
Engineering, Technology & Applied Science Research Vol. 11, No. 3, 2021, 7283-7289 7283 

 

www.etasr.com Alshammari et al.: A Local Search-based Non-dominated Sorting Genetic Algorithm for Optimal Design … 

 

Local Search-based Non-dominated Sorting Genetic 

Algorithm for Optimal Design of Multimachine 

Power System Stabilizers 
 

Fahad A. Alshammari 

Department of Electrical Engineering  
University of Hail 
Hail, Saudi Arabia 

fahad.a.s.alshammari@gmail.com 

Ahmed A. Alzamil 

Department of Electrical Engineering  

University of Hail 
Hail, Saudi Arabia 

aa.alzamil@uoh.edu.sa 

Gharbi A. Alshammari 

Department of Electrical Engineering  
University of Hail 
Hail, Saudi Arabia 

gharbi.a.alshammari@gmail.com 

Badr M. Alshammari 

Department of Electrical Engineering  

University of Hail 
Hail, Saudi Arabia 

bms.alshammari@uoh.edu.sa  

Tawfik Guesmi 

Department of Electrical Engineering  
University of Hail 
Hail, Saudi Arabia 

tawfik.guesmi@istmt.rnu.tn 

Ahmed S. Alshammari 

Department of Electrical Engineering  

University of Hail 
Hail, Saudi Arabia 

ahm.alshammari@uoh.edu.sa 

 

Abstract-This study presents a metaheuristic method for the 

optimum design of multimachine Power System Stabilizers 

(PSSs). In the proposed method, referred to as Local Search-

based Non-dominated Sorting Genetic Algorithm (LSNSGA), a 

local search mechanism is incorporated at the end of the second 

version of the non-dominated sorting genetic algorithm in order 

to improve its convergence rate and avoid the convergence to 
local optima. The parameters of PSSs are tuned using LSNSGA 

over a wide range of operating conditions, in order to provide the 

best damping of critical electromechanical oscillations. 

Eigenvalue-based objective functions are employed in the PSS 

design process. Simulation results based on eigenvalue analysis 

and nonlinear time-domain simulation proved that the proposed 

controller provided competitive results compared to other 
metaheuristic techniques. 

Keywords-power system stabilizer; non-dominated sorting 

genetic algorithm; local search; eigenvalue analysis; nonlinear 

time domain simulation 

I. INTRODUCTION  

The complexity of electricity networks due to several 
economic, ecological, and technical exigencies has obliged 
electric companies to operate at full network capacity in order 
to achieve a balance between the increased consumption and 
the production, under severe conditions increasingly close to 
the stability limits. Under these drastic conditions and 
operating limits, the occurrence of any contingencies or 
disturbances such as short-circuits, sudden variations in loads, 
and line outage, can lead to a critical situation often starting 
with poorly damped Electromechanical Oscillations (EMOs) 
followed by loss of synchronism and system instability [1]. For 
instance, these low frequency oscillations may limit the transfer 
capacity of the power system and continue to grow up resulting 

in the separation of the system if no adequate response is 
quickly taken. To overcome the problem of EMOs and improve 
the system damping, additional stabilizing signals are usually 
added to the excitation system via the voltage regulator [2]. 
The Conventional Power System Stabilizer (CPSS) has long 
been employed to damp out EMOs. Generally, CPSSs are 
based on lead-lag compensators with fixed parameters 
determined at the nominal operating condition. However, 
power systems are strongly nonlinear with configurations and 
load changing over time, which implies that these fixed 
parameters of the stabilizers are no longer adapted to the new 
operating conditions [3]. Therefore, the fundamental problem is 
not only to determine the optimal parameters of these 
stabilizers, but also to make them adapt to the modification of 
the operating points and system configurations. Within this 
context, diverse research works have been directed towards the 
design of Power System Stabilizers (PSSs) with optimal 
performance for a wide range of system parameters, 
configurations, and operating conditions [4-8]. From the 
literature review, it was found that several ideas and methods 
have been suggested for the optimal setting of PSS parameters. 
The most used PSS design methods are summarized in [9-10] 
and are divided into three main categories which are adaptive 
control [11-12], linear approximation [13], and nonlinear 
models [14]. In [12], Model Reference Adaptive System-based 
PSS (MRAS-PSS) design has been addressed. The 
performance of the MRAS-PSS has been assessed through 
Nonlinear Time Domain Simulation (NTDS). Despite the fact 
that the adaptive control-based PSS may mitigate the 
shortcomings of CPSS, it appears complex in nature and costly.  

Several numerical techniques have been suggested for the 
enhancement of small signal stability of interconnected 
multimachine power systems, such as linear programming and 
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gradient methods [15]. Unfortunately, these classical methods 
require initialization of the problem solutions and they are 
iterative. Thus, they may fail to converge to the global optima. 
To avoid the limitations of classical techniques, 
nonconventional optimization techniques have been used for 
solving several complex problems. In particular, these 
techniques have demonstrated high performance when applied 
to power system problems, such as the problem of the 
enhancement of power system stability. For instance, a Genetic 
Algorithm (GA)-based method for the optimal setting of lead-
lag PSSs parameters was suggested in [16]. In [4], the same 
regulators have been optimally designed using Simulated 
Annealing (SA) where the objective function has been 
optimized in order to shift all electromechanical modes to the 
left side in the s-plane. An artificial bee colony-based method 
has been suggested in [6] for dynamic stability enhancement 
and its performance was compared with other techniques. In 
[17], a time domain response based function has been 
minimized using Particle Swarm Optimization (PSO) in order 
to tune the parameters of PSS regulators. These regulators are 
employed for damping inter-area oscillations and local modes. 
In [18], the whale optimization algorithm was used for tuning 
the PSS regulators in order to suppress power system 
oscillations and maintain system stability after the occurrence 
of faults. The authors have considered an eigenvalue-based 
objective function in the design process. Other metaheuristic 
techniques have also been employed for the enhancement of 
power system stability, such as the Bacteria Foraging 
Optimization Algorithm (BFOA) [19] and Fuzzy Gravitational 
Search Algorithm (FGSA) [20]. Unfortunately, these random-
based methods have been criticized for their low convergence 
rate and the fact that they can be trapped in local minima when 
complex multimodal problems are considered [21]. Within this 
context, a modified version of the Non-dominated Sorting 
Genetic Algorithm (NSGAII) for the optimal design of PSS 
regulators is presented in this study. The main contributions of 
this work are: 

• Two eigenvalue-based objective functions are optimized 
simultaneously in order to provide optimum PSS design. 
The first one is related to the real part of the 
electromechanical modes whilst the second one 
corresponds to the damping ratios of the same modes. The 
optimization of these two objective functions aims to shift 
all electromechanical modes as much as possible in the left 
side of the s-plane. In order to make the proposed controller 
more robust, the PSS parameters are optimized over a wide 
range of operating conditions. 

• The aforementioned objective functions are minimized 
simultaneously using an improved version of the NSGAII. 
To do this, a local search procedure is embedded at the end 
of all iterations of the NSGAII in order to increase its 
convergence rate and avoid the convergence to local 
optima. Decision variables of the problem are the PSS 
parameters and the problem constraints are the bounds of 
these parameters.  

• The simulation results based on eigenvalue analysis and 
nonlinear time domain simulation demonstrated that the 
proposed controller provided results competitive with the 

other metaheuristic techniques implemented recently for the 
resolution of the PSS design problem, such as NSGAII, SA 
[4] and Fuzzy Gravitational Search Algorithm (FGSA) 
[20].  

II. PROBLEM FORMULATION OF PSS DESIGN 

A. Power Network Model 

For stability studies, power network is mostly modeled by a 
set of nonlinear Differential-Algebraic Equations (DAE) as 
given in (1)-(3): 

�� = ���, �, �	
    

(1) 

0 = ���, �	    (2) 
� = ℎ��, �, �	

    
(3) 

The state variables vector and the algebraic variables vector 
are represented by � and � respectively. � and � express the 
input variables vector and the output variables set respectively. 
The equations of network power flow are represented by a 
nonlinear algebraic set defined with the symbol � . The 
dynamics of the system and controller are expressed by the 
first-order nonlinear differential equations described by the 
function �. The output variables are described by function h. 

In this study, the state vector is � = [� � ���  ���  ]� . 
where � is the rotor angle, and � is the rotor speed. ���  is the 
internal voltage and ��� is the field voltage. The bus voltage 
magnitudes and phase angles constitute the vector Y. The PSS 
output signals constitute the control vector �. The PSS design 
is based on a linearized incremental model of the power 
system. At an equilibrium point of the power system, the state 
equations of the system can easily be written if Y is removed 
and it is assumed that the power flow Jacobian is non-singular, 
as follows. 

��� = �� + ��    (4) 
 

 
Fig. 1.  IEEE type-ST1 excitation system with PSS. 

It is worth noting that if the power network is with n 
machines and m PSSs, the state matrix A is a 4� × 4� matrix 
and the control matrix B is a 4� ×  matrix.  

B. Excitation System with PSS Structure 

The PSS gives a control effect, by acting via the exciter, to 
the power system under consideration. This study considers the 
IEEE type-ST1 excitation system with PSS [6] as shown in 
Figure 1. !"	 is the generator terminal voltage and !$%�  is the 
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reference terminal voltage. &'  is the amplifier time constant, (' 
is the amplifier gain constant, �)  is the output that is the 
supplementary stabilizing signal, and ��) is the input signal of 
the *th PSS that is the normalized speed deviation. The PSS's 
transfer function is shown in the following expression: 

�)�+	 = () ,�-./,�- 0�./,�1	�./,�2	.�/,�3	�./,�4	5    (5) 
In (5), the washout block with time constant &6)  is utilized 

as a high-pass filter, allowing signals in the range of 0.2-2Hz 
associated with rotor oscillation to pass unchanged, and is 
generally between 1 and 20s [4]. Compensating for the phase 
lag between the PSS output and the control operation, which is 
the electrical torque, is conducted by the two first-order lead-
lag transfer functions. Thus, the representation of PSS 
comprises of two lead-lag blocks, a gain (), and a washout bloc 
with time constant &6) . 
C. Damping Controller Design 

The system closed-loop eigenvalues are measured after 
linearizing the power system around the operating point. Using 
only the unstable or lightly damped electromechanical forms 
that need to be moved, the objective functions can be 
formulated. The issue of the parameter tuning of the PSS 
controllers that stabilize the system is transformed into a 
multiobjective minimization problem in this study. One of the 
considered two eigenvalue-based objective functions stated in 
[6] aims to transfer the closed-loop eigenvalues to the left side 
of the line expressed by 7)8 =	79, as shown in Figure 2(a). :. 
in (12) represents this function and the second objective 
function is defined by :;. In fact, and as presented in Figure 
2(b), minimizing :; equals to raising the damping ratios of all 
electromechanical modes and place the closed-loop 
eigenvalues in a D-shape sector corresponding to <)8 = <9. 

>?
?@
??
Aif		 DEF7)8G H 79	and	 *�F<)8G = <9,
        :. �  DEF7)8G

        :; � L *�F<)8G
else

       :. � :.MNO
      :; � :;MNO

    (6) 

where the real part and damping ratio of the i
th
 

electromechanical modes corresponding to the jth operating 
point are expressed by 7)8  and <)8  respectively. The fitness 
functions :.  and :;  are equal to their upper limits :.MNO  and :;MNO  if one or more electromechanical modes are outside the 
D-shape sector shown in Figure 2(c). It is worth noting that 
functions J1 and J2 have to be minimized subject to the 
following inequality constraints that describe the bounds of the 
adjustable parameters of the regulators:  

maxminK K Kii i≤ ≤     (7) 

maxmin
11 1T T Tii i≤ ≤     (8) 

maxmin
22 2T T Tii i≤ ≤     (9) 

maxmin
33 3T T Tii i≤ ≤     (10) 

maxmin
44 4T T Tii i≤ ≤     (11) 

The washout time constant Tw is fixed to 5s in this paper, 
and typical ranges of the decision variables are [0.01–1.5] for 
T1i to T4i and [0.1–50] for Ki.  

 

 
Fig. 2.  Electromechanical modes location for different objective functions. 

III. DESCRIPTION OF THE PROPOSED OPTIMIZATION 

TECHNIQUE  

Due to its high computational complexity and absence of 
elitism, the first version of NSGA has been criticized 
frequently in the literature. To overcome these drawbacks, 
authors in [22] proposed a new version of NSGA, called 
NSGAII. The NSGAII algorithm comprises mainly of two 
parts, which are the non-dominated sorting of solutions and the 
preservation of the population diversity. In NSGAII, offspring 
population Qt is combined with its parent population Pt at each 
iteration t. The combined population is sorted based on non-
dominated sorting mechanism into fronts. Then, solutions of 
one front are sorted using their crowding distances.  

 

 
Fig. 3.  Flowchart of the local search algorithm. 
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Despite the tmodifications applied in the NSGAII, it suffers 
from its low convergence rate due to its random parameters. In 
addition, NSGAII may fail to converge to the global optima. In 
order to overcome these limitations, in this study, a local search 
mechanism is included at the end of NSGAII iterations. This 
mechanism explores the less-crowded zone in the current 
archive in order to obtain more non-dominated solutions 
nearby. The flowchart of the local search algorithm applied for 
an iteration k is shown in Figure 3. 

IV. SIMULATION AND DISCUSSION 

In this section, the robustness and effectiveness of the 
LSNSGA technique, proposed for the determination of the 
optimal PSS parameters, is evaluated on the 3-machine 9-bus 
WSCC (Western System Coordinating Council). As shown in 
Figure 4, this system comprises of 9 buses and 3 generators. 
All system data are extracted from [6].  

 

 
Fig. 4.  Single line diagram of the WSCC system. 

For economic reasons, only machines 2 and 3 are equipped 
with PSSs. In order to increase the robustness of the proposed 
LSNSGA-based controller (LSNSGA-PSS), 4 different 
operating conditions were used. These conditions are shown in 
Table I. All experiments are implemented on Matlab 
environment using a machine with 8GB RAM, Intel core i7 
1.8GHz, and Windows 7. Maximum number of iterations and 
population size are selected to be 100 and 200 respectively. 
The mutation and crossover probabilities are 0.2 and 0.9. 

TABLE I.  SYSTEM OPERATING CONDITIONS (IN PU) 

 
Base case Case 1 Case 2 Case 3 

P Q P Q P Q P Q 

Gen 

G1 0.72 0.27 2.21 1.09 0.36 0.16 0.33 1.12 

G2 1.63 0.07 1.92 0.56 0.8 -0.11 2.00 0.57 

G3 0.85 -0.11 1.28 0.36 0.45 -0.20 1.50 0.38 

Load 

A 1.25 0.50 2.00 0.80 0.65 0.55 1.50 0.90 

B 0.90 0.30 1.80 0.60 0.45 0.35 1.20 0.80 

C 1.00 0.35 1.50 0.60 0.50 0.25 1.00 0.50 

 

A. Implementation of the LSNSGA for Optimum PSS Design 

To investigate the performance of the proposed method, the 
results obtained using LSNSGA-PSS are compared with those 

of other metaheuristic techniques such as NSGAII, SA [4], and 
FGSA [20]. The convergence characteristic of the proposed 
optimization technique for the optimum tuning of PSS 
parameters is illustrated in Figure 5. Optimum PSSs parameters 
for the proposed method and for the SA and FSGA techniques 
are given in Table II. System eigenvalues and damping ratios 
corresponding to the optimal PSS parameters, obtained using 
these techniques are given in Table III. 

 

 
Fig. 5.  Convergence characteristics of the LSNSGA. 

TABLE II.  OPTIMAL PSS PARAMETERS 

Method Gen K T1 T2 T3 T4 

LSNSGAII-PSS 

based on J1 

G2 2.4238 0.8075 0.1611 1.0973 0.7417 

G3 9.9970 0.9867 1.2183 0.2652 0.4252 

LSNSGAII-PSS 

based on J2 

G2 2.4529 0.8034 0.1642 1.1028 0.7448 

G3 9.9996 0.9840 1.2069 0.2252 0.4313 

NSGAII-PSS 
G2 2.4530 0.8035 0.1642 1.1027 0.7447 

G3 9.9995 0.9834 1.2069 0.2267 0.4327 

SA-PSS 
G2 11.008 0.216 0.05 0.104 0.05 

G3 0.319 0.410 0.05 0.233 0.05 

FGSA-PSS 
G2 30.911 0.222 0.012 0.34 0.054 

G3 30.931 0.229 0.015 0.24 0.034 

 

From Table III, it is obvious that the system is poorly 
damped when no controller is used for the base case, case 1, 
and case 2 and it is unstable for case 3. In addition, it can be 
seen that the proposed controller provides better damping of all 
electromechanical modes than the other controllers. It is worth 
noting that all electromechanical controllers obtained using 

LNSGA-PSS are shifted in D-shape zone defined by 0 1σ = −  

and 
0 20ξ = % . 

B. Nonlinear Time Domain Simulation 

To assess the effectiveness and robustness of the proposed 
controller, a 6-cycle fault disturbance in the line 5-7, close to 
bus 5 is applied. The fault is cleared by tripping the line 5–7 
with successful reclosure after 1.0s. Nonlinear simulation 
results obtained using LSNSGA are compared with the results 
from SA-PSS, FGSA-PSS, and without controller. System 
responses at the operating conditions specified above are 
shown in Figures 6 and 7. Figure 6 depicts the speed deviations 
in per unit and Figure 7 illustrates the internal voltages. From 
Figures 6 and 7, it can be clearly seen that the suggested 
LSNSGA-PSS controller improved greatly the system stability 
and it provided better damping of the electromechanical 
oscillations than the other techniques, at all operating 
conditions. 
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TABLE III.  EIGENVALUES AND DAMPING RATIOS OF THE ELECTROMECHANICAL MODES 

Method Base case Case 1 Case 2 Case 3 

Without PSS 

-0.1124±j7.7400, 

0.0145 

-0.0374±j7.8347, 

0.0048 

-0.2142±j6.3226, 

0.0339 

+0.0181±j8.0903, 

-0.0022 

-1.3346±j9.1096, 

0.1450 

-0.7023±j10.5832, 

0.0662 

-0.8227±j6.9390, 

0.1177 

-0.4515±j11.3794, 

0.0396 

LSNSGAII-PSS 

based on J1 

-2.6031± j6.2412, 

0.3849 

-1.7361±j6.3024, 

0.2656 

-1.6459±j5.2350, 

0.2999 

-1.9885±j6.4392, 

0.2951 

-2.9611±j6.8626, 

0.3962 

-4.3102±j8.9358, 

0.4345 

-2.0874±j6.3268, 

0.3133 

-4.5721±j9.4259, 

0.4364 

LSNSGAII-PSS 

based on J2 

-2.6448±j6.1179, 

0.3968 

-1.7774±j6.3792, 

0.2684 

-1.6318±j5.2411, 

0.2973 

-2.0258±j6.5302, 

0.2963 

-2.7138±j7.3837, 

0.3450 

-3.9494±j9.3519, 

0.3890 

-1.9142±j6.5763, 

0.2795 

-4.2547±j9.9153, 

0.3943 

LSNSGAII-PSS 

(best compromise 

solution) 

-2.5491±j 5.9300, 

0.3949 

-1.7847±j6.2809, 

0.2733 

-1.6283±j5.1460, 

0.3017 

-2.0326±j6.4097, 

0.3023 

-2.7394±j7.5113, 

0.3426 

-3.8660±j9.3531, 

0.3820 

-1.8925±j6.6077, 

0.2753 

-4.1434±j9.9371, 

0.3849 

SA-PSS 

-1.6530±j5.1835, 

0.3038 

-1.3442±j5.6104, 

0.2330 

-1.3510±j4.5402, 

0.2852 

-1.4203±j5.6820, 

0.2425 

-0.7082±j7.6085, 

0.0927 

-0.6774±j8.6128, 

0.0784 

-0.4869±j6.4701, 

0.0750 

-0.6073±j9.1726, 

0.0661 

FGSA-PSS 

-1.0692±j 1.9971, 

0.4719 

-0.9256±j2.4987, 

0.3473 

-1.0438±j1.8555, 

0.4903 

-0.9196±j2.5427, 

0.3401 

-0.2328±j4.1174, 

0.0564 

-0.1382±j4.5924, 

0.0301 

-0.3301±j3.6252, 

0.0907 

-0.1696±j4.4911, 

0.0377 

 

 
(a) Base case 

 
(b) Case 1 

 
(b) Case 2 

 
(b) Case 3 

Fig. 6.  System responses for speed deviations in pu. 
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(a) Base case 

 
(b) Case 1 

 
(b) Case 2 

 
(b) Case 3 

Fig. 7.  System responses for internal voltages in pu. 

V. CONCLUSION 

PSSs represent an effective means for damping 
electromechanical modes. However, current power networks 
are becoming strongly nonlinear with configurations and load 
changing over time. Thus, it is mandatory to adjust the PSS 
parameters in order to guarantee the optimal damping of 
system oscillations at any operating condition, system 
configuration, or disturbance. In order to do this, this study 
presents an improved version of NSGAII, referred to as 
LSNSGA, for robust PSS design over a wide range of 
operating conditions. In the proposed technique, a local search 
procedure is added to the original NSGAII in order to improve 
its convergence characteristics. The LSNSGA is used to tune 
the PSSs parameters in a way that the system stability is 
optimally improved after the occurrence of fault. In the design 
process, two eigenvalue-based objective functions are 
considered. The robustness and performance of the proposed 
controllers (LSNSGA-PSSs) are tested on a 3-machine 9-bus 
system. The comparison with other metaheuristic techniques 
showed that LSNSGA-PSSs controllers provide the best 
results.  
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