
Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7757

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection

A Deep Learning Approach for Malware and

Software Piracy Threat Detection

Khalid Aldriwish

Department of Computer Science
College of Science and Humanities

Majmaah University

Majmaah, Saudi Arabia
k.aldriwish@mu.edu.sa

Abstract-Internet of Things (IoT) -based systems need to be up to

date on cybersecurity threats. The security of IoT networks is

challenged by software piracy and malware attacks, and much

important information can be stolen and used for cybercrimes.

This paper attempts to improve IoT cybersecurity by proposing a

combined model based on deep learning to detect malware and

software piracy across the IoT network. The malware’s model is

based on Deep Convolutional Neural Networks (DCNNs). Apart

from this, TensorFlow Deep Neural Networks (TFDNNs) are

introduced to detect software piracy threats according to source
code plagiarism. The investigation is conducted on the Google

Code Jam (GCJ) dataset. The conducted experiments prove that

the classification performance achieves high accuracy of about

98%.

Keywords-cybersecurity; malware; software piracy; deep

learning; Internet of Things

I. INTRODUCTION

Artificial intelligence (AI) approaches are overgrowing
through machine learning and deep learning technologies.
Using AI in applications improves accuracy and efficiency.
The AI approach supports innovations in various fields [1-10].
The Internet of Things (IoT), as an interconnection of device-
based sensors through the Internet, requests a safety
mechanism based on AI methods to prevent attacks and
intrusion. IoT devices are defined by unique Radio Frequency
Identifier (RFID) tags and are connected via nodes. The IoT
interconnection mechanism ensures distant monitoring and
controlling [9]. The IoT connectivity is a universal mechanism
to support cloud computing, service industries, and innovative
applications. With the number of connected devices via the
Internet exceeding 50 billion by 2021 [10], data security
becomes a significant challenge. The IoT technology faces a
massive amount of data due to the growth of communication
networks. Attackers benefit from the IoT architecture to handle
attacks through IoT devices. Pirated software and malware
infection have been used to affect the security of the industrial
IoT cloud [11]. These methods attempt to reuse source code
illegally and to use the system as a regular user. The attacker
writes a malware code based on reverse engineering through
the logic of the original code [12]. This kind of attack is a
severe threat because it allows unlimited downloads of pirated

software. This issue is solved by using an intelligent software
plagiarism technique that finds the stolen source code in the
illegal software. Intelligent software plagiarisms are based
mainly on test-based analysis and structure. The proposed
techniques use many methods: similarity identification, clone
detection, software birthmark investigation, and software bug
analysis [12]. Software plagiarism based on structure technique
focuses on the basic structure of the source code, graph
behavior, function call graph, and syntax trees. These methods
do not catch the attack if another type of programming can
preserve the same behavior as the original software.

Providing secure IoT networks is the purpose of many
malware detection and intelligent software plagiarism
techniques. Infecting the privacy of IoT nodes, smartphones,
and computer systems is the goal of malware attacks. The
different ways to detect malware are: Statistic identification
analysis and dynamic identification analysis. The second one
learns malware patterns when the code is executed in real-time.
The malware is detected considering function parameters’
exploration, function calls, visual investigation of codes,
dataflow, and instruction traces. Some detection tools based on
the dynamic behavior of malicious codes such as Anubis, TT
analyzer, and CW Sandbox [13] are provided online. These
tools, characterized by the monitoring of every dynamic
behavior, suffer from the time-consuming issue. Statistic
methods attempt to capture the layout information without real-
time execution. As a statistic method, the signature
identification technique detects windows-based malware via
specification signatures as opcode frequency, string signature,
and control flowgraph. Statistic methods are supported by
disassembling tools to extract the hidden patterns from binary
executables [14]. Byte sequence technique is considered a
statistic method and removes n-byte sequences from patterns.

A. Software Piracy Detection

In most software plagiarism cases, the software is written
on a single programming language and crackers change the
control flow using a similar programming language. Authors in
[15] proposed a method-based software benchmark to detect
threats in java source code. The authors retrieved structural
features by extracting the control flow of source codes. Then
the similarity is computed between benchmarks of two source

Corresponding author: Khalid Aldriwish

Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7758

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection

codes. Authors in [16] attempted to acquire the similarity
between codes through a hybrid approach. The compiler level
features technique was considered. The authors performed an
unsupervised learning approach to detect plagiarism. The
proposed method computes the similar functionalities of
different sources codes. Authors in [17] introduced an approach
to achieve the similarity features between C++ and C source
codes. The proposed method was based on a source forager
search engine to extract features of every code. The control
flow of the source code is identified based on the shape
functionalities of the code. Authors in [18] computed the
difference between two source codes using a logic-based
approach. The semantics for differences were captured using
symbolic execution and preconditions techniques. Authors in
[19] tried to detect plagiarism related to student’s assignments
using the Latent Semantic Analysis (LSA) method. The authors
aimed to compare source codes with regard to syntactic
structures. This objective was achieved by combining LSA
with PlaGate to identify the similarity. Then, the syntax tree
detected the syntactic view and the abstract of the source code.
Authors in [20] attempted to detect similar source code
fragments using the parse tree kernel. The authors focused on
Java files and proved that the achieved results were inaccurate.
Therefore, a fingerprinting method was proposed instead of the
parse tree kernel. Authors in [21] introduced a behavioral
approach called BPlag to detect source code plagiarism. The
behavior was extracted using symbolic execution. Then, the
code was assimilated to a novel graph-based format. The
plagiarism was computed according to these graphs. The
authors proved that their approach was more accurate and more
robust to plagiarism-hiding than 5 source code plagiarism tools.
Authors in [22] presented a combined approach, using a
Greedy String Tiling and Explicit Semantic Analysis method
named EsaGst. The proposed method supported the detection
of source code plagiarism independently from the
programming language. The evaluation was conducted using
different languages, including Java, C++, Python, PHP, and
Java-Script. The results proved the good performance of the
EsaGst approach.

B. Malware Detection

Malware detection is an open scientific topic. Authors in
[23] used a machine learning approach to classify worms from
the binaries of benign files based on a sequence of variable
length instructions. The authors built a dataset including 1330
benign files and 1444 worms. The experimental results
achieved a classification accuracy of around 96%. Authors in
[24] combined the SVM-based machine learning and N-opcode
sequences to detect malware. The detection process included
the critical instruction sequence and cosine similarity. Findings
demonstrated that similar malware possessed common core
signatures. The proposed malware detection method achieved
an accuracy around 98%. Authors in [25] introduced a method
based on the dynamic analysis approach to highlight the limits
of the static analysis approach. The author proposed an
obfuscation model to execute binary samples and identify
significant behavioral features within a virtual machine. The
evaluation proved the insufficiency of the static analysis
approach in the case the malware is obfuscated. Authors in [26]
attempted to automate malware detection by identifying

abnormal behavior within the program. The proposed idea
provides little information about malicious behavior. Authors
in [27] applied a classification approach based on the clustering
method. The aim was to classify malware samples based on
behavioral features. The proposed method was added to the
Anubis system to track malware samples. The tracking report
detailed the in-depth activities of the malware samples. Authors
in [28] aggregated between statistic and dynamic analysis to
detect malware accurately. The statistical analysis managed the
operational codes based on frequency occurrences. The
dynamical analysis executed traces of system calls and
executable files. Tacking the advantages of each approach, the
authors achieved a better result than statistic or dynamic case
separately. Authors in [29] utilized Convolutional Neural
Networks for malware detection. The announced purpose was
to reduce time, size, and resource overhead. The proposed
method used image-based malware for classification with
98.5% accuracy. Authors in [30] tried to detect malware using
the image similarity technique. The authors employed benign
and vision research lab datasets to evaluate their method.
Samples from executable files were converted to binary code.
In the testing phase, the accuracy reached 98%. Authors in [31]
established an enhanced method to detect malware variants
based on the deep learning approach. The authors intended to
obtain high accuracy at a low time cost. The suggested process
transformed the malicious code into a grayscale image, then
classified samples using the CNN based on significant features.
The authors overcame the imbalance of data by applying the
bat algorithm. According to the experimental results based on
the research lab dataset, the computed accuracy and speed were
sufficient. Authors in [32] applied a machine learning method
with processor core events to detect malware with a hardware
event counter to ensure the detection. The purpose was to
detect the SPECTRE using on-chip hardware on time. The
proposed hardware architecture was based on software agents.
To predict malicious activity, the authors used several machine
learning classifiers. The predictive results achieved an accurate
detection.

The current paper's contributions can be summarized as
follows:

• A Deep Learning approach based on the TensorFlow Deep
Neural Network is proposed to detect software piracy
through source code plagiarism.

• A Deep Convolutional Neural Network (DCNN) is
proposed to detect malware through binary visualization.

• The two models are combined into the same architecture for
the IoT case.

• The proposed architecture is evaluated according to
adequate datasets.

II. THE PROPOSED ARCHITECTURE

Figure 1 describes the proposed architecture, which is
composed of malware and software piracy detection. Cloud
data storage faces many kinds of attacks. Cyber security threat
samples are stored in 4 databases. Database 1 contains network
traffic data. Database 2 stores a list of earlier known malware
data. Database 3 comprises new signatures and features of

Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7759

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection

detected malware. Database 4 includes pirated software via IoT
devices. These databases contain a massive amount of data and
request a lot of computational time and cost. Firstly, the
network traffic data database (D1) transmits raw data to the

detection module, which identifies the kind of attack (malware
or software piracy). The classification is ensured based on
learning signatures stored in databases D2 and D4.

Fig. 1. The proposed architecture for malware and software piracy.

A. Software Piracy Threat Detection Model

The proposed software piracy attack detection is based on
deep learning. The detection based on plagiarism methodology
is captured through different types of source codes. The pirated
version uses the same logic as the original software. Once the
traffic data are classified as software piracy, the source codes
are tokenized to decrease the dimensions of the data. In that
step, significant features are extracted using the TensorFlow
framework. The Keras API for deep learning is applied to
capture source code plagiarism. The first database (D1)
includes the network traffic data collected from Google Code
Jam (GCJ) database. The D1 data are built from 100
programmers and contain about 400 source code documents.
Software piracy threat detection is preceded by a preprocessing
step. The purpose of this step is to divide the source code into
small pieces. Then, the semi-code is converted into useful
information, and noise is removed. Meaningful tokens are
obtained during the tokenization step. Finally, the contribution
of each token is zoomed through a weighting mechanism, see
(1), based on the Logarithm of Term Frequency algorithm [33]
and the Term Frequency and Inverses Document Frequency
(TFIDF).

���, ���, ��	
 ����, ���		� ���	��,��	 (1)

where t defines the token, Doc defines a document, DS
represent all the documents used in the dataset, TF defines the
Term Frequency function, and IDF defines the Inverse
Document Frequency function.

Deep learning is conducted by Tensorflow, which is used
for high-level computations. The pirated software is identified
through extracted similar codes. A fully connected network
with dense layers is utilized for input and output data. The first
layer, which contains 100 neurons, receives the data. The
second layer is composed of 50 neurons. The third layer
consists of 30 neurons. The output variable uses the fourth
dense layer to identify the target of the plagiarized code. Deep
learning is able to solve the overfitting problem using the drop
out layer. The pattern is computed based on the rectifier
(ReLU) activation method [34]:

���	
 ��
 max	�0, �	 (2)

where x defines the input of the equivalent neurons.

The multi-class problem is conducted using the sigmoid
method defined by:

Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7760

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection

���	
 �

�����
 (3)

The deep learning approach used to detect software piracy
provides the following benefits: (1) the model is trained
automatically, (2) the design supports various computational
types, (3) services are reliable while updating and extending the
model, and (4) the proposed model supports big networks.

B. Malware Threat Detection Model

The proposed malware threat detection model consists of
two steps: preprocessing and deep convolutional neural
network. Raw binary files generate the color images and the
problem is becoming an image classification problem. The
adopted color system is grayscale, and features are extracted
from the color image. A feature reduction method is used to
enhance the classification performance. It aims to reduce the
feature set. The generation of the color image from a binary file
proceeds as follows: (1) generate the hexadecimal strings, (2)
divide the hexadecimal strings into a chunk of 8-bit vector, (3)
convert each 8-bit vector to a two-dimensional matrix, and (4)
plot the two-dimentional space. Then, the Deep Convolutional
Neural Network (DCNN) is utilized to identify the malware.
The DCNN receives training images. The Convolution layer's
purpose is to reduce noise and enhance signal features. It
reduces the over-fitting problem. The convolutional layer
performs the computations using (4):

��
�
 ��∑ ��

��� ∗ 	 !�
� "	#�

�
!∈%&

 (4)

where f defines the activation function, M is the cluster of given
maps, #�

� presents the bias consistent, and !�
� denotes the

convolution kernel.

The accuracy of the proposed DCNN is improved through
the convolutional kernel width. The pooling layer ensures the
reduction of the data overhead and selects useful information. It
minimizes the consequence of image distortion using (5):

��
�
 ��'��()��

���* " #�
�	 (5)

where Pool() ensures the pooling task.

The classification of the output of the pooling layer is
performed at the fully connected layer. It aims to enhance the
model by reducing the over-fitting issue. The noise is removed
using filters. Then, the training of the proposed DCNN is
performed using Softmax-Cross-Entropy loss [35], as defined
by:

+
 ,log	� �01

∑ �011
	 (6)

where 23 denotes the rank of the k class. The learning of the
parameters attempted to minimize the loss is conducted with
the use of the Adam optimizer.

III. EXPERIMENTAL PART

A. Software Piracy Detection Performance Evaluation

The evaluation is based on the code similarity between the
pirated software and the source software using the GCJ dataset
[36]. The similarity is checked using Codeleaks plagiarism tool
[12]. The dataset is proceeded by the preprocessing step to

provide the valuable tokens of each source code as root word,
stemming, token’s length, and token’s frequency. Then, the
TFIDF and LogTF algorithms are applied to conduct token
weighting. The accuracy of the classification is improved
according to the number of neurons. The evaluation is shown in
Figure 2 based on validation accuracy, validation loss, and loss.

(a)

(b)

Fig. 2. (a) Loss and (b) accuracy results for source codes.

The loss curves (Figure 2) start from 0.75 and follow the
same trend until 0.3. A fluctuation can be seen in the loss
curve, but both curves are reduced in a similar way. From the
accuracy curves, we can see that the proposed software piracy
threat detection model achieved an accuracy of about 98%.

B. Malware Detection Performance Evaluation

The proposed model measures the effect of malware image
ratios. The image size is taken as 180×180 and 196×196. We
used the Leopard Mobile dataset [37], which is composed of
2486 benign and 14733 malware samples for evaluation. The
training phase uses 15219 samples, and the testing phase
employs 2000 samples. According to the experiments, the
196×196 dimension reached better accuracy than the 180×180
dimension. Therefore, the 196×196 ratio is more suitable for
the proposed model. Table I highlights the comparison between
the different dimensions based on the classification results. The
image size of 196×196 achieves 98.12% testing accuracy. The
computation time is about 18s. Figure 3 presents the
performance evaluation related to the 196×196 image size
based on training accuracy, training loss, test accuracy, and test
loss metrics. A comparison with previous works is presented in
Table II.

Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7761

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection

TABLE I. CLASSIFICATION RESULTS

Ratio Precision (%) Recall (%) Accuracy (%) Time (s)

180×180 94.15 94.68 94.47 16s

196×196 98.02 97.88 98.12 18s

Fig. 3. Loss and accuracy results for malware detection.

TABLE II. MALWARE DETECTION APPROACHES COMPARISON

Ref Method Year Approach
Accuracy

(%)

Time

(s)

[38] SVM+GIST 2017 ML 86.1 46

[39] SVM+LBP 2018 ML 78.05 27

[40] SVM+CLGM 2019 ML 92.06 21

Proposed DCNN 2021 DL 98 18

The comparison in Table II proves that the proposed
malware threat detection model is more accurate than previous
studies that are based only on the machine learning approach.
The proposed method requires only 18s of computation time.

IV. CONCLUSION

Recent industrial systems migrate to industrial-based IoT to
support new network services. Many security issues are related
to IoT networks, especially malware threats and software
piracy. Accurate cyber security defending IoT big data is
needed. In this paper, a new security architecture based on the
deep learning approach is proposed. The attempt aims to detect
malware attacks and pirated software. The proposed approach
is a combined methodology to detect threats. A Deep Learning
approach based on the TensorFlow Deep Neural Network is
introduced to detect software piracy through source code
plagiarism. Then, a DCNN is utilized to detect malware
through binary visualization. The findings prove that the
proposed combined approach of DCNN and TFDNN achieves
a classification accuracy of about 98%. The results of the
proposed approach are better than the results obtained by
related works. Speeding up the computation time to support
real-time systems can be the purpose of future work. This
target could be reached by proposing a high-security level
hardware accelerator.

REFERENCES

[1] J. Huang, J. Chai, and S. Cho, "Deep learning in finance and banking: A
literature review and classification," Frontiers of Business Research in

China, vol. 14, no. 1, Jun. 2020, Art. no. 13, https://doi.org/10.1186/
s11782-020-00082-6.

[2] M. B. Ayed, "Balanced Communication-Avoiding Support Vector

Machine when Detecting Epilepsy based on EEG Signals," Engineering,

Technology & Applied Science Research, vol. 10, no. 6, pp. 6462–6468,
Dec. 2020, https://doi.org/10.48084/etasr.3878.

[3] M. Ben Ayed, A. Massaoudi, and S. A. Alshaya, "Smart Recognition

COVID-19 System to Predict Suspicious Persons Based on Face
Features," Journal of Electrical Engineering & Technology, vol. 16, no.

3, pp. 1601–1606, May 2021, https://doi.org/10.1007/s42835-021-
00671-2.

[4] M. Ramzan, M. S. Farooq, A. Zamir, W. Akhtar, M. Ilyas, and H. U.

Khan, “An Analysis of Issues for Adoption of Cloud Computing in
Telecom Industries,” Engineering, Technology & Applied Science

Research, vol. 8, no. 4, pp. 3157–3161, Aug. 2018, https://doi.org/
10.48084/etasr.2101.

[5] H. E. Fazazi, M. Elgarej, M. Qbadou, and K. Mansouri, “Design of an
Adaptive e-Learning System based on Multi-Agent Approach and

Reinforcement Learning,” Engineering, Technology & Applied Science
Research, vol. 11, no. 1, pp. 6637–6644, Feb. 2021, https://doi.org/

10.48084/etasr.3905.

[6] S. S. T. Alatawi et al., “A New Model for Enhancing Student Portal
Usage in Saudi Arabia Universities,” Engineering, Technology &

Applied Science Research, vol. 11, no. 3, pp. 7158–7171, Jun. 2021,
https://doi.org/10.48084/etasr.4132.

[7] T. Brito, J. Queiroz, L. Piardi, L. A. Fernandes, J. Lima, and P. Leitão,

"A Machine Learning Approach for Collaborative Robot Smart
Manufacturing Inspection for Quality Control Systems," Procedia

Manufacturing, vol. 51, pp. 11–18, Jan. 2020, https://doi.org/10.1016/
j.promfg.2020.10.003.

[8] F. Musumeci et al., "An Overview on Application of Machine Learning

Techniques in Optical Networks," IEEE Communications Surveys
Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019, https://doi.org/10.1109/

COMST.2018.2880039.

[9] C. R. Srinivasan, B. Rajesh, P. Saikalyan, K. Premsagar, and E. S.
Yadav, "A Review on the Different Types of Internet of Things (IoT),"

Journal of Advanced Research in Dynamic and Control Systems, vol.
Volume 11, no. 1, pp. 154–158, 2019.

[10] Y. B. Zikria, R. Ali, M. K. Afzal, and S. W. Kim, "Next-Generation

Internet of Things (IoT): Opportunities, Challenges, and Solutions,"
Sensors, vol. 21, no. 4, Jan. 2021, Art. no. 1174, https://doi.org/

10.3390/s21041174.

[11] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, "Android

Malware Detection using Deep Learning on API Method Sequences,"
arXiv:1712.08996 [cs], Dec. 2017, Accessed: Oct. 07, 2021. [Online].

Available: http://arxiv.org/abs/1712.08996.

[12] F. Ullah, J. Wang, M. Farhan, M. Habib, and S. Khalid, "Software
plagiarism detection in multiprogramming languages using machine

learning approach," Concurrency and Computation: Practice and
Experience, vol. 33, no. 4, 2021, Art. no. e5000, https://doi.org/

10.1002/cpe.5000.

[13] A. Orgah, A. Case, and G. Richard, "MemForC: Memory Forensics
Corpus Creation for Malware Analysis," in Proceedings of the 16th

International Conference on Cyber Warfare and Security, Jan. 2021.

[14] V. Raja, "Introduction to Reverse Engineering," in Reverse Engineering:
An Industrial Perspective, V. Raja and K. J. Fernandes, Eds. London,

UK: Springer, 2008, pp. 1–9.

[15] H. Lim, H. Park, S. Choi, and T. Han, "A method for detecting the theft
of Java programs through analysis of the control flow information,"

Information and Software Technology, vol. 51, no. 9, pp. 1338–1350,
Sep. 2009, https://doi.org/10.1016/j.infsof.2009.04.011.

[16] J. Yasaswi, S. Kailash, A. Chilupuri, S. Purini, and C. V. Jawahar,

"Unsupervised Learning Based Approach for Plagiarism Detection in
Programming Assignments," in Proceedings of the 10th Innovations in

Software Engineering Conference, Feb. 2017, pp. 117–121,
https://doi.org/10.1145/3021460.3021473.

[17] V. Kashyap, D. B. Brown, B. Liblit, D. Melski, and T. Reps, "Source
Forager: A Search Engine for Similar Source Code," arXiv:1706.02769

[cs], Jun. 2017, Accessed: Oct. 07, 2021. [Online]. Available:
http://arxiv.org/abs/1706.02769.

[18] F. Zhang, D. Wu, P. Liu, and S. Zhu, "Program Logic Based Software

Plagiarism Detection," in 2014 IEEE 25th International Symposium on

Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7762

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection

Software Reliability Engineering, Naples, Italy, Nov. 2014, pp. 66–77,
https://doi.org/10.1109/ISSRE.2014.18.

[19] G. Cosma and M. Joy, "An Approach to Source-Code Plagiarism

Detection and Investigation Using Latent Semantic Analysis," IEEE
Transactions on Computers, vol. 61, no. 3, pp. 379–394, Mar. 2012,

https://doi.org/10.1109/TC.2011.223.

[20] J.-W. Son, T.-G. Noh, H.-J. Song, and S.-B. Park, "An application for
plagiarized source code detection based on a parse tree kernel,"

Engineering Applications of Artificial Intelligence, vol. 26, no. 8, pp.
1911–1918, Sep. 2013, https://doi.org/10.1016/j.engappai.2013.06.007.

[21] H. Cheers, Y. Lin, and S. P. Smith, "Academic Source Code Plagiarism
Detection by Measuring Program Behavioral Similarity," IEEE Access,

vol. 9, pp. 50391–50412, 2021, https://doi.org/10.1109/ACCESS.2021.
3069367.

[22] T. Foltýnek, R. Všianský, N. Meuschke, D. Dlabolová, and B. Gipp,

"Cross-Language Source Code Plagiarism Detection using Explicit
Semantic Analysis and Scored Greedy String Tilling," in Proceedings of

the ACM/IEEE Joint Conference on Digital Libraries in 2020, New
York, NY, USA, Aug. 2020, pp. 523–524, https://doi.org/10.1145/

3383583.3398594.

[23] M. Siddiqui and M. C. Wang, "Detecting Internet Worms Using Data
Mining Techniques," Journal of Systemics, Cybernetics and Informatics,

vol. 6, no. 6, pp. 48–53, 2008.

[24] B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer, "N-opcode analysis
for android malware classification and categorization," in 2016

International Conference On Cyber Security And Protection Of Digital
Services (Cyber Security), London, UK, Jun. 2016, https://doi.org/

10.1109/CyberSecPODS.2016.7502343.

[25] A. Moser, C. Kruegel, and E. Kirda, "Limits of Static Analysis for
Malware Detection," in Twenty-Third Annual Computer Security

Applications Conference (ACSAC 2007), Miami Beach, FL, USA, Dec.
2007, pp. 421–430, https://doi.org/10.1109/ACSAC.2007.21.

[26] M. Christodorescu, S. Jha, and C. Kruegel, "Mining specifications of

malicious behavior," in Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, New York, NY,
USA, Sep. 2007, pp. 5–14, https://doi.org/10.1145/1287624.1287628.

[27] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
"Scalable, Behavior-Based Malware Clustering," 2009.

[28] I. Santos, J. Nieves, and P. G. Bringas, "Semi-supervised Learning for

Unknown Malware Detection," in International Symposium on
Distributed Computing and Artificial Intelligence, 2011, pp. 415–422,

https://doi.org/10.1007/978-3-642-19934-9_53.

[29] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F.
Iqbal, "Malware Classification with Deep Convolutional Neural

Networks," in 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), Paris, France, Feb. 2018,

https://doi.org/10.1109/NTMS.2018.8328749.

[30] R. Kumar, Z. Xiaosong, R. U. Khan, I. Ahad, and J. Kumar, "Malicious
Code Detection based on Image Processing Using Deep Learning," in

Proceedings of the 2018 International Conference on Computing and
Artificial Intelligence, New York, NY, USA, Mar. 2018, pp. 81–85,

https://doi.org/10.1145/3194452.3194459.

[31] Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen, "Detection of
Malicious Code Variants Based on Deep Learning," IEEE Transactions

on Industrial Informatics, vol. 14, no. 7, pp. 3187–3196, Jul. 2018,
https://doi.org/10.1109/TII.2018.2822680.

[32] R. Oshana, M. A. Thornton, E. C. Larson, and X. Roumegue, "Real-

Time Edge Processing Detection of Malicious Attacks Using Machine
Learning and Processor Core Events," in 2021 IEEE International

Systems Conference (SysCon), Vancouver, Canada, Apr. 2021,
https://doi.org/10.1109/SysCon48628.2021.9447078.

[33] J. H. Paik, "A novel TF-IDF weighting scheme for effective ranking," in
Proceedings of the 36th international ACM SIGIR conference on

Research and development in information retrieval, New York, NY,
USA, Jul. 2013, pp. 343–352, https://doi.org/10.1145/2484028.2484070.

[34] T. Georgiou, Y. Liu, W. Chen, and M. Lew, "A survey of traditional and

deep learning-based feature descriptors for high dimensional data in

computer vision," International Journal of Multimedia Information
Retrieval, vol. 9, no. 3, pp. 135–170, Sep. 2020, https://doi.org/

10.1007/s13735-019-00183-w.

[35] M. Ben Ayed, S. A. Alshaya, and A. Alshammari, "Enhanced heart rate
estimation based on face features," in 2021 18th International Multi-

Conference on Systems, Signals Devices (SSD), Monastir, Tunisia, Mar.
2021, pp. 840–844, https://doi.org/10.1109/SSD52085.2021.9429508.

[36] A. Back and E. Westman, "Comparing programming languages in

google code jam," Chalmers University of Technology, University of
Gothenburg, Gothenburg, Sweden, 2017.

[37] T. H.-D. Huang and H.-Y. Kao, "R2-D2: ColoR-inspired Convolutional
NeuRal Network (CNN)-based AndroiD Malware Detections," in 2018

IEEE International Conference on Big Data (Big Data), Seattle, WA,
USA, Dec. 2018, pp. 2633–2642, https://doi.org/10.1109/BigData.

2018.8622324.

[38] A. D. Moore, Intellectual Property and Information Control:
Philosophic Foundations and Contemporary Issues. New Brunswick,

NJ, USA: Routledge, 2004.

[39] S. Elfwing, E. Uchibe, and K. Doya, "Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning,"

Neural Networks, vol. 107, pp. 3–11, Nov. 2018, https://doi.org/
10.1016/j.neunet.2017.12.012.

[40] Z. Cui, L. Du, P. Wang, X. Cai, and W. Zhang, "Malicious code

detection based on CNNs and multi-objective algorithm," Journal of
Parallel and Distributed Computing, vol. 129, pp. 50–58, Jul. 2019,

https://doi.org/10.1016/j.jpdc.2019.03.010.

