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Abstract—Keeping computer reliability to confirm reliable, 

secure, and truthful correspondence of data between different 

enterprises is a major security issue. Ensuring information 

correspondence over the web or computer grids is always under 

threat of hackers or intruders. Many techniques have been 

utilized in intrusion detections, but all have flaws. In this paper, a 
new hybrid technique is proposed, which combines the Ensemble 

of Feature Selection (EFS) algorithm and Teaching Learning-

Based Optimization (TLBO) techniques. In the proposed, EFS-

TLBO method, the EFS strategy is applied to rank the features 

for choosing the ideal best subset of applicable information, and 

the TLBO is utilized to identify the most important features from 

the produced datasets. The TLBO algorithm uses the Extreme 

Learning Machine (ELM) to choose the most effective attributes 

and to enhance classification accuracy. The performance of the 

recommended technique is evaluated in a benchmark dataset. 

The experimental outcomes depict that the proposed model has 

high predictive accuracy, detection rate, false-positive rate, and 

requires less significant attributes than other techniques known 
from the literature. 

Keywords-classification; feature selection; teaching learning-

based optimization; intrusion detection 

I. INTRODUCTION  

Despite the increasing alertness in cyber-security problems, 
the present ongoing solutions are not suitable for shielding 
computer applications or undertaking security frameworks 
against the risk from consistently ever-propelling organized 
assaults [1]. Adaptable security methods were developed to 
solve this issue, but they turned out to have further issues. 
Typical cyber-security methods are insufficient to entirely 
defend web computer security, since they face problems from 
intruder attempts at the initiation of the security procedure, e.g. 
user authentication and firewalling [2, 3]. Thus, a different line 
of threat protection is acutely mentioned in the Intrusion 
Detection Systems (IDSs). An IDS is a program that observes 
the internet for venomous actions and policy contraventions 
[4]. At present, IDS along with safe-guard applications have 
resolved into an indispensable element of computer security of 
most companies. The union of the above-mentioned security 
machines provides increased opposition in network-attacks and 
improves network security.  

II. RELATED WORK 

Gradually, inexhaustible applications, e.g. choice and order 
models have been put in to intrusion datasets (i.e. KDD CUP 
1999) for detecting network problems and attacks. Attribute 
selection with learning algorithms couldn’t control or scale to 
very large volumes of datasets [5]. To beat this impediment, 
authors in [6, 7] proposed another hybrid feature selection 
technique that diminishes the non-applicable features and 
selects the best ideal component subsets. The recurring pattern 
study in [8] indicated that individual hunt calculation locates 
the most suitable subsets that amplify information over-fitting, 
while a probing interest is less prone to information over-fitting 
in the part assurance, developing a modest number of tests [9]. 
Authors in [10] proposed the use of ELM and alpha profiling to 
diminish the required time while superfluous highlights were 
disposed of utilizing a group of separated, relationship and 
consistency-based feature selection procedures. 

A. Filter-based Methods 

Optimum and appropriate feature subset selection is a task 
accomplished by choosing the qualities dependent on the high 
connections of concerning classes and uncorrelated features. 
From the Conditional Mutual Information Maximization 
(CMIM) method, Feature/attributes Subset Selection (FSS) is 
conducted depending on maximizing conditional mutual 
information [11] regarding the class. In addition, it is extremely 
close with class attributes and uncorrelated to attributes. It 
makes a compromise between the predictive power of the 
nominated competitor (significance for the class carrier) and its 
freedom from all recently chosen attributes. Mutual 
Information (MI) estimation between the class label y and 
attributes X is calculated in: 

���; �� = ���� − ��	��	�   (1) 

where ����  and ��	��	�  show the entropy and conditional 
entropy of the class change respectively. Some writers have 
mentioned issues using the Mutual Information-based Feature 
Selection (MIFS) technique [7, 12]. Therefore, we used this 
strategy to decrease the readability between class y and data 
attributes as shown in (2). The primary objective of CMIM is to 
choose the final feature subset that conveys as much 
information as possible from the sample S:  
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������� = 	 		���		∈�
��� ��; �� ��� �    (2) 

where ����  estimates the mutual information between the 
full features set �� and certain features �� regarding class label 
y, whereas S shows the subsets of the selected features. 

�	 ��; �� ��� �  measures the quantity of the classification 
information that ��  affords when ��  has been selected [13]. 
Selected feature subset S cannot provide this information. As 

comparison to �	��; ���	 , �	 ��; �� ��� �  does not contain the 
superfluous data of pair wise attributes for categorization. 

The importance of the input attributes defined by the JMI is 
shown in (3):  

������ = 	∑ 	���∈�  ��; ��; �! ∝ ∑ 	���	∈� ��; �� ��� �    (3) 

where �	 ��; ��; �! signifies the mutual information between 
the novel attribute subset ��  and the selected attributes �� 
regarding class y. In linguistics of mutual information, the 
determination of attribute choice is to reduce attribute subsets S 
with N attributes with a maximum holding on the target class c. 
This structure, called Max-Dependency, has the form of: 

#$�	%��, �� = 	���; �', �(, … , �*� = 	����� �	 �
�+ ,�, ,…,�-

	�    (4) 

In (3), the holding among attribute � is resultant and can 
have a high value [14]. The correspondence between 
readability between attributes is expressed in (5) and (6): 

min	Z	�X, c	� = 	 1 ∣ 6( ∣⁄ ∑ 	���∈8  ��; ��!    (5) 

Max	∅�%, =� = 	w	– 	Z    (6) 
The incorporation (i.e. integration) of (5) and (6) is known 

as the Minimal-Redundancy-Maximal-Relevance (mRMR) 
[15]: 

@�A�A�∅� = 	��B;�� −	1 ∣ 6( ∣⁄ ∑ 	���∈8  ��; ��!    (7) 
where �� is a selected subset of attributes S and �� is a native 
feature set.  

B. The Proposed Ensemble Feature Selection  

The pre-owned Feature Selection strategies are mRMR, 
JMI, and CMIM which can relegate the position of the IDS 
datasets and the output is aggregated utilizing a combination 
strategy [7]. 

C. Frequency Vote 

Frequency Vote (FV) is a cooperative decision making 
framework that has been proposed as more useful than other 
increasingly complex plans [16]. Thus, we can follow the most 
voted prediction as to the last prediction or expectation as per 
(8): 

∑ C�,�
£
�E' = 	$FG#$��∈{',(,⋯,J} ∑ C�,�

£
�E'     (8) 

where £ shows the number of attribute choice methods, and L is 
a selection of some attributes. For attribute j, the sum 
∑ C�,�£�E' 	tabulates the number of votes for j.  

D. Using Teaching Learning-Based Optimization (TLBO)  

TLBO [17-19] is the best and most powerful metaheuristic 
method to apply high convegence rate with less adjusting 
parameters. It is an easy and simple computation of tuning the 
control parameters with less memory requirments. The working 
methodology of the TLBO algorithm can create better 
evaluation outcome [20]. The position of the ith learner is : 

��,� = L��,' , ��,( , … ,��,MN	    (9) 
where OP 	shows the lower limit	and QP 	shows the upper limit	of 
the R dimension in the search area	��,M ∈ 	 [	OP 	, QP] [21]. The 
learner � is unplanned, initialized in the search area [22]. The 
development (i.e. evolution) of ��,� is generated by: 

��,� = OP,� +	F' 	∗ 	 QP,� −	OP,� 	!    (10) 
where i=1, 2, 3, ..., nWop, 	X = 1,2,3, … , R , F'	 signifies the 
unplanned variable, OP,� shows the lower limit	and QP,� shows 
the upper limit	value, and nPop denotes the population count 
[23]. The simulation of an old-style initiation procedure is 
arranged into two critical stages of the TLBO calculation: the 
teacher stage and the learner stage.  

In TLBO algorithm, the teacher is a quantification of 
obtaining an ideal output gained from optimization problems. 
Therefore, the teacher can grow the mean result of a classroom 
to a specific result which relies on the ability of the complete 

classroom. Let �,�= (1/nWop) (Σ��,�) be the mean value of the 
particular subject where k=1, 2,…,R. Equation (11) shows the 
updating equation process: 

��,�
�[\ =	��,�

]^_ +	F( ∗  �`[abc[d −	ef ∗ �,�!	 
&		ef=   round[1+rand(0,1)]    (11) 

where �`[abc[d  is the greatest begineer of the embrance group 
(i.e. population) at the current duplication of the algorithm,	F( 
represents random numbers, ef behaves as a teaching element 
that chooses the merit of the mean to be changed. In each 

iteration, ��,�
�[\ 	is updated from the old merit ��,�

]^_ . ��,�
�[\  and 

��,�
]^_  denote the k-th beginer choice after or before it is 
modernized by the teacher.  

E. The Fitness Function 

The fitness function must maximize the categorization 
Accuracy of the calculations accomplished by the best 
attributes during the progresive (i.e. evolutionary) process, 
which is defined as: 

Accuracy = ghig*
ghig*ijhij*  

TP, TN, FP, and FN stand for True Positive, True Negative, 
False Positive, and False Negative respectively. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

During the experiments, every record had features such as 
feature name, records, and feature portrayal. Most IDS 
numerical studies have been performed on NSL-KDD [24]. 
This data set have varying data importance and feature 
integrity. Authors in [25] analyzed the deliberate intrusion 
dataset called KDD Cup 1999 [36]. Every record is tagged as 
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normal or as an attack type in the dataset. The flowchart of the 
proposed method can be seen in Figure 1. 
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Fig. 1.  General structure of the proposed model for intrusion detection.  

A. Results and Discussion 

Different exploratory tools and techniques were used on the 
NSL-KDD dataset (see Table I) [14, 25, 26]. The classification 
performance is estimated with the assistance of the support 
vector machine categorization with four execution variables. 
These exhibition measures, along with Accuracy, are [27-29]: 

Detection Rate: DR
TP

TP FN
=

+

 

Precision: Pr
TP

TP FP
=

+

 

F-measure = 
2* Pr* Re

Pr Re+

 

False Alarm Rate: FAR
TP

TN FP
=

+

 

B. Result Comparison  

Tenfold cross-validation was applied to ELM [7] and other 
classifiers, namely SVM [30, 31] and NB in the IDS dataset. 
Table I shows the comparison of the performance of the 
proposed algorithm with existing known algorithms. The result 
shows that the proposed algorithm performs better on the basis 

of parameters like feature, DR, FPR and Accuracy in the same 
data set. Only five of the attributes have been selected by the 
proposed method which can identify intrusion attacks in the 
network with maximum Accuracy. 

TABLE I.  PERFORMANCE COMPARISON OF THE PROPOSED AND 

EXISTING ALGORITHMS IN THE SAME DATABASE 

Algorithm Feature DR FPR Accuracy 

LSSVM-IDS + 

FMIFS [32] 
18 98.93 0.28 99.94 

TUIDS [33] All 98.88 1.12 96.55 

HTTP based IDS [34] 13 99.03 1.0 99.38 

Hybrid IDS [35] All 99.10 1.2 * 

Proposed 5 99.31 0.19 99.95 
 

IV. CONCLUSION 

In this study, a novel hybrid model called EFS-TLBO with 
ELM is proposed, to easily identify threats by using the 
attribute choice algorithm [7] which increases the perceptive 
power for better class distinction. For exhibiting the superiority 
of the proposed technique, the NSL-KDD database of intruders 
was employed. The results show that the proposed technique 
provides an important depletion to the required features and 
outperforms the advanced attribute selection techniques from 
the literature. The practical results show that the suggested 
technique achieved an accuracy of 99.95% in the NSL-KDD 
data set of intruders [36, 37], surpassing the other techniques.  

Future work is going to be focused on multi-objective 
algorithms that combine ensemble filter and classification 
methods for pattern analysis and intrusion attack detection. 
Also, some different optimization algorithms for ELM 
parameter optimization are going to be researched. 
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