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Abstract-This paper proposes an algorithm to generate the 

reference trajectory based on recurrent neural networks for an 
excavator arm working in a dynamic environment. Firstly, the 

dynamic of the plant which includes the tracking controller, the 

arm, and the pile is appropriated by a recurrent neural network. 

Next, the recurrent neural network combined with a Model 

Reference Adaptive Controller (MRAC) is used to calculate the 

reference trajectory for the system. In this paper, the generated 

trajectory is changed depending on the variation of the pile to 

maximize the dug weight. This algorithm is simple but effective 

because it only needs information about the weight at each duty 

cycle of the excavator. The efficiency of the overall system is 

verified through simulations. The results show that the proposed 

scheme gives a good performance, i.e. the dug weight always 

remains at the desired value (nominal load) as the pile changes its 
shape during working time. 

Keywords-adaptive controller; excavator arm;neural network; 

path planning; uncertainties 

I. INTRODUCTION  

The automatic control of an excavator system is a major 
issue in the field of excavator research [1, 2]. By unmanned 
operation, the excavator systems not only keep the workers safe 
but also increase efficiency. However, in order to finish the 
task without an operator, the trajectory should be designed 
carefully. Thus, many researches on creating the trajectory for 
the general manipulator and the excavator have been published. 
In [3, 4], the 3D trajectory is built by using the information 
from sensors, cameras, and scanners. The advantage of these 
types of feedback signals is that they can track the change of 
the working environment. However, if the working 
environment lacks light or is dusty, the reliability of the 
obtained imagines can be reduced. In [5], a laser scanner is 
used to get the shape of the pile. From this information, the 
model of the pile is built and divided into small layers. The 
local path is designed according to these layers before creating 

the global path. In [6], the integrated physics-based model is 
presented for a mobile excavator. In this work, the current 
position of the excavator arm is returned to the control system 
to predict the trajectory for the next cycle. In [7, 8], a neural 
network is used to calculate the optimal trajectory for the 
excavator arm. However, these trajectories only work well in 
static environments. In [9], excavation trajectories are 
generated using the velocity and the acceleration of each 
hydraulic cylinder. The generated trajectories are optimal and 
stable but the velocity and the acceleration are difficult to 
measure. In [10], with the purpose of optimizing the efficiency 
for a semi-automated or fully automated excavator system, the 
trajectory is classified into 4 categories based on the location 
and the angle of the bucket. From these 4 trajectory types, the 
operator or the automatic controller will make a suitable 
decision as the environment changes. The problem of optimal 
working time and torque motion of the excavator in 
consideration with the boundary of the actuator’s ability is the 
role of path planning [11]. In this scheme, the trajectory is 
planned based on B-spline technique using information about 
soil parameters and system dynamics.  

Neural networks are known as a good way of dealing with 
path planning problems. In [12-14], neural networks are used to 
generate collision-free trajectories for robots. In [12], the robot 
works in a dynamic environment with U-shaped and varying 
obstacles. The reference trajectory of the robot is generated by 
using a topologically organized neural network. In this 
network, the dynamic of each neuron is characterized by a 
shunting equation. The same neural network topology is used 
in [13] for a multirobot system with moving obstacles. The 
trajectory planning for the manipulator robot based on a neural 
network model of the harmonic function is introduced in [14]. 
Trajectories are built based on neural networks to optimize the 
jerk in [15] or the working time in [16]. Neural networks are 
used in the field of path planning with many different purposes 
[17-19]. 
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In this paper, an algorithm based on neural networks is 
proposed for an excavator arm working in a dynamic 
environment. The dynamic model of the inner loop which 
includes the tracking controller, the excavator arm, and the pile 
is approximated by a neural network. A second, Recurrent 
Neural Network (RNN) combined with the Model Reference 
Adaptive Controller (MRAC) algorithm is used to calculate the 
reference trajectory for the system. By this combination, the 
calculated trajectory can be adjusted after each duty cycle to 
adapt with the change of the pile and the dug weight remains 
around the nominal value despite the reduction of the pile. The 
effectiveness of the overall system is verified through 
simulations. The contributions of the proposed algorithm are 
concluded as: 

• It can work in a dynamic environment, something that is 
restricted in [8]. 

• The dug weight remains in an acceptable range during the 
digging process although the material is reducing. 

The proposed scheme uses only the feedback signal from 
the weight sensor to generate the path. This is more reliable 
than cameras or scanners [3-5] and it is easier to measure than 
velocity and acceleration [9].  

II. PROBLEM DESCRIPTION 

In order to maximize the efficiency of the excavator, one of 
the requirements is that during the digging process, the dug 
mass at each time must be maintained in a given acceptable 
range. However, the shape of the pile is changing while the 
excavator is digging up the material. Therefore, if the trajectory 
of the excavator remains the same and the dug stack declines 
over each period of the process, the requirement will not be 
guaranteed. Hence, the excavator driver has to observe the 
excavated weight and trajectories in the previous digging to 
choose an appropriate trajectory next time with an expectation 
that the mass in the next period will be acceptable. A trajectory 
generator based on this structure is proposed to replace the 
excavator driver, which will completely automate the digging 
process. Before going to solve the described problem, the 
following assumptions are made: 

• The pile lies above the ground and has a triangular shape as 
shown in Figure 1. 

• After a digging cycle, the material on the top of the pile will 
lie down and fill in the space that was taken, so the pile will 
maintain the triangular shape with a different slope. 

• The dug weight in each period is limited by the volume of 
the bucket. 

• The trajectory in each period is represented by a set of 
parameters. 

The task of the trajectory generator is to observe the weight 
and the trajectory’s parameters in the previous period in order 
to adjust suitably the trajectory parameters in the next one. In 
order to execute the algorithm, the excavator’s trajectory has a 
parabolic shape, however, in fact, the excavator’s trajectory 
often has a more complex shape due to many practical 
conditions. The parabolic shape is described by: 
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where K, h and p are scalars. In this work, we have just change 
the parameter h, which corresponds to the coordinate of the 
vertex on the horizontal axis. Therefore, each trajectory will be 
represented by a single value h.  

 

 

Fig. 1.  The shape of the hypothetical pile model. 

The block diagram of the overall system is illustrated in 
Figure 2. It can be seen that the desired trajectory which is 
generated by the module is denoted as q*. The desired 
trajectory is a reference for the excavator controller, and the 
output of the excavator is q, which affects the dug weight. If 
the tracking controller has a good performance, the equivalent 
model of the controller and the excavator can be viewed as a 
dynamic model which has a static gain of one. In this paper, the 
equivalent model is considered as a first order system as 
follows: 

1
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This means that the trajectory error reduces exponentially 
over time. 

 

 
Fig. 2.  Block diagram of the overall system. 

III. ALGORITHM FOR GENERATING THE REFERENCE 

TRAJECTORY 

In fact, one does not have complete information about the 
dynamics of the pile. Therefore, a decision on the appropriate 
trajectory can only be done in practice by observing the pile’s 
response in accordance with the trajectories that the excavator 
made. Hence, the pile can be considered as a black box, and 
designing a controller for a black box leads to the idea of the 
neural network-based MRAC. The control structure of the 
neural-network based MRAC can be seen in Figure 3. In this 
Figure, the trajectory generator block can be seen as a 
controller of the outer loop. This controller is responsible for 
keeping the dug weight within the specific range as the shape 
of the pile changes. 
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Fig. 3.  Control structure of neural network-based MRAC. 

This is an offline process, the first step of the design is 
identifying the plant with the usage of neural network, and the 
next step is creating a neural network-based controller 
according to the identified plant in the previous step. Note that, 
the plant now contains the pile, the excavator, and the tracking 
controller. The input of the plant is the desired trajectory q*, 
whereas the practical trajectory created by the excavator is q 
because of the control error which should affect the dug 
weight. Then, the robot excavates the pile with the trajectory q 
and obtains a weight m. In the identification problem, because 
the user concerns only about the dug weight after each time the 
excavator finishes, the object can be viewed as a discrete-time 
system. A discrete-time system can be described as: 

* *

1( ,..., , ,..., )
u yk k k n k k nm f q q m m− − −=     (3) 

Discrete-time system identification can be carried out by 
using a nonlinear autoregressive network with exogenous 
inputs denoted as NARX. The NARX’s architecture is 
illustrated in Figure 4, where the input and feedback output of 
the network pass through the Tapped-Delay-Lines (TDLs) 
which make up the dynamics of the network. 

 

 
Fig. 4.  Parallel and series-parallel architectures of the NARX network. 

A feature that makes the NARX become regularly usable in 
identification problems is that it has only a feedback from the 
network’s output. Therefore, in the training process, one can 
remove this feedback and consider the feedback output as a 
second input to the network. The opened architecture, referred 
as a series-parallel architecture (Figure 4), is used in one-step-
ahead prediction. The training process of the opened network is 
much simpler than that of the closed network, because one can 
utilize the traditional back-propagation algorithm for the 

opened network training. After the opened-network training 
process is completed, the network can predict one-step ahead, 
however the objective is to identify the system, which means 
that the network can make a multi-step-ahead prediction. 
Therefore, the performance of the closed network is often not 
good enough. Hence, one should continue training the closed 
network based on the opened network. However, training a 
closed network can still confront the problem of gradient 
vanishing, which is a well-known problem in the training of 
RNNs. Thus, the original training set is divided into subsets 
which have a smaller size. The network is trained with these 
subsets. When the training process with these subsets is over, 
the size of each subset is increased by a small number, and the 
training restarts with the new bigger subset. These steps are 
repeated until the size of the subset becomes equal with the size 
of the original training set. The algorithm is shown in Figure 5, 
which begins with the size of each subset equal to the 
maximum number of delays (MD) in the TDL of the network 
plus one that is equivalent to the training opened network. In 
Figure 5, MD is the Maximum number of Delays of both 
input’s TDL and feedback output’s TDL. Q, c, n are the length 
of the original batch, the length of the mini batch, and the 
number of subsets’ respectively, x is the network’s parameters, 
eik represents the error which corresponds with the k

th element 
of the ith subset, li(x) is the squared error which corresponds to 
the i

th
 subset, L(x) is the loss function which is the Mean 

Square Error of the original batch.  

 

 
Fig. 5.  Training algorithm of the closed network. 

Note that each adjacent subset has some similar elements, 
with size equivalent to MD in the TDL. These elements are 
used as the initial conditions for the network. To guarantee that 
the objective function includes all elements in the original 
training batch, a subset is created to overlap the adjacent one. 
Once the closed network has finished training, we will create 
the controller network based on the object network. To train the 
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controller network, the whole structure that contains the plant 
network and the controller network must be considered as a 
major network. Then, this network is used to approximate the 
given reference model. However, during the training process, 
only the controller network’s parameters are adjusted in order 
to optimize the objective function, while the object network’s 
parameters are kept unchanged. The well-known back-
propagation algorithm is used to train the major network, the 
error between reference model’s output and this network’s 
output back-propagates through layers of the network, and the 
controller network’s parameters are updated. 

IV. NETWORK TRAINING AND SIMULATION 

A. Plant Network 

Neural networks are known as a powerful technique to 
model a system with a mathematical model unknown or 
difficult to build [20, 21]. In this section, a neural network is 
used to model the plant which consists of the pile, the 
excavator, and the tracking controller. The first step of training 
the plant network is collecting data from the object. The 
performance of the network depends significantly on the way 
the data cover and describe the operating range of the object. In 
system identification problems, the data are often obtained by 
generating the input signal in the form of a sequence of step 
functions that have random durations and amplitudes. In this 
case, the reference input signal is produced with a random 
amplitude within the intervals [0.3, 0.5] and [0.5, 0.8] in the 
first 100 and the next 100 steps respectively. The duration of 
each step function is d∈[1, 10]. The main reason is that the 
collected data need to cover the operation range of the object. 
In the first 100 steps, because the size of the pile is still large, 
one should use a trajectory with small h. In contrast, in the next 
100 steps, because a large amount of the pile is already taken, 
one needs to shift the range of the trajectory deep inside the 
pile with the expectation that the excavated weight is still 
acceptable. This signal is applied to the plant, then the plant’s 
output is collected. The obtained data are shown in Figure 6. 

 

 
Fig. 6.  A mini batch of the training data for the plant network. 

Note that there are 40 mini batches whose length is 200 
samples, however Figure 6 only shows an instance of the mini 
batches. Before training, the input data are normalized in the 
range [-1, 1]. Note that h is the representation of the desired 
trajectory, the control error in the controlling robot affects the 
practical trajectory, so the dug weight could not be the same as 
expected. In this case, the collected data include this control 
error. When the training data are available, the plant network 
can be designed. This network is illustrated in Figure 7. The 

input of the network passes through a 0:1 TDL. The TDL of the 
input has a current element (zero delay) due to the pile feature. 
When one adjusts the excavator’s trajectory, the dug weight 
immediately changes depending on the shift of the trajectory, 
therefore the current component is added to demonstrate this 
feature. The TDL of network’s feedback output is 1:5. The 
Bayesian regularization algorithm is used for training. The 
training result is shown in Figure 8. Then, the network is tested 
with the testing data. The test result is illustrated in Figure 9. 

 

 
Fig. 7.  Plant network’s architecture. 

 
Fig. 8.  Training result of the plant network. 

 
Fig. 9.  Testing result of the plant network. 

B. Controller Network 

First of all, one must choose an appropriate reference 
model. Note that the plant network is of the 5th order, thus, a 
fifth-order dead-beat system is utilized as a reference model. 
The transfer function of the chosen reference model is: 

1 2 3 4 5
5 4 3 2

( )
15

z z z z z
Gm z

− − − − −
+ + + +

=     (4) 

The next step is collecting data from the reference model 
for the controller training set. The training data for the 
controller is demonstrated in Figure 10. The left side in Figure 
10 shows the input data of the training set. The right side shows 
the response of the reference model. Note that the initial value 
of the reference model’s output is the limited dug weight, this 
means that the dug weight can reach the maximum value in the 
first period. It can be seen that although the controller only 



Engineering, Technology and Applied Science Research Vol. 11, No. 3, 2021, 7088-7093 7092 
 

www.etasr.com Vu et al.: Recurrent Neural Network-based Path Planning for an Excavator Arm under Varying … 

 

operates with unit set-point, the input has different values that 
range from 0.4 to 1. The reason is that the controller has to 
work with different states of the object, so this type of input 
helps training the controller with practical states of the object, 
e.g. the controller can be trained to give a suitable trajectory 
that will help the dug weight increase from 0.5, which is its 
current value, to the desired value of 1. The training data have 
8 mini batches, each mini batch having a length of 90 samples. 
Figure 10 illustrates an example of the total training set. The 
major neural network’s architecture, which includes the plant 
network and the controller network, is shown in Figure 11. The 
transfer function of the output layer of the controller is the 
tansig function, which means that the output of the controller is 
within the range from -1 to 1 which is equal to the normalized 
input range of the plant network. 

 

 
Fig. 10.  Training data of the controller network. 

 
Fig. 11.  Major network’s architecture. 

 
Fig. 12.  Training result of the major network. 

The used training algorithm is the Bayesian regularization. 
Figure 12 describes the training result of the major network. It 
can be seen that the training error is very small, therefore the 
controller can be tested on the practical object.  

C. Stability Analysis 

The system contains a plant neural network and a controller 
neural network. It is a five-layer discrete-time RNN. To 
analyze the stability of the RNN, there are several stability 
criteria [22-25]. In this case, the stability criteria from [22] 

were applied. To do so, the recurrent neural network will be put 
in the standard form as: 

x(k+1) = f(W^1x(k)+W^2x(k+1)+b)    (5) 

where x(k) is defined as a vector of layers' output in the past 
(such as a^1(k-1), a^2(k-1), a^2(k-2), a^2(k-3) ..., where a^i is 
the output of layer i, i=1,2…5), W^1 and W^2 are the weight 
matrices of layer 1 and 2. The size of the state vector is 41 in 
this case. We did obtain the matrices W^1 and W^2, b and f, but 
the upper bound and lower bound matrices for the function 
vector f(41×1) must be found as the requirement of the stability 
criteria in [20]. This leads to the problem that the equilibrium 
point of the system in (5) must be determined. It is not easy to 
find the equilibrium point in this case because its size is 41 and 
the function vector includes nonlinear functions such as the 
tansig. Thus, in this work the stability of the system is verified 
through simulations. 

D. Simulation Results 

In order to verify the effectiveness of the proposed scheme, 
simulations are done in Matlab/Simulink. In the simulations, 
the initial path of the arm is set so that the dug mass is 0.4. The 
trajectory generator should calculate the reference trajectory for 
the plant to meet the requirement. The dug weight desired 
value is tracked during working time despite the change of the 
pile. Figure 13(a) shows the change of the pile during working 
time. Initially, the slope of the pile is about 62 degrees. 
Because of the digging, this slope will decrease gradually and 
reach the value of 46 degrees at the 42th step. Figure 13(b) 
shows the values of h for each step. The initial value of h is set 
at -0.9 and after 50 steps its value is 0.8. Corresponding with 
these 50 values of h, 50 trajectories will be generated to adapt 
to the change of the pile.  

 

 
(a)        (b) 

Fig. 13.  The change of system during working time. (a) θ, (b) h. 

 
Fig. 14.  The dug weight response during working time. 
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Figure 14 illustrates the dug weight response of the system 
during working time. In the first step, the excavator works with 
the given trajectory and the dug weight is 0.4. The information 
about the trajectory and the weight will be given to the 
controller to calculate the reference trajectory for the next step. 
After 5 steps, the dug weight accomplishes the desired value 
and remains at this state during the working time despite the 
change of the pile. 

V. CONCLUSION 

A simple but efficient algorithm has been proposed to 
design the reference trajectory for an excavator arm in a 
dynamic environment. The model of the tracking controller, the 
arm, and the pile is approximated, at first by an RNN. A second 
RNN combined with the MRAC algorithm is used to calculate 
the reference trajectory of the system. By this combination, the 
calculated trajectory can be adjusted after each duty cycle to 
adapt with the change of the pile so that the dug weight remains 
around the nominal value despite the reduction of the pile. The 
effectiveness of the overall system was verified through 
simulations. The results show that the proposed scheme gives a 
good performance, i.e. the dug weight always tracks the 
nominal value as the pile changes its shape during working 
time. 
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