
Engineering, Technology & Applied Science Research Vol. 11, No. 4, 2021, 7321-7325 7321

www.etasr.com Hyder et al.: Performance Evaluation of RSA-based Secure Cloud Storage Protocol using OpenStack

Performance Evaluation of RSA-based Secure Cloud

Storage Protocol using OpenStack

Muhammad Faraz Hyder

Department of Software Engineering
NED University of Engineering and Technology

Karachi, Pakistan

farazh@neduet.edu.pk

Syeda Tooba

Department of Computer Science & IT
NED University of Engineering and Technology

Karachi, Pakistan

stooba1314@gmail.com

Waseemullah

Department of Computer Science and IT

NED University of Engineering and Technology

Karachi, Pakistan
waseemu@neduet.edu.pk

Abstract-In this paper, the implementation of the General Secure

Cloud Storage Protocol is carried out and instantiated by a
multiplicatively Homomorphic Encryption Scheme (HES). The

protocol provides a system for secure storage of data over the

cloud, thereby allowing the client to carry out the operational

tasks on it efficiently. The work focuses on the execution of five

major modules of the protocol. We also evaluate the performance

of the protocol with respect to the computation cost of these

modules on the basis of different security parameters and

datasets by conducting a series of experiments. The cloud was

built using OpenStack and the data were outsourced from the

client’s system to the cloud to study the security features and
performance metrics when adopting the cloud environment.

Keywords-cloud computing; OpenStack; RSA; homomorphic

encryption; privacy

I. INTRODUCTION

Cloud computing has become an evolving field in research
and development because it can considerably lower
computation cost. It has become a demanding and tempting
technology that provides various services of storage,
computation, and availability of data from anywhere and at any
time [1]. As cloud computing is used to store a huge amount of
data that reside on servers that are not physically in the reach of
the users and they are transferred to and from the servers,
security has therefore become an issue that obstructs the
deployment of the cloud environment in an affirmative way [2-
3]. The advancements in cloud computing are taking place at a
very fast pace as the majority of the IT firms have either
already developed IT products aligned with the cloud
computing paradigm or are planning to move their
infrastructure over it. This leads to a greater emphasis on
improving security policies and measures. Thus, there has been
a rapid emergence in the security domain of cloud computing.
Storage facilities are provided by the cloud to store the data on
the servers, but users are not able to verify whether their data

are kept secure. Detailed overviews of the core issues
concerning privacy and security in cloud computing can be
seen in [4-7].

To perform operations on the encrypted data stored on the
cloud requires the cloud to send data to the client. The client
then needs to decrypt them and perform the required
operations. Next, the data must then be encrypted again by the
client before they are outsourced to the cloud. Obviously, this
increases the overhead at the client and the cloud side as well
and is neither a feasible nor an efficient system. It implies the
need for such a system that allows the client to directly perform
operations on the outsourced data without decryption. This is
what we call Homomorphic Encryption Schemes (HESs) [8].
Simply encrypting the data using HESs does not cater to the
demands of data security. Besides, maintaining the integrity of
data sent over to the cloud, it must also allow the client to
detect any forgery and recover the original data. In this paper,
the implementation of the General Secure Cloud Storage
Protocol instantiated by RSA-based HES has been carried out
and evaluated. The cloud was built using OpenStack and data
from the client’s system were outsourced to the cloud. Also, the
performance of the protocol was evaluated with respect to the
computation cost of these modules on the basis of different
security parameters and datasets by conducting a series of
experiments. This work also gives an overview to understand
the practicality of the RSA-SCS protocol to overcome the
threats and issues posed to the data stored on the cloud.

Authors in [9], studied the execution of gradient-based
algorithms that belong to a class of distributed projected
algorithms. They proposed HE-based schemes that can attain
accuracy by concurrently maintaining the state and coefficient
of the respective member. Authors in [10], dealt with a privacy-
preserving distributed big data analytics framework for cloud-
based applications that performs analysis tasks on encrypted
data with end-to-end data protection. The framework employs

Corresponding author: Muhammad Faraz Hyder

Engineering, Technology & Applied Science Research Vol. 11, No. 4, 2021, 7321-7325 7322

www.etasr.com Hyder et al.: Performance Evaluation of RSA-based Secure Cloud Storage Protocol using OpenStack

BGV as a fully HES. Authors in [11] reviewed HESs and also
presented an implementation of the Paillier PHE using Python
Library for Paillier's PHE. The extension module Gmpy2 was
used for carrying out the arithmetic operations and calculations.
Authors in [12] discussed the enhanced FHE with a focus on
the dynamic structure of Fully HESs that are symmetric in
nature. Regarding secure outsourced calculations using HE, the
authors in [13] discussed the encrypted data processing
protocols by applying HE over addition and proxy
cryptography. Their system aimed to attain the secrecy of the
user data while preserving the intermediary and final results
security under the semi-honest model. To process encrypted
data, non-interactive protocols were designed. Authors in [14]
discussed the security of multiparty computations. Sometimes,
the users of cloud infrastructure have to sustain the
computation overheads although these must be outsourced.

II. RSA BASED SECURE CLOUD STORAGE PROTOCOL

To work out on the performance evaluation of the protocol,
we have used RSA-based HES to instantiate the General Cloud
Storage Protocol discussed in [15]. The G-SCS System Model
RSA-based HES is partially homomorphic over multiplication
[16].

A. The RSA-SCS Protocol

The chief aspects of the RSA-based HES are:

• KeyGen �1�� → �SK, PK�. By considering the value of λ,

this module is required to generate two prime integers p and
q which must be large enough [17].

• The multiplicative homomorphic property of RSA can be
computed using the technique presented in [18].

• RSA can be used to evaluate the General Cloud Storage
Protocol as RSA-SCS which consists of five modules each
corresponding to a module as in the G-SCS but with the
different parameters and Enc(), Dec(). [15].

B. RSA-SCS Workflow

It is evident that to validate the integrity of the data stored
on the cloud, the relationship expressed in [15] can be easily
used by the client. The comprehensive approach to describe the
modules and the steps the in RSA-SCS are mentioned below.

• KeyGen �1�� → �SK, PK� . This module is required to

generate two integers p and q, where both of these should
be prime numbers and the number of bits in the product of p
and q must be ≥ λ.

• Outsource �D; SK� → D�. The client needs to split data D to
m data segments such as �d�, d�, … … , d��, where di ∈ Zn*
(and Zn* denotes {0,1, …, n-1}) for each value of i, before
outsourcing its own data,.

• Audit �1�� → σ. As G-SCS protocol provides two types of

auditing. The client can perform either deterministic
auditing, which is comparatively simpler, or randomized
auditing.

• In the former, the user spawns another key K2 whose length
of bits is λ, to compute PRF using this key value. Now the
auditing query σ = K2 and it is then sent to the cloud.

• In the case of randomized auditing, the client selects L
values (i1, i2, . . ., iL) from Znm (Znm denotes m numbers
chosen from the set {0,1, …, n-1}) and also generates K2,

whose length of bits is λ to compute PRF ���
(·). Now,

auditing query σ = [(i1, i2, . . ., iL), K2] and both of these are
sent.

• Prove �σ, D′; PK� → Г. The proof generated by the cloud is
also of two types depending on the type of audit query sent
by the client. This is the output of the ‘verify’ module.

III. OPENSTACK CLOUD IMPLEMENTATION

OpenStack is one of the most popular open-source cloud
ecosystems. We implemented the Openstack using 3-node
architecture as depicted in Figure 1. The architecture consists
of Compute, Controller, and Network nodes. These nodes are
installed using the Ubuntu server 16.04. The OpenStack cloud
was implemented in order to emulate the performance of the
protocol in cloud environment. The data transfer and
encryption for the instance running in the OpenStack cloud
environment provided a realistic approach for the
implementation of the protocol. Figure 2 presents the
dashboard screen of the installed OpenStack Cloud.

Fig. 1. OpenStack core components.

IV. EXPERIMENTAL SETUP

To perform the experiments on the RSA-SCS, we
implement this protocol in java using Netbeans IDE on a
system with 1.7 Intel(R) Core(TM) i5-8500 CPU running at

Engineering, Technology & Applied Science Research Vol. 11, No. 4, 2021, 7321-7325 7323

www.etasr.com Hyder et al.: Performance Evaluation of RSA-based Secure Cloud Storage Protocol using OpenStack

3.00GHz and 16GB RAM. The evaluations were carried out
using 3 different values for security parameter λ, i.e. 512, 1024,
and 2048 bits on two data sets that are text files of 10 and
16KB. As the security of the RSA encryption scheme requires
the product of two primes to be sufficiently large [17],
therefore the BigInteger datatype is used to store the values for
computation of the subsequent modules. AES is used as a
pseudo-random function and the keys for the PRF are
generated by the client.

Fig. 2. OpenStack dashboard.

Each experiment was carried out 10 times and the average
value was obtained as the result. To outsource the data, the
Ubuntu machine was used and the instances were generated
with the flavor m1.small having 2GB RAM and 20GB hard
disk. The launched instances were accessed through the Putty
software by using the key pair generated.

V. RESULTS AND DISCUSSION

We have implemented the cloud using OpenStack. The
Ubuntu 16.04 system was used to carry out the experiment.
The keystone service was used to establish the connection
using the dashboard. The method involves creating new
instances on the Compute node and then transferring the data
over the cloud. The reason for the data values being larger in
the results is that the experiment is carried out using the GUI of
the instance created in the Openstack. The computation costs in
seconds of the 5 modules of the RSA-SCS with respect to the 3
security parameter values when outsourcing a file of 16KB size
are shown below. The values in Tables I and II signify that
there is a direct correspondence between the outsourced data
and the time cost of all the modules of the protocol. It can be
seen from the results that running the KeyGen algorithm takes
a longer time as the client generates 2 prime numbers initially
and then other 3 integers to compute the pair of keys that are
required for encryption and decryption. Also, the user has to
generate a random number with a bit length of λ as the PRF
key. The outsourcing time of KeyGen is much less than that of
RSA and is linearly dependent on the size of the data, as we
have carried out deterministic auditing. An audit is basically
the time used to generate K2 for the PRF as the audit query is
equal to K2. The computation cost for RSA-SCS is
comparatively higher than that of RSA-SCS, since it has to
parse the outsourced data and generate the values of α and β
using the exponential function. Referring to Table I, the cost of
RSA-SCS is as large as expected. To check whether the cloud
has maintained the integrity of the data that are sent to it, the
client has to carry out exponentiation and modular

multiplication and then a comparison of each computed result
with the corresponding value of α. Therefore, the time for this
module is sufficiently large.

TABLE I. COMPUTATION COST OF file1.txt FOR VARYING

BITLENGTHS

Security

parameter

(λ)

KeyGen

(s)

Outsource

(s)

Audit

(s)
Prove (s) Verify (s)

512 12.326 0.209 0.103 0.698 12.248

1024 85.788 0.780 0.793 1.587 84.952

2048 404.51 8.330 25.819 28.087 404.336

TABLE II. COMPUTATION COST OF file2.txt FOR VARYING

BITLENGTHS

Security

parameter

(λ)

KeyGen

(s)

Outsource

(s)
Audit (s) Prove (s) Verify (s)

512 15.423 0.314 0.312 0.956 16.738

1024 102.88 1.764 0.993 3.485 104.512

2048 503.32 11.234 40.819 54.486 604.334

Figures 3 to 7 represent the comparative analysis of
different parameters for 2 different file sizes, i.e. 10 and 16KB.
As evident from these graphs, the time required for different
parameters increases linearly with the increase in file size.

Fig. 3. Comparative analysis of KeyGen parameter for different file sizes.

Fig. 4. Comparative analysis of Outsource parameter for different file

sizes.

Engineering, Technology & Applied Science Research Vol. 11, No. 4, 2021, 7321-7325 7324

www.etasr.com Hyder et al.: Performance Evaluation of RSA-based Secure Cloud Storage Protocol using OpenStack

Fig. 5. Comparative analysis of Audit parameter for different file sizes.

Fig. 6. Comparative analysis of Prove parameter for different file sizes.

Fig. 7. Comparative analysis of Verify parameter for different file sizes.

Table III shows the comparison of the proposed approach
with the existing solutions. The proposed scheme was
implemented using OpenStack cloud.

VI. G-SCS IMPLEMENTATION: SECURE AGAINST RISKS

The data stored on the cloud face threats such as insider
attacks, data leakage/loss, data alteration, malicious cloud
providers, and lack of data recovery [19, 20]. The implemented

OpenStack based G-SCS provides security against these types
of risks and threats posed to the cloud data and users.

TABLE III. COMPARISION OF THE PROPOSED IMPLEMENTATION

WITH EXISTING SOLUTIONS

Implementation on

open-source cloud

platform

Third party

auditing
Security model

Proposed � � Standard

[9] × × ROM

[11] × × ROM

[14] × � Standard

A. Loss of Data Integrity

The OpenStack based Secure Cloud Storage Protocol
implementation offers its clients verification of the integrity of
the data stored on the cloud through the auditing mechanism,
thereby sending the proof against the audit query which can be
verified as mentioned above. The cloud cannot cheat its client
since a minor change in data results in a proof which when
verified by the client, leads to output 0 rather than 1.

B. Malicious Cloud Provider

This is one of the major threats to cloud computing. It can
include a malicious insider/employee or the provider itself [21].
The implemented GSCS-RSA outsource initially requires a
pseudorandom function which must be secure enough so that
the overall protocol becomes secure. As discussed in [15], if
the cloud provider is malicious, it generates more than one
(legitimate) proofs. Even then, the number of unknown
quantities is greater than the total number of equations thus
generated and hence the malicious cloud is unable to discover
the secret key because of the PRF being used.

C. Lack of Data Recovery

The data recovery algorithm provides an efficient way to
reconstruct the data in case of data loss. For this, the client
needs to generate a special audit query for which the cloud
sends the proof. If this proof is verified by the client, he then
computes Enc�d�� by calculating β	 ! Enc�d��"# 			mod	t .
Finally the outsourced data �d�, d�, … … , d�� can easily be
recovered from Enc�d��.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have carried out an evaluation on the
performance metrics and studied the security properties of the
General Sloud Storage protocol under various circumstances
that can occur in any HES. We have instantiated this protocol
by a HES that is multiplicatively homomorphic, i.e. RSA, and
thus assessed the computation cost of RSA-SCS using various
parameter values and data sets in a series of experiments. The
carried out analysis left us with the conclusion that although the
evaluated protocol is secure and efficient, its computation costs
can be lowered. As the experiments were conducted on varying
bitlengths of the security parameter, it was found that, the
higher the value of λ, the greater the security achieved, but the
computation cost increases. On the other hand, a 1024 bitlength
can help us attain more or less the same security but with a
greater impact on the computation cost. The computation costs
of the 5 modules with respect to different values of security

Engineering, Technology & Applied Science Research Vol. 11, No. 4, 2021, 7321-7325 7325

www.etasr.com Hyder et al.: Performance Evaluation of RSA-based Secure Cloud Storage Protocol using OpenStack

parameters are found by applying this algorithm on two
datasets which led us to the optimization of the RSA-SCS
protocol.

There is always a door towards improvement, therefore we
can further take steps to make this protocol operate more
securely while maintaining its efficiency. Moreover, since RSA
is a partially HES, we can further extend the protocol so that it
is instantiated by an encryption scheme that is fully
homomorphic. Although fully HESs are required in real-life
applications and cloud infrastructure, their cost, whether that of
computation or performance, is high. Therefore, as future work,
we can consider this aspect and make progress in this regard
that can lead us to achieve a secure as well as lightweight
scheme. In the future, we will also implement the proposed
scheme in a federated cloud environment.

REFERENCES

[1] M. A. Shahid, N. Islam, M. M. Alam, M. S. Mazliham, and S. Musa,

"Towards Resilient Method: An exhaustive survey of fault tolerance
methods in the cloud computing environment," Computer Science

Review, vol. 40, May 2021, Art. no. 100398, https://doi.org/10.1016/
j.cosrev.2021.100398.

[2] M. Ali, N. Q. Soomro, H. Ali, A. Awan, and M. Kirmani, "Distributed

File Sharing and Retrieval Model for Cloud Virtual Environment,"
Engineering, Technology & Applied Science Research, vol. 9, no. 2, pp.

4062–4065, Apr. 2019, https://doi.org/10.48084/etasr.2662.

[3] M. Ramzan, M. S. Farooq, A. Zamir, W. Akhtar, M. Ilyas, and H. U.
Khan, "An Analysis of Issues for Adoption of Cloud Computing in

Telecom Industries," Engineering, Technology & Applied Science
Research, vol. 8, no. 4, pp. 3157–3161, Aug. 2018, https://doi.org/

10.48084/etasr.2101.

[4] S. Pearson, "Taking account of privacy when designing cloud computing
services," in 2009 ICSE Workshop on Software Engineering Challenges

of Cloud Computing, Vancouver, Canada, May 2009, pp. 44–52,
https://doi.org/10.1109/CLOUD.2009.5071532.

[5] H. Tabrizchi and M. Kuchaki Rafsanjani, "A survey on security

challenges in cloud computing: issues, threats, and solutions," The
Journal of Supercomputing, vol. 76, no. 12, pp. 9493–9532, Dec. 2020,

https://doi.org/10.1007/s11227-020-03213-1.

[6] P. Sun, "Security and privacy protection in cloud computing:

Discussions and challenges," Journal of Network and Computer
Applications, vol. 160, Jun. 2020, Art. no. 102642, https://doi.org/

10.1016/j.jnca.2020.102642.

[7] P. Yang, N. Xiong, and J. Ren, "Data Security and Privacy Protection for
Cloud Storage: A Survey," IEEE Access, vol. 8, pp. 131723–131740,

2020, https://doi.org/10.1109/ACCESS.2020.3009876.

[8] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, "A Survey on
Homomorphic Encryption Schemes: Theory and Implementation," ACM

Computing Surveys, vol. 51, no. 4, pp. 79:1-79:35, Jul. 2018,
https://doi.org/10.1145/3214303.

[9] Y. Lu and M. Zhu, "Privacy preserving distributed optimization using

homomorphic encryption," Automatica, vol. 96, pp. 314–325, Oct. 2018,
https://doi.org/10.1016/j.automatica.2018.07.005.

[10] A. Alabdulatif, I. Khalil, and X. Yi, "Towards secure big data analytic
for cloud-enabled applications with fully homomorphic encryption,"

Journal of Parallel and Distributed Computing, vol. 137, pp. 192–204,
Mar. 2020, https://doi.org/10.1016/j.jpdc.2019.10.008.

[11] M. Nassar, A. Erradi, and Q. M. Malluhi, "Paillier’s encryption:
Implementation and cloud applications," in 2015 International

Conference on Applied Research in Computer Science and Engineering
(ICAR), Beiriut, Lebanon, Oct. 2015, https://doi.org/10.1109/

ARCSE.2015.7338149.

[12] K. Hariss, H. Noura, and A. E. Samhat, "Fully Enhanced Homomorphic

Encryption algorithm of MORE approach for real world applications,"

Journal of Information Security and Applications, vol. 34, pp. 233–242,
Jun. 2017, https://doi.org/10.1016/j.jisa.2017.02.001.

[13] Q. Wang, D. Zhou, and Y. Li, "Secure outsourced calculations with

homomorphic encryption," Advanced Computing: An International
Journal, vol. 9, no. 6, pp. 01–14, Nov. 2018, https://doi.org/10.5121/

acij.2018.9601.

[14] L. Jiang, Y. Cao, C. Yuan, X. Sun, and X. Zhu, "An effective
comparison protocol over encrypted data in cloud computing," Journal

of Information Security and Applications, vol. 48, Oct. 2019, Art. no.
102367, https://doi.org/10.1016/j.jisa.2019.102367.

[15] J. Zhang, Y. Yang, Y. Chen, J. Chen, and Q. Zhang, "A general
framework to design secure cloud storage protocol using homomorphic

encryption scheme," Computer Networks, vol. 129, pp. 37–50, Dec.
2017, https://doi.org/10.1016/j.comnet.2017.08.019.

[16] R. L. Rivest, L. Adleman, and M. L. Dertouzos, "On Data Banks and

Privacy Homomorphisms," in Foundations of Secure Computation,
Academia Press, 1978.

[17] J. Buhler, P. L. Montgomery, R. Robson, and R. Ruby, Technical report

implementing the number field sieve. Corvallis, OR, USA: Oregon State
University, 1994.

[18] O. Goldreich, S. Goldwasser, and S. Micali, "How to construct random

functions," Journal of the ACM, vol. 33, no. 4, pp. 792–807, Aug. 1986,
https://doi.org/10.1145/6490.6503.

[19] N. vurukonda and B. T. Rao, "A Study on Data Storage Security Issues

in Cloud Computing," Procedia Computer Science, vol. 92, pp. 128–
135, Jan. 2016, https://doi.org/10.1016/j.procs.2016.07.335.

[20] A. J. Duncan, S. Creese, and M. Goldsmith, "Insider Attacks in Cloud

Computing," in 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, Liverpool,

UK, Jun. 2012, pp. 857–862, https://doi.org/10.1109/TrustCom.2012.
188.

[21] Md. T. Khorshed, A. B. M. S. Ali, and S. A. Wasimi, "A survey on gaps,
threat remediation challenges and some thoughts for proactive attack

detection in cloud computing," Future Generation Computer Systems,
vol. 28, no. 6, pp. 833–851, Jun. 2012, https://doi.org/10.1016/

j.future.2012.01.006.

