preferred solution. As 2=Z , the ographPr  of the final 

solution would be same as portrayed in Figure 12 at the end of 

Iteration II, since no change does takes place. Thus, SPL from 

source vertex s to rest of the vertices can be viewed at a glance 

like as Figure 13. 

 

Fig. 13.  Shortest Path Length from Vertex V1 to Others Fig. 5   

Every node ):( c%i in Figure 13 represents a node 

Vi%i ≤≤1, and its associated cost say c  

)..( SPLei from s . 

IX. COMPARISON STUDY 

The 
23PS model could be solved easily with BFS [8, 16] 

graph traversal algorithm under a special case when all weights 
are 1 or shortest paths with unweighted graphs [12]. 
Theoretically, most efficient known algorithm for the problem 
was devised by Dijkstra in the year 1959  and since then it is 
known as the Dijkstra’s algorithm [8, 16]. It is believed that 
first polynomial run time algorithm for Shortest Path Problem 
which is based on Greedy approach is this Dijkstra’s algorithm. 
Dijkstra's original algorithm runs in O(n

2
) time. Later the 

algorithm has been implemented more efficiently in O((m + 
n)logn) ≈ O(mlogn) time. However, this algorithm does not 
work on the digraphs with negative edge weights. Richard 
Bellman, Samuel End and Lester Ford Jr. solved the underlined 
problem with more powerful approach called Dynamic 
Programming [8, 11, 16]. And the algorithm they devised is 
popular as Bellman-Ford algorithm. It runs in Θ(n

3
) time and 

Θ(mn) time whenever adjacency matrix and adjacency list are 
used correspondingly [16]. Although few non-negative edge 

weights have been considered in the proposed 
23PS model, it 

allows negative edge weights without any “Loss of Generality” 
[8, 11] of the Dynamic Programming Approach. Therefore, this 
algorithm which also runs in Θ(mn) time using adjacency 
matrix, should be considered preferable due to its open 
acceptability and powerfulness of Dynamic Programming [4] 
and superb easy understandable way to represent solution using 

ographPr . The illustration computes a shortest-path tree 

similar to BFS tree.  

X. CONCLUDING REMARKS 

 Our optimization technique is to detect vertices with exact 
distance labels from source vertex s . It should be noted that the 

proposed algorithm is competitive to algorithms used 
commonly in practice for shortest path computations. We 
implemented our approach without adjacency list 
representation of cost matrix and are able to estimate overall 

complexity in Θ(|V||E|) time. Two lists X and Y in this paper 
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have replaced the significance of the adjacency list. We showed 
that our algorithm has better time complexity over classical 
Bellman-Ford algorithm. Still no algorithm is known that is 

asymptotically faster for this SSSPP . Before we draw a 

concluding remark it should have to be brought up to date that 
our algorithm suggests and in addition yields exact result 
whenever negative weighted edges are allowed.  
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