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Abstract-Power dispatch has become an important issue due to 

the high integration of Wind Power (WP) in power grids. Within 

this context, this paper presents a new Particle Swarm 
Optimization (PSO) based strategy for solving the stochastic 

Economic Emission Dispatch Problem (EEDP). This problem was 

solved considering several constraints such as power balance, 

generation limits, and Valve Point Loading Effects (VPLEs). The 

power balance constraint is described by a chance constraint to 

consider the impact of WP intermittency on the EEDP solution. 

In this study, the chance constraint represents the tolerance that 
the power balance constraint cannot meet. The suggested 

framework was successfully evaluated on a ten-unit system. The 

problem was solved for various threshold tolerances to study 
further the impact of WP penetration. 

Keywords-economic emission dispatch; wind energy; stochastic 

optimization; particle swarm optimization  

I. INTRODUCTION  

Wind energy has expanded rapidly the recent years at a 
global level. Wind power is becoming more and more 
economically competitive compared to conventional energy 
production methods due to improvements in turbine efficiency 
and rising fuel prices [1]. In addition, wind energy sources are 
growing at a rapid pace reaching a technical maturity that 
allows them to become important components of the energy 
industry. On the other hand, the inclusion of wind energy in 
power grids introduced new challenges. The high penetration 
of wind energy has a significant impact on system security due 
to its intermittent characteristics [2]. One of these challenges is 
the power dispatch problem. In general, the dispatch problem 
aims to find the optimal generation of all generators and 

sources minimizing energy production cost and system losses. 
In addition, global warming and increased initiatives to protect 
the environment are forcing producers to reduce the gas 
emissions produced by fossil fuel combustion in power 
stations. The fuels used in thermal power stations (coal, fuel 
oil, natural gas, etc.) produce harmful gases like carbon dioxide 
(CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx) which 
are toxic and cause the greenhouse effect. Thus, the reduction 
of the emission of these gases during electricity production has 
become a primordial task [3].  

Several studies combined the economic and environmental 
aspects in one problem called Economic Emission Dispatch 
Problem (EEDP) [4-5], considering several constraints such as 
generation capacity, power balance, and Valve Point Loading 
Effects (VPLE) [4-5]. Various methods have been suggested in 
the past two decades to solve this nonlinear and nonconvex 
problem. For instance, classical techniques such as dynamic 
programming [6], linear programming [7], lambda iteration [8], 
and interior-point [9] have been widely used for solving the 
dispatch problem. However, in these techniques, the fuel cost 
was approximated by a quadratic, and VPLE constraints were 
neglected. In addition, these conventional methods were 
iterative and required an initial solution which may affect the 
convergence of the employed method and produce only local 
solutions. Various intelligent optimization methods were 
presented to overcome the limitations of classical methods, like 
the Genetic Algorithm (GA) [10], Artificial Bee Colony (ABC) 
[11], Bacterial Foraging Algorithm (BFA) [12], Particle Swarm 
Optimization (PSO) [13], Differential Evolution (DE) [14], and 
Simulated Annealing (SA) [15]. In general, these meta-
heuristic techniques have achieve good results in solving 
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various engineering problems. However, the aforementioned 
techniques minimized fuel cost and emissions by seeking the 
optimal production of the existing thermal units. At the 
moment, wind energy has attracted much attention in the power 
sector due to its zero fuel cost and emissions. Hence, the 
inclusion of wind power in the EEDP formulation has gained 
wide attention.  

In [16], a new mathematical formulation was developed 
based on the here-and-now approach for the stochastic EEDP 
integrating WP sources. The intermittency of wind power was 
described by the Weibull distribution function. The same 
approach was extended for the dynamic EEDP in [17]. Various 
fuzzy membership functions were suggested in [18], taking into 
account that system security may be affected by the 
randomness of wind power, to describe the dispatcher’s attitude 
regarding WP penetration. Two objective functions, based on 
operational cost and risk level, were considered and minimized 
using a PSO-based method, but emissions were not included in 
the problem formulation. The risk level of WP uncertainty was 
considered in [19], incorporating VPLE in the cost function. 
Fuzzy quadratic functions that described dispatcher’s attitudes 
were investigated in [20] to determine the quantity of 
additional WP to minimize generation cost without affecting 
system security. The effect of fluctuations of WP on the EEDP 
was modeled in [21] by over- and under-estimation costs of 
available WP, where a hybrid algorithm combining PSO and 
gravitational search was used to minimize the objective 
functions. In [22], the under- and over-estimation costs of 
uncertain WP were also included in the total production cost, 
using an improved fireworks algorithm to find the optimal 
generation. The randomness of WP was modeled by a chance 
constraint in the dispatch problem formulation to avoid the 
over- and under-estimation costs in [23], where WP was 
represented by a Weibull distribution function, and the impact 
of WP penetration on the total fuel cost and emissions was 
studied and analyzed. 

In recent years, PSO-based techniques have been favored 
by researchers due to their low parameter number, convergence 
rate, and easy implementation. PSO was introduced in [24] as 
an efficient optimization tool for complex optimization 
problems. This study presents a new PSO-based strategy for 
solving the stochastic EEDP incorporating a wind farm. At 
first, the problem is formulated as a stochastic optimization 
problem. Then, the stochastic constraint, which describes 
power balance, was converted to a deterministic constraint. The 
Weibull distribution function was used to describe the 
randomness of WP. The PSO algorithm was used to solve the 
obtained deterministic problem. The effectiveness of the 
proposed method was tested on a 10-unit system, investigating 
the cases with and without WP sources. Moreover, the impact 
of WP penetration rate was studied.  

II. PROBLEM FORMULATION 

The EEDP is treated as a multi-objective mathematical 
programming problem that attempts to minimize both cost and 
emissions simultaneously while satisfying equality and 
inequality constraints. The following objectives and constraints 
were taken into account in the EEDP problem formulation: 

A. Objective Functions 

The thermal units with multi-steam admission valves that 
work sequentially to cover the ever-increasing generation 
increase the nonlinearity order of the total fuel cost due to the 
VPLE, as illustrated in Figure 1. 

 

 

Fig. 1.  Fuel cost function with five valves (A, B, C, D, E). 

The fuel cost function of a thermal generator, considering 
the VPLE, is expressed as the sum of a quadratic and a 
sinusoidal function. Thus, the total fuel cost in terms of real 
power output can be expressed as [23]: �� = ∑ �� + ��	� + 
�	����� + ��� �������	���� − 	����  (1) 
where ai, bi, ci, di, and ei are the cost coefficients of the i-th 
unit, Pi is the output power in MW, and the total cost CT is in 
$/h. The second objective function considered is the 
atmospheric pollutants such as sulfur (SOx) and nitrogen oxides 
(NOx) caused by fossil-fueled generator units. This can be 
modeled as the summation of a quadratic polynomial and an 
exponential function [23]: �� = ∑ �� + ��	� + �� 	�!� + "� �#$ %�	�!���     (2) 

where ai, βι, γi, ηι , and ξi are the emission coefficients, and the 
total emission is in ton/h. In several works, the bi-objective 
EEDPs were converted into a mono-objective optimization 
problem [3], and the Price Penalty Factor (PPF) based method 
was adopted. Thus, the combined economic-emission objective 
function can be described by: &� = '�� +  1 − '!)��    (3) 
where, ' = rand 0,1! , FT will be minimized for each 
generated value of µ to obtain the optimal solution that can be a 
nominee solution in the Pareto front, and λ is the average of the 
PPF thermal units. As shown in (4), the PPF of the i-th unit is 
the rate between its fuel cost and its emission for maximum 
generation capacity, and (5) gives the expression of λ. )� = 0123451234    (4) ) = 	 �� 	∑ )����     (5) 

B. Problem Constraints 

The EEDP can be solved by minimizing the FT defined in 
(3) for the following constraints [23]: 

Generation (MW)
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• Generation Capacity: Because of the unit design, the real 
power output of each unit i should be within its minimum 	���� and maximum limit 	��78: 	���� ≤ 	� ≤ 	��78 				� = 1,… , ;    (6) 

• Real power balance constraints: The total of real power 
generation must balance the predicted power demand Pd 
plus the real power losses PL 

in the transmission lines, at 
each time interval over the scheduling horizon: ∑ 	�< − 	=< − 	><��� = 0				? = 1, . . . , A     (7) 
PL can be calculated using a constant loss formula [4]: 	>< = ∑ ∑ 	�B�C	C + ∑ BD�	� + BDD����C����     (8) 

where Bij, Boi, and Boo are the loss parameters also called B-
coefficients. 

• Prohibited Operating Zones (POZ) constraints: The POZ 
constraints are described as: 

	�< ∈ F	���� ≤ 	� ≤ 	�,�GDH�	�,IJ�KL ≤ 	� ≤ 	�,IGDH�  , N = 2, . . . , P�	�,Q1KL ≤ 	� ≤ 	��78     (9) 

where 	�,IGDH�  and 	�,IKL
 are the down and up bounds of POZ 

number k, and iz  is the number of POZ for the i-th unit due to 

the vibrations in the shaft or other mechanical faults. Therefore, 
the machine has discontinuous input-output characteristics [4].  

C. Description of WP Randomness 

A major challenge in integrating wind power output into a 
power network is its uncertainty, fluctuation, and intermittent 
nature. Hence, WP output should be expressed as a stochastic 
variable utilizing a transformation from wind speed to power 
output. A simplified linear piecewise function can describe the 
actual relationship between them when ignoring some minor 
nonlinear factors. This study adopts the two-factor Weibull 
distribution [16]. The main advantage of this distribution type 
is that if its parameters are specified at a given altitude, they 
can be found for another one. The Probability Density Function 
(PDF) and the Cumulative Distribution Function (CDF) of 
wind speed are described by (10) and (11), respectively: 

RS T! = IU VWUXIJ� �#$ Y−VWUXIZ    (10) 
&S T! = [ RS \!W] �\ = 1 − �#$ ^−VWUXI_ ,   T ≥ 0    (11) 

where, k and c are positive parameters called shape and scale 
factors for a given location, respectively. The speed-power 
characteristic of the wind turbine can be described by: a = b c! = 0,  if  c < T��  or  c > TDK<     (12) 

( )
( )

ifφ
−

= = ≤ <
−

in r
in r

r in

V v w
W V v V v

v v
    (13) 

( ) , ifφ= = ≤ <r r outW V w v V v     (14) 

Based on probability theories, the CDF corresponding to 
the WP can be described by: &f g! = 	h a ≤ g! = 

1 − �#$ F− iV1 + jHHk X T��
 lIm
+ �#$ ^− VTDK<
 XI_ ,   0 ≤ g < gn  

(15) 

where, ℎ = WkJW1pW1p . Taking into account the intermittency 

characteristic of WP, the power balance constraint given by (7) 
can be modified as: 	hq∑ 	���� + a ≤ 	= + 	>} ≤ s}    (16) 
where Pr(x) is the probability of event x, W is the WP output of 
the wind farm, and σ is the tolerance that power balance 
between total generation, load, and total system losses cannot 
meet. 

III. THE PSO ALGORITHM 

PSO is considered an efficient and robust method that can 
be applied to nonlinear optimization problems and more 
particularly on electrical systems [25-26]. This algorithm 
ignores several conditions, such as differentiability and 
continuity regardless of the objective functions and the 
constraints to be optimized or respected. For an optimization 
problem with n decision variables, the i-th particle at iteration k 

is presented by its position t�I = �t��I , … , t��I �  that is 
considered as a candidate solution and velocity c�I =�c��I, … , c��I �. At the next generation k+1, the velocity and the 
position of this particle will be updated according to: c�Iu� = gc�I + 
�h��$���?�I − t�I� +
�h��v���?I − t�I�  (17) 

t�Iu� = t�I + c�Iu�     (18) 

where, w, c1, and c2 are the PSO parameters, r1 and r2 are 

random numbers in the range [0,1], and $���?�I and v���?I are 
the best solution of the i-th particle and the overall population 
at the k-th iteration respectively. At each iteration k, the inertia 
weight w used for balancing between local and global searches 
can be calculated as: 

g = g�78 − H234JH21p	I234 ∗ N    (19) 
where N�78  is the maximum number of iterations, and g�78  
and g���  are the upper and lower bounds of w. From (19), it is 
clear that g�78  is the initial value of the inertia weight while g���  is its final value. 

IV. SIMULATION AND RESULTS 

Two cases were studied to verify the effectiveness of the 
suggested strategy for solving the EEDP including a wind 
farm. Simulations were carried out on MATLAB R2009a 
installed on a PC with an i7-4510U@2.60GHz CPU. The 
studied cases were: A ten-unit system without a wind farm 
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(Case 1) and a ten-unit system with a wind farm (Case 2). All 
data of both systems were taken from [3, 23]. The wind 
parameters are shown in Table I. 

TABLE I.  WIND PARAMETERS 

K C vin vout vr 

1.7 15 5 45 15 
 

A. Case 1 

Since the EEDP is a multi-objective optimization problem, 
a set of non-dominated solutions is required. Table II shows a 
list of non-dominated solutions obtained for various values of µ 
ranging from 0 to 1. From Table II, it can be noted that as µ 
increases, the total production cost decreases and the total 
emissions increase. The convergence characteristics of the 
proposed PSO-based technique for the economic (µ=1) and the 
emission (µ=0) dispatch problems are shown in Figure 2. The 
Pareto-front resulted from the PSO-based strategy is depicted 
in Figure 3. The best economic dispatch solution correspond to 
111498.49$/h fuel cost and 4567.27ton/h total emissions, while 
the best emission dispatch solution corresponds to 
3932.24ton/h total emissions and 116412.49 $/h total fuel cost. 
Το further test the effectiveness of the proposed method, the 
simulation results obtained using the proposed PSO-based 
method were compared with various algorithms. From Table 
III, it is clear that the proposed PSO method outperforms the 
others in solving power dispatch problems. 

(a) for µ=1 

 

(b) for µ=0 

 
Fig. 2.  Convergence characteristics of the proposed method (case 1). 

TABLE II.  PARETO SOLUTIONS FOR VARIOUS VALUES OF µ (CASE 1). 

λλλλ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P1 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 54.9736 

P2 80.0000 80.0000 79.9999 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 79.9980 80.0000 

P3 81.1292 81.1079 81.0693 81.8332 83.0377 84.7423 86.7683 88.4989 90.57678 98.1322 106.2337 

P4 81.3701 81.1322 80.8085 81.2860 82.1286 83.4244 84.9239 85.9500 87.2575 93.1849 100.3274 

P5 160.0000 160.0000 160.0000 160.0000 160.0000 143.7728 126.1284 109.9550 96.7236 88.4957 82.5885 

P6 240.0000 240.0000 240.0000 219.5599 189.0966 164.2697 142.7271 121.8599 103.5178 92.2169 82.98739 

P7 294.4776 292.2409 289.7346 291.3277 294.5846 299.5123 300.0000 300.0000 300.0000 299.9786 299.9923 

P8 297.2982 296.9563 296.5578 300.8168 307.3015 315.4370 321.2987 327.2378 333.8038 340.0000 340.0000 

P9 396.7566 398.0034 399.4279 406.0273 415.3302 427.8233 442.3925 456.2269 469.9842 470.0000 469.9574 

P10 395.5627 397.2015 399.1011 406.2881 416.3488 429.8128 445.6171 461.2196 469.9878 469.9907 469.9736 

CT 116412.49 116399.01 116384.25 115599.76 114608.47 113504.92 112644.77 112023.28 111650.66 111530.31 111498.49 

ET 3932.2432 3932.3162 3932.5799 3961.3722 4014.4321 4105.6762 4210.6645 4325.7406 4434.2593 4501.6670 4567.2691 

PL 81.5947 81.6424 81.6993 82.1394 82.8283 83.7950 84.8563 85.9483 86.8517 86.9972 87.0343 

 

 

Fig. 3.  Pareto-front (case 1). 

TABLE III.  SIMULATION RESULTS OBTAINED FOR CASE 1. 

 Best cost Best emission 

Cost ($/h) Emission (ton/h) Cost ($/h) Emission (ton/h) 

PSO 111498.49 4567.27 116412.49 3932.24 

DE 111565.71 4572.68 116418.34 3946.24 

FA 111500.79 4581.00 116443.05 3932.62 

 

B. Case 2 

In this case, a wind farm with a rated power of wr=1.0pu on 
a 100MVA base was incorporated in the ten-unit system. The 
problem was solved for various values of the tolerance σ to 
investigate the impact of the penetration level of WP on the 
EEDP solutions. Figure 4 shows the convergence 
characteristics of production cost (µ=1) and emissions (µ=0) 
for σ=0.3. 
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TABLE IV.  PARETO SOLUTIONS FOR VARIOUS VALUES OF µ (CASE 2 – σ = 0.3). 

λλλλ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P1 55.0000 55.0000 55.0000 54.9927 54.9975 55.0000 55.0000 55.0000 55.0000 55.0000 55.0000 

P2 79.3793 79.0572 79.2443 80.0000 79.9935 80.0000 80.0000 80.0000 80.0000 80.0000 79.9671 

P3 79.2368 79.1410 79.1944 95.6866 89.4404 87.6390 86.3276 84.6486 83.0527 81.3265 80.1881 

P4 79.4393 78.8639 79.1835 87.6092 85.3617 84.0826 83.7210 82.7481 81.6908 80.3916 79.6187 

P5 160.0000 160.0000 160.0000 71.2762 80.4537 91.7389 105.7879 120.9868 138.6410 158.8935 160.0000 

P6 240.0000 240.0000 240.0000 70.2414 82.0695 97.1504 116.1033 135.7649 157.5176 180.8750 210.0817 

P7 283.2762 278.7705 281.1587 299.6879 296.3502 294.8372 296.4263 2.9430731 290.9290 285.5700 282.3278 

P8 285.6298 285.0466 285.3679 337.1601 327.7143 319.2092 316.2059 314.8193 306.9338 297.6583 291.2683 

P9 384.6910 387.3684 385.9387 470.0000 469.9934 459.1521 444.9970 431.0097 418.3983 405.4202 396.0864 

P10 383.5466 387.0554 385.1589 469.9973 469.9908 466.8807 450.0184 434.2659 420.3902 406.4300 396.3520 

CT 113553.68 113527.38 113541.18 108361.08 108398.65 108566.61 108947.91 109504.42 110317.96 111457.33 112401.88 

ET 3752.5080 3752.8219 3752.5756 4411.1741 4341.4299 4251.0979 4136.8332 4033.7302 3934.7089 3841.9554 3791.0480 

PL 77.4441 77.5478 77.4915 83.8963 83.6103 82.9351 81.8324 80.7956 79.7983 78.8100 78.1351 

 

 (a) µ=1 

 

(b) µ=0 

 
Fig. 4.  Convergence characteristics for case 2 (σ=0.3). 

The Pareto solutions for various values of the weight factor, 
ranging from 0 to 1, are presented in Table IV. Meanwhile, the 
Pareto-front for this case is shown in Figure 5. Figure 6 
illustrates the impact of the variation of the tolerance on the 
minimum fuel cost and the total emission functions. From this 
Figure, it is obvious that the more the tolerance that power 
balance constraint cannot meet is, the less the cost and 
emissions are because the more the tolerance is, the more the 
WP penetration is. 

V. CONCLUSION 

This study presented a PSO-based strategy for solving the 
multi-objective EEDP incorporating wind energy sources. The 
power balance constraint was converted into a chance 
constraint and the intermittency of WP was described by the 
Weibull distribution to consider the stochastic characteristic of 

WP. This chance constraint represents the probability that the 
power balance constraint cannot meet.  

 

 

Fig. 5.  Pareto-front for case 2 (σ=0.3). 

 

 
Fig. 6.  Impact of the tolerance on the EEDP solutions (case 2). 
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The EEDP was solved using a PSO-based method 
depending on several operating constraints such as generators, 
limits, valve point loading effects, and real power losses. 
Simulation results, performed on a 69-bus ten-unit system, 
showed that the level of available wind power (WP) was highly 
dependent on the threshold tolerance. The results also showed 
the effectiveness of the proposed optimization method for 
solving the non-convex EEDP. 
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