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Abstract-Internet of Things (IoT) -based systems need to be up to 

date on cybersecurity threats. The security of IoT networks is 

challenged by software piracy and malware attacks, and much 

important information can be stolen and used for cybercrimes. 

This paper attempts to improve IoT cybersecurity by proposing a 

combined model based on deep learning to detect malware and 

software piracy across the IoT network. The malware’s model is 

based on Deep Convolutional Neural Networks (DCNNs). Apart 

from this, TensorFlow Deep Neural Networks (TFDNNs) are 

introduced to detect software piracy threats according to source 
code plagiarism. The investigation is conducted on the Google 

Code Jam (GCJ) dataset. The conducted experiments prove that 

the classification performance achieves high accuracy of about 

98%. 
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I. INTRODUCTION  

Artificial intelligence (AI) approaches are overgrowing 
through machine learning and deep learning technologies. 
Using AI in applications improves accuracy and efficiency. 
The AI approach supports innovations in various fields [1-10]. 
The Internet of Things (IoT), as an interconnection of device-
based sensors through the Internet, requests a safety 
mechanism based on AI methods to prevent attacks and 
intrusion. IoT devices are defined by unique Radio Frequency 
Identifier (RFID) tags and are connected via nodes. The IoT 
interconnection mechanism ensures distant monitoring and 
controlling [9]. The IoT connectivity is a universal mechanism 
to support cloud computing, service industries, and innovative 
applications. With the number of connected devices via the 
Internet exceeding 50 billion by 2021 [10], data security 
becomes a significant challenge. The IoT technology faces a 
massive amount of data due to the growth of communication 
networks. Attackers benefit from the IoT architecture to handle 
attacks through IoT devices. Pirated software and malware 
infection have been used to affect the security of the industrial 
IoT cloud [11]. These methods attempt to reuse source code 
illegally and to use the system as a regular user. The attacker 
writes a malware code based on reverse engineering through 
the logic of the original code [12]. This kind of attack is a 
severe threat because it allows unlimited downloads of pirated 

software. This issue is solved by using an intelligent software 
plagiarism technique that finds the stolen source code in the 
illegal software. Intelligent software plagiarisms are based 
mainly on test-based analysis and structure. The proposed 
techniques use many methods: similarity identification, clone 
detection, software birthmark investigation, and software bug 
analysis [12]. Software plagiarism based on structure technique 
focuses on the basic structure of the source code, graph 
behavior, function call graph, and syntax trees. These methods 
do not catch the attack if another type of programming can 
preserve the same behavior as the original software. 

Providing secure IoT networks is the purpose of many 
malware detection and intelligent software plagiarism 
techniques. Infecting the privacy of IoT nodes, smartphones, 
and computer systems is the goal of malware attacks. The 
different ways to detect malware are: Statistic identification 
analysis and dynamic identification analysis. The second one 
learns malware patterns when the code is executed in real-time. 
The malware is detected considering function parameters’ 
exploration, function calls, visual investigation of codes, 
dataflow, and instruction traces. Some detection tools based on 
the dynamic behavior of malicious codes such as Anubis, TT 
analyzer, and CW Sandbox [13] are provided online. These 
tools, characterized by the monitoring of every dynamic 
behavior, suffer from the time-consuming issue. Statistic 
methods attempt to capture the layout information without real-
time execution. As a statistic method, the signature 
identification technique detects windows-based malware via 
specification signatures as opcode frequency, string signature, 
and control flowgraph. Statistic methods are supported by 
disassembling tools to extract the hidden patterns from binary 
executables [14]. Byte sequence technique is considered a 
statistic method and removes n-byte sequences from patterns.  

A. Software Piracy Detection 

In most software plagiarism cases, the software is written 
on a single programming language and crackers change the 
control flow using a similar programming language. Authors in 
[15] proposed a method-based software benchmark to detect 
threats in java source code. The authors retrieved structural 
features by extracting the control flow of source codes. Then 
the similarity is computed between benchmarks of two source 
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codes. Authors in [16] attempted to acquire the similarity 
between codes through a hybrid approach. The compiler level 
features technique was considered. The authors performed an 
unsupervised learning approach to detect plagiarism. The 
proposed method computes the similar functionalities of 
different sources codes. Authors in [17] introduced an approach 
to achieve the similarity features between C++ and C source 
codes. The proposed method was based on a source forager 
search engine to extract features of every code. The control 
flow of the source code is identified based on the shape 
functionalities of the code. Authors in [18] computed the 
difference between two source codes using a logic-based 
approach. The semantics for differences were captured using 
symbolic execution and preconditions techniques. Authors in 
[19] tried to detect plagiarism related to student’s assignments 
using the Latent Semantic Analysis (LSA) method. The authors 
aimed to compare source codes with regard to syntactic 
structures. This objective was achieved by combining LSA 
with PlaGate to identify the similarity. Then, the syntax tree 
detected the syntactic view and the abstract of the source code. 
Authors in [20] attempted to detect similar source code 
fragments using the parse tree kernel. The authors focused on 
Java files and proved that the achieved results were inaccurate. 
Therefore, a fingerprinting method was proposed instead of the 
parse tree kernel. Authors in [21] introduced a behavioral 
approach called BPlag to detect source code plagiarism. The 
behavior was extracted using symbolic execution. Then, the 
code was assimilated to a novel graph-based format. The 
plagiarism was computed according to these graphs. The 
authors proved that their approach was more accurate and more 
robust to plagiarism-hiding than 5 source code plagiarism tools. 
Authors in [22] presented a combined approach, using a 
Greedy String Tiling and Explicit Semantic Analysis method 
named EsaGst. The proposed method supported the detection 
of source code plagiarism independently from the 
programming language. The evaluation was conducted using 
different languages, including Java, C++, Python, PHP, and 
Java-Script. The results proved the good performance of the 
EsaGst approach.  

B. Malware Detection 

Malware detection is an open scientific topic. Authors in 
[23] used a machine learning approach to classify worms from 
the binaries of benign files based on a sequence of variable 
length instructions. The authors built a dataset including 1330 
benign files and 1444 worms. The experimental results 
achieved a classification accuracy of around 96%. Authors in 
[24] combined the SVM-based machine learning and N-opcode 
sequences to detect malware. The detection process included 
the critical instruction sequence and cosine similarity. Findings 
demonstrated that similar malware possessed common core 
signatures. The proposed malware detection method achieved 
an accuracy around 98%. Authors in [25] introduced a method 
based on the dynamic analysis approach to highlight the limits 
of the static analysis approach. The author proposed an 
obfuscation model to execute binary samples and identify 
significant behavioral features within a virtual machine. The 
evaluation proved the insufficiency of the static analysis 
approach in the case the malware is obfuscated. Authors in [26] 
attempted to automate malware detection by identifying 

abnormal behavior within the program. The proposed idea 
provides little information about malicious behavior. Authors 
in [27] applied a classification approach based on the clustering 
method. The aim was to classify malware samples based on 
behavioral features. The proposed method was added to the 
Anubis system to track malware samples. The tracking report 
detailed the in-depth activities of the malware samples. Authors 
in [28] aggregated between statistic and dynamic analysis to 
detect malware accurately. The statistical analysis managed the 
operational codes based on frequency occurrences. The 
dynamical analysis executed traces of system calls and 
executable files. Tacking the advantages of each approach, the 
authors achieved a better result than statistic or dynamic case 
separately. Authors in [29] utilized Convolutional Neural 
Networks for malware detection. The announced purpose was 
to reduce time, size, and resource overhead. The proposed 
method used image-based malware for classification with 
98.5% accuracy. Authors in [30] tried to detect malware using 
the image similarity technique. The authors employed benign 
and vision research lab datasets to evaluate their method. 
Samples from executable files were converted to binary code. 
In the testing phase, the accuracy reached 98%. Authors in [31] 
established an enhanced method to detect malware variants 
based on the deep learning approach. The authors intended to 
obtain high accuracy at a low time cost. The suggested process 
transformed the malicious code into a grayscale image, then 
classified samples using the CNN based on significant features. 
The authors overcame the imbalance of data by applying the 
bat algorithm. According to the experimental results based on 
the research lab dataset, the computed accuracy and speed were 
sufficient. Authors in [32] applied a machine learning method 
with processor core events to detect malware with a hardware 
event counter to ensure the detection. The purpose was to 
detect the SPECTRE using on-chip hardware on time. The 
proposed hardware architecture was based on software agents. 
To predict malicious activity, the authors used several machine 
learning classifiers. The predictive results achieved an accurate 
detection. 

The current paper's contributions can be summarized as 
follows: 

• A Deep Learning approach based on the TensorFlow Deep 
Neural Network is proposed to detect software piracy 
through source code plagiarism. 

• A Deep Convolutional Neural Network (DCNN) is 
proposed to detect malware through binary visualization. 

• The two models are combined into the same architecture for 
the IoT case. 

• The proposed architecture is evaluated according to 
adequate datasets.  

II. THE PROPOSED ARCHITECTURE 

Figure 1 describes the proposed architecture, which is 
composed of malware and software piracy detection. Cloud 
data storage faces many kinds of attacks. Cyber security threat 
samples are stored in 4 databases. Database 1 contains network 
traffic data. Database 2 stores a list of earlier known malware 
data. Database 3 comprises new signatures and features of 
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detected malware. Database 4 includes pirated software via IoT 
devices. These databases contain a massive amount of data and 
request a lot of computational time and cost. Firstly, the 
network traffic data database (D1) transmits raw data to the 

detection module, which identifies the kind of attack (malware 
or software piracy). The classification is ensured based on 
learning signatures stored in databases D2 and D4. 

 

 
Fig. 1.  The proposed architecture for malware and software piracy. 

A. Software Piracy Threat Detection Model 

The proposed software piracy attack detection is based on 
deep learning. The detection based on plagiarism methodology 
is captured through different types of source codes. The pirated 
version uses the same logic as the original software. Once the 
traffic data are classified as software piracy, the source codes 
are tokenized to decrease the dimensions of the data. In that 
step, significant features are extracted using the TensorFlow 
framework. The Keras API for deep learning is applied to 
capture source code plagiarism. The first database (D1) 
includes the network traffic data collected from Google Code 
Jam (GCJ) database. The D1 data are built from 100 
programmers and contain about 400 source code documents. 
Software piracy threat detection is preceded by a preprocessing 
step. The purpose of this step is to divide the source code into 
small pieces. Then, the semi-code is converted into useful 
information, and noise is removed. Meaningful tokens are 
obtained during the tokenization step. Finally, the contribution 
of each token is zoomed through a weighting mechanism, see 
(1), based on the Logarithm of Term Frequency algorithm [33] 
and the Term Frequency and Inverses Document Frequency 
(TFIDF). 

���, ���, ��	 
 ����, ���		� ���	��,��	    (1) 

where t defines the token, Doc defines a document, DS 
represent all the documents used in the dataset, TF defines the 
Term Frequency function, and IDF defines the Inverse 
Document Frequency function. 

Deep learning is conducted by Tensorflow, which is used 
for high-level computations. The pirated software is identified 
through extracted similar codes. A fully connected network 
with dense layers is utilized for input and output data. The first 
layer, which contains 100 neurons, receives the data. The 
second layer is composed of 50 neurons. The third layer 
consists of 30 neurons. The output variable uses the fourth 
dense layer to identify the target of the plagiarized code. Deep 
learning is able to solve the overfitting problem using the drop 
out layer. The pattern is computed based on the rectifier 
(ReLU) activation method [34]: 

���	 
 �� 
 max	�0, �	    (2) 

where x defines the input of the equivalent neurons. 

The multi-class problem is conducted using the sigmoid 
method defined by: 



Engineering, Technology & Applied Science Research Vol. 11, No. 6, 2021, 7757-7762 7760 
 

www.etasr.com Aldriwish: A Deep Learning Approach for Malware and Software Piracy Threat Detection 

 

���	 
 �

�����
    (3) 

The deep learning approach used to detect software piracy 
provides the following benefits: (1) the model is trained 
automatically, (2) the design supports various computational 
types, (3) services are reliable while updating and extending the 
model, and (4) the proposed model supports big networks. 

B. Malware Threat Detection Model 

The proposed malware threat detection model consists of 
two steps: preprocessing and deep convolutional neural 
network. Raw binary files generate the color images and the 
problem is becoming an image classification problem. The 
adopted color system is grayscale, and features are extracted 
from the color image. A feature reduction method is used to 
enhance the classification performance. It aims to reduce the 
feature set. The generation of the color image from a binary file 
proceeds as follows: (1) generate the hexadecimal strings, (2) 
divide the hexadecimal strings into a chunk of 8-bit vector, (3) 
convert each 8-bit vector to a two-dimensional matrix, and (4) 
plot the two-dimentional space. Then, the Deep Convolutional 
Neural Network (DCNN) is utilized to identify the malware. 
The DCNN receives training images. The Convolution layer's 
purpose is to reduce noise and enhance signal features. It 
reduces the over-fitting problem. The convolutional layer 
performs the computations using (4): 

��
� 
 ��∑ ��

��� ∗ 	 !�
� "	#�

�
!∈%&

    (4) 

where f defines the activation function, M is the cluster of given 
maps, #�

�  presents the bias consistent, and  !�
�  denotes the 

convolution kernel. 

The accuracy of the proposed DCNN is improved through 
the convolutional kernel width. The pooling layer ensures the 
reduction of the data overhead and selects useful information. It 
minimizes the consequence of image distortion using (5): 

��
� 
 ��'��()��

���* " #�
�	    (5) 

where Pool() ensures the pooling task. 

The classification of the output of the pooling layer is 
performed at the fully connected layer. It aims to enhance the 
model by reducing the over-fitting issue. The noise is removed 
using filters. Then, the training of the proposed DCNN is 
performed using Softmax-Cross-Entropy loss [35], as defined 
by: 

+ 
 ,log	� �01

∑ �011
	    (6) 

where 23 denotes the rank of the k class. The learning of the 
parameters attempted to minimize the loss is conducted with 
the use of the Adam optimizer. 

III. EXPERIMENTAL PART 

A. Software Piracy Detection Performance Evaluation 

The evaluation is based on the code similarity between the 
pirated software and the source software using the GCJ dataset 
[36]. The similarity is checked using Codeleaks plagiarism tool 
[12]. The dataset is proceeded by the preprocessing step to 

provide the valuable tokens of each source code as root word, 
stemming, token’s length, and token’s frequency. Then, the 
TFIDF and LogTF algorithms are applied to conduct token 
weighting. The accuracy of the classification is improved 
according to the number of neurons. The evaluation is shown in 
Figure 2 based on validation accuracy, validation loss, and loss. 

 

(a)

 

(b)

 

Fig. 2.  (a) Loss and (b) accuracy results for source codes. 

The loss curves (Figure 2) start from 0.75 and follow the 
same trend until 0.3. A fluctuation can be seen in the loss 
curve, but both curves are reduced in a similar way. From the 
accuracy curves, we can see that the proposed software piracy 
threat detection model achieved an accuracy of about 98%. 

B. Malware Detection Performance Evaluation 

The proposed model measures the effect of malware image 
ratios. The image size is taken as 180×180 and 196×196. We 
used the Leopard Mobile dataset [37], which is composed of 
2486 benign and 14733 malware samples for evaluation. The 
training phase uses 15219 samples, and the testing phase 
employs 2000 samples. According to the experiments, the 
196×196 dimension reached better accuracy than the 180×180 
dimension. Therefore, the 196×196 ratio is more suitable for 
the proposed model. Table I highlights the comparison between 
the different dimensions based on the classification results. The 
image size of 196×196 achieves 98.12% testing accuracy. The 
computation time is about 18s. Figure 3 presents the 
performance evaluation related to the 196×196 image size 
based on training accuracy, training loss, test accuracy, and test 
loss metrics. A comparison with previous works is presented in 
Table II. 
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TABLE I.  CLASSIFICATION RESULTS 

Ratio Precision (%) Recall (%) Accuracy (%) Time (s) 

180×180 94.15 94.68 94.47 16s 

196×196 98.02 97.88 98.12 18s 

 

 
Fig. 3.  Loss and accuracy results for malware detection. 

TABLE II.  MALWARE DETECTION APPROACHES COMPARISON 

Ref Method Year Approach 
Accuracy 

(%) 

Time 

(s) 

[38] SVM+GIST 2017 ML 86.1 46 

[39] SVM+LBP 2018 ML 78.05 27 

[40] SVM+CLGM 2019 ML 92.06 21 

Proposed DCNN 2021 DL 98 18 

 

The comparison in Table II proves that the proposed 
malware threat detection model is more accurate than previous 
studies that are based only on the machine learning approach. 
The proposed method requires only 18s of computation time.  

IV. CONCLUSION  

Recent industrial systems migrate to industrial-based IoT to 
support new network services. Many security issues are related 
to IoT networks, especially malware threats and software 
piracy. Accurate cyber security defending IoT big data is 
needed. In this paper, a new security architecture based on the 
deep learning approach is proposed. The attempt aims to detect 
malware attacks and pirated software. The proposed approach 
is a combined methodology to detect threats. A Deep Learning 
approach based on the TensorFlow Deep Neural Network is 
introduced to detect software piracy through source code 
plagiarism. Then, a DCNN is utilized to detect malware 
through binary visualization. The findings prove that the 
proposed combined approach of DCNN and TFDNN achieves 
a classification accuracy of about 98%. The results of the 
proposed approach are better than the results obtained by 
related works. Speeding up the computation time to support 
real-time systems can be the purpose of future work. This 
target could be reached by proposing a high-security level 
hardware accelerator. 
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