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Abstract-Knowledge of the functions of proteins plays a vital role 

in gaining a deep insight into many biological studies. However, 

wet lab determination of protein function is prohibitively 

laborious, time-consuming, and costly. These challenges have 

created opportunities for automated prediction of protein 

functions, and many computational techniques have been 
explored. These techniques entail excessive computational 

resources and turnaround times. The current study compares the 

performance of various neural networks on predicting protein 

function. These networks were trained and tested on a large 

dataset of reviewed protein entries from nine bacterial phyla, 

obtained from the Universal Protein Resource Knowledgebase 

(UniProtKB). Each protein instance was associated with multiple 

terms of the molecular function of Gene Ontology (GO), making 

the problem a multilabel classification one. The results in this 

dataset showed the superior performance of single-layer neural 

networks having a modest number of neurons. Moreover, a 

useful set of features that can be deployed for efficient protein 
function prediction was discovered. 

Keywords-gene ontology; molecular function term; multi-label 

classification; neural network; protein function prediction 

I. INTRODUCTION  

Understanding proteins’ functions plays a vital role in 
acquiring insights of the molecular mechanisms operating in 
both physiological and ailing medical conditions. As a result, 
this understanding substantiates the discovery of drugs in 
different diseases [1]. However, predicting protein functions is 
an arduous task. The fact is markedly implied by the incredibly 
large number of unannotated protein entries hosted by the most 
comprehensive protein database, the Universal Protein 
Resource Knowledgebase (UniProtKB) [2]. This is mainly due 
to the reliance on traditional experimental annotation 
techniques carried out by molecular biologists. The gap 
between reviewed and unreviewed protein sequences is 
widening due to the data deluge from high-throughput state-of-
the-art sequencing techniques [1, 3-5]. The pressing demands 
for computational methods on the functional annotation of 
proteins have paved the way for significant contributions by 
computer science researchers. Many computational techniques 
employing machine learning for functional annotation of 
proteins have been utilized in the literature. The principal 
difference between various approaches lies in the set of 

features pursued by different investigators. This section 
presents a brief summary of some of the most prominent efforts 
in this area.  

An ensemble of Deep Neural Networks (DNNs) was 
proposed in [1], where each DNN worked on a different set of 
features from the dataset. The predictions of different DNNs 
were then voted to arrive at the final protein function 
prediction. A DNN for the hierarchical multilabel classification 
of protein functions designed to perform well even with a 
limited number of training samples was presented in [3]. In [4], 
a DNN was introduced to learn features from word embedding 
of protein sequences, based on the concept of Natural 
Language Processing (NLP), using sequence similarity profiles 
as additional features to locate proteins. Authors in [5] 
established the efficacy of exploiting any interrelationships 
among different functional terms. For instance, different 
functional classes were found to coexist with some proteins 
suggesting a mutual relationship. Furthermore, a quantification 
model of these relations was proposed, using a functional 
similarity measure and a framework to capitalize on it for the 
eventual prediction of protein functions. A classification 
technique based on a neural network coupled with a Support 
Vector Machine (SVM) was demonstrated in [6], utilizing a bi-
directional Long Short-Term Memory (LSTM) network to 
generate fixed-length protein vectors out of variable-sized 
sequences and deal with the challenges posed by the variable 
length of protein sequences. In [7], protein sequence motifs 
were used to build a deep convolutional network and predict 
protein function, while the authors claimed to have built the 
best performing model for the cellular component classes. The 
significance of Protein-Protein Interaction (PPI) and time-
course gene expression data as powerful predictors for the 
prediction of protein function was shown in [8]. A method, 
called Dynamic Weighted Interactome Network (DWIN), was 
proposed, that in addition to PPI and gene expression data, took 
also into account information related to protein domains and 
complexes to improve the prediction performance. In [9], 
clustering was applied on a PPI network for the prediction of 
protein function. A protein graph model was shown in [10], 
constructed of protein structure, with each node representing a 
cluster of amino acid residues. However, the idea of using an 
accuracy metric for evaluation is generally misleading. In [11], 
an active learning approach was explored for the prediction of 
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protein function using a PPI network. This method operated in 
two phases: Spectral clustering was used to cluster the PPI 
network followed by the application of the betweenness 
centrality measure for labeling within each cluster, and then the 
labeled protein data were used by a classification algorithm. 
Associations between functions in a PPI network were used in 
[12], stating that multiple function labels assigned to proteins 
were not independent and their coexistence could be used 
effectively to predict protein function. A deep semantic text 
representation was presented in [13], with various pieces of 
information extracted from protein sequences such as 
homology, motifs, and domains. Protein function prediction 
was carried out using a consensus between text-based and 
sequence-based methods. In [14], a classifier using cumulative 
iterations was proposed, based on its semantic similarity with 
the term Gene Ontology (GO). Each prediction was followed 
by updating and optimizing scores of characteristic terms in the 
set of GO annotations, which, in turn, led to improved future 
predictions. The dissimilarity of protein functions, rather than 
conventional similarity measures, was used in [15] to segregate 
rare and frequently occurring classes of functions. This 
technique worked well for imbalanced datasets.  

The notable contributions cited above are just a handful of 
numerous praiseworthy efforts towards the prediction of 
protein function. These endeavors differ in terms of the protein 
information utilized by the corresponding systems and the 
computational or time complexities of the classification 
models. The current paper presents a neural network-based 
multi-label classifier for the prediction of protein function by 
training and testing several neural networks on a large dataset 
[16]. The results indicate that a neural network with a single 
hidden layer achieved remarkable prediction performance with 
nominal computational complexity. This makes its 
implementation viable on systems with modest hardware 
capabilities. Consequently, the time required for the 
classification task is in the order of seconds. 

II. MATERIALS AND METHODS 

A. Dataset  

The dataset adopted from [16] includes 121,378 protein 
instances. These labeled protein examples were extracted from 
UniProtKB [2], a comprehensive worldwide repository of 
protein information. These protein entries pertain to 9 bacterial 
phyla, namely Actinobacteria, Bacteroidetes, Chlamydiae, 
Cyanobacteria, Firmicutes, Fusobacteria, Proteobacteria, 
Spirochaetes, and Tenericutes. Each instance in the dataset had 
9,890 features. These features included the sequence of amino 
acids making up the corresponding protein, compositions of 
amino acids, dipeptides and tripeptides; compositions of five 
groups of amino acids, i.e. aliphatic, aromatic, positively 
charged, negatively charged, uncharged, and various structural 
and physiochemical properties derived from the amino acid 
sequence. In addition, some features quantify conjoint triads. A 
conjoint triad is a unit of three successive amino acids such that 
each amino acid in the unit belongs to one of the seven groups 
formed on the basis of the dipole and volume scale [17]. These 
characteristic values indicate the strength of interaction 
between the amino acids of these 7 groups. The feature set also 
contains pseudo amino acid compositions for the corresponding 

protein. As suggested in [18], these numbers overcome the loss 
of sequence order effect in a protein caused by considering just 
plain amino acid compositions. Moreover, there are also 541 
motifs included in the features. These are small segments in 
proteins’ tertiary structure that are frequently found in different 
proteins. These similar patterns are associated with the 
structural or functional roles of proteins.  

There are 1,739 binary labels associated with each protein 
instance. These labels correspond to GO terms belonging to the 
Molecular Function (MF) category. The GO is a categorization 
of biological functions using three broad classes, i.e. Molecular 
Function (MF), Cellular Component (CC), and Biological 
Process (BP), generally referred to as GO terms [19]. The 
molecular function term specifies a biochemical activity 
performed by a gene product, without taking into account the 
time and space dimensions of this activity. The enzyme is an 
example of the MF term. The CC refers to the location of the 
biochemical activity of a gene product in the cell. Ribosome 
and nuclear membrane are two such examples. BP, an all-
encompassing term, defines a biological objective to which 
activities of various gene products contribute. Cell growth and 
maintenance serve as examples the BP term. 

B. Data Preprocessing 

The Comma Separated Values (CSV) files for 9 different 
bacterial phyla were combined to obtain a single Pandas’ data 
frame object using the Pandas data analysis library in Python 
[20]. Duplicate rows were removed from the data frame, which 
was then converted to an array using the scientific computing 
library NumPy in Python [21]. The feature values were then 
scaled using the standard scaler available in the scikit-learn 
library in Python [22]. Data scaling was investigated using 
normalization and robust scaler, but these data scaling 
techniques proved inferior to the standard scaling technique. 

C. Features Partitioning 

The neural networks were trained on 3 sets of features. The 
objective of partitioning features into various subsets was to 
test the hypothesis that compositions of amino acids, 
dipeptides, and tripeptides are sufficient to predict protein 
functions. F = {F1, F2, F3} represented the set of features used 
to train different models, where F1 was the entire set of 9,890 
features, and F2 was the set of 8,420 features that contained 
only compositions of amino acids, dipeptides, and tripeptides. 
The set F3=F1–F2 contained 1,470 features consisting of various 
properties and characteristics derived from proteins as 
described in subsection A.  

D. Neural Networks  

A variety of neural networks was selected, differing in the 
number of hidden layers and neurons in each layer to train the 
protein function classification system on datasets 
corresponding to each feature set F1, F2, and F3. The 
experimental results are given in Section III. It was observed 
that the simplest neural network containing a single hidden 
layer demonstrated better performance on this dataset 
compared to neural networks having more hidden layers. The 
optimal number of neurons in this single hidden layer was 
experimentally determined to be just 5% of the total input and 
output neurons for feature sets F1 and F2 for the best performing 
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neural network. However, for the F3 feature set, the optimal 
number of neurons in the single hidden layer of the best 
performing neural network turned out to be 50% of the total of 
input and output neurons. 

Once the optimal number of neurons in a single hidden 
layer was determined, the addition of another hidden layer was 
utilized to observe any potential boost in performance. The 
number of neurons in the second hidden layer was chosen to be 
50% of the first hidden layer. This was done to ensure that the 
network captured the most important features for prediction. 
Table I summarizes various single-hidden layer neural 
networks trained and tested on the F1 feature set, i.e. the entire 
set of features from the dataset. The reference computer for all 
time and memory size measurements presented is a Core i7-
8700 at 3.2 GHz 6-core processor. 

TABLE I.  SINGLE-HIDDEN LAYER MODELS TRAINED ON THE F1 

FEATURE SET 

Model Neurons1 Size (MB) 
Training time 

(sec) 

Predictiontime 

(sec) 

M1 1 16 1950 2.25 

M2 5 77 2655 6.03 

M3 10 154 3920 7.51 

M4 15 232 4860 9.75 

M5 25 386 8820 13.6 

M6 50 773 12175 21.8 

M7 75 1130 15400 31.6 

1. Expressed as percentage of input + output neurons 

 

Table II presents the M8 neural network with two hidden 
layers trained on F1. This model was constructed by adding 
another hidden layer to the best performing single-hidden layer 
neural network M2 to explore any performance gain. The 
second hidden layer had 50% neurons of the first hidden layer 
in an attempt to capture the optimal features best suited for the 
prediction task. 

TABLE II.  TWO-LAYER MODEL TRAINED ON THE F1 FEATURE SET  

Model Size (MB) 
Training 

time (sec) 

Prediction 

time (sec) 

M8 74 2120 5.52 

 

Table III summarizes various single-hidden layer neural 
networks trained and tested on the F2 feature set, i.e. the 
compositions of amino acids, dipeptides, and tripeptides in the 
protein sequence. 

TABLE III.  SINGLE-HIDDEN LAYER MODELS TRAINED ON THE F2 

FEATURE SET  

Model Neurons
1
 Size (MB) 

Training time 

(sec) 

Prediction time 

(sec) 

M9 5 60 2760 5 

M10 10 118 3480 6.31 

M11 25 295 7920 11.1 

M12 50 590 15000 17.8 

M13 60 708 15855 20.4 

1. Expressed as a percentage of input + output neurons 

 

Table IV presents the M14 neural network containing two 
hidden layers and trained on F2. This model was developed by 
adding another hidden layer to the best performing single 

hidden layer neural network M9, to investigate any 
improvements in the classifier performance. The second hidden 
layer had 50% neurons of the first hidden layer to exploit the 
predictors best suited for the prediction task. 

TABLE IV.  TWO-LAYER MODEL TRAINED ON THE F2 FEATURE SET 

Model Size (MB) 
Training 

time (sec) 

Prediction 

time (sec) 

M14 56 2050 4.76 

 

Table V summarizes several single-hidden layer neural 
networks trained and tested on the F3 feature set, i.e. features 
consisting of various properties and characteristics derived 
from proteins. 

TABLE V.  SINGLE-HIDDEN LAYER MODELS TRAINED ON F3 

FEATURE SET  

Model Neurons
1
 Size (MB) 

Training time 

(sec) 

Predictiontime 

(sec) 

M15 5 6 2750 1.33 

M16 10 12 3200 1.58 

M17 25 30 5200 2.92 

M18 30 35 5270 3.05 

M19 50 60 6630 4.20 

M20 60 71 7320 4.59 

1. Expressed as a percentage of input + output neurons 

 

Table VI presents the M21 neural network having two 
hidden layers and trained on F3. This model was generated by 
adding another hidden layer to the best performing single 
hidden layer neural network M19 to discover any potential 
performance enhancement. The number of neurons in the 
second hidden layer was chosen to be 50% of the first hidden 
layer to capitalize on the features best suited for the 
classification. 

TABLE VI.  TWO-LAYER MODEL TRAINED ON THE F3 FEATURE SET 

Model Size (MB) 
Training 

time (sec) 

Prediction 

time (sec) 

M21 58 5720 4.64 

 

For each network, we employed the relu activation for the 
hidden layers, the sigmoid activation for the output layer, the 
he_uniform kernel initializer for the hidden layers, and the 
Adaptive moment estimation (Adam) optimizer with a learning 
rate of 0.00001. 

E. Performance Evaluation 

Since a protein example in this dataset can be mapped to 
more than one binary label, the prediction of protein function is 
a multilabel classification problem. The dataset is also highly 
imbalanced due to the overwhelming number of negative 
examples for each label. Evaluation of such a classification 
model cannot simply rely on the accuracy of prediction [23, 
24]. For example, if a negative class is abundantly prevalent 
among all examples in an imbalanced dataset, then a naive 
classifier predicting this class for all examples will easily 
achieve very high accuracy. The challenge of this inflated 
accuracy measure becomes aggravated in the case of multilabel 
classification of imbalanced datasets. This problem was 
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addressed by defining more meaningful performance measures, 
namely precision, recall, F1 score, zero-one loss, hamming 
loss, and Matthews Correlation Coefficient. These measures 
are defined here. 

1) Precision 

Precision is defined as the fraction of positively classified 
instances that are, in effect, positive. This gives a clear picture 
of a classifier’s strength in predicting positive classes. Letting 
TP and FP respectively denote the count of true and false 
positives, Precision is calculated as: 

��������� =

�


���
    (1) 

The precision of predict-majority-class-for-all classifier is 
thus 0 judiciously penalizing for its shortcoming at predicting 
the positive minority class. However, any classifier that makes 
just one positive prediction and ensures its correctness would 
have 100% precision despite its failure to predict other positive 
examples. This calls for another classification metric, called 
Recall, also known as sensitivity. 

2) Recall 

Recall is defined as the fraction of positive examples in the 
dataset classified as positive. Letting FN denote the number of 
false negatives, the Recall is given by: 

������ = 	

�


���
    (2) 

This measure penalizes a classifier that attempts to achieve 
high precision simply by making a few correct positive 
predictions. 

3) F1 Score 

Precision and recall are combined in a single performance 
measure called F1 score, which is their harmonic mean. 

�1	����� = 	2 ∗
���������∗����  

��������������  
    (3) 

As the harmonic mean is biased towards lower values, F1 
score can have a higher value only in the case when both 
precision and recall have high values. In multi-label 
classification, there are several ways to average the 
aforementioned performance metrics on all labels [25, 26]. 
These are the micro average, macro average, weighted average, 
and samples average as defined below. As usual, the F1 score 
is the harmonic mean of the corresponding precision and recall 
in each case. 

4) Micro Average 

This is calculated by counting the number of True Positives 
(TPs) across the entire set of target labels. If there are N 
samples in the dataset and each sample has L binary target 
labels, then the micro averages of Precision and Recall are 
calculated as: 

���������!���� =
∑ #$_&��'( 	∧	$_*�+�( 	,

-∗.
(/0

∑ $_&��'(
-∗.
(/0

    (4) 

������!���� =	
∑ #$_&��'(	∧	$_*�+�( 	,

-∗.
(/0

∑ $_*�+�(
-∗.
(/0

    (5) 

where Y_pred and Y_true are the predicted and actual target 
labels, respectively. The conjunction operator ∧  ensures the 
inclusion of only those label instances that are positive in both 
Y_pred and Y_true, i.e. TPs. 

5) Macro Average 

This averages the Precision and Recall scores of the 
individual target labels, giving equal weights to all of them. 
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6) Weighted Average 

This averages the Precision and Recall scores of the 
individual target labels, using the number of positive instances 
of each label in the set Y_true as their weight. 
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where wj denotes the weight, also known as the support of the 
j-th label. 

7) Samples Average 

It averages the Precision and Recall scores across the 
samples. 

�����������!& �� =
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This is the most faithful as well as the most conservative 
performance indicator of the multi-label classifier as it reflects, 
on the average, how well the classifier performed on each 
sample. Therefore, the sample averages were used to gauge the 
performance of the models. 

8) Zero-One Loss 

For a multi-label classification problem, this measure 
credits a prediction as correctly classified only when all labels 
are correctly classified. The loss is zero for a correct prediction. 
However, if the classifier fails to make a correct prediction 
even for just one target label, the corresponding loss is 1. It 
follows that the zero-one loss is truly a conservative and highly 
penalizing performance measure. 

=���>/1 =
1

�
∑ ∏ #A_B��C�8 	⊕	A*�+� �8

,2
891

�
�91     (12) 

The combination of the product operator Π and the 
exclusive-OR operator ⊕ ensures that any mismatch between 
L predicted and target labels generates a loss of 1 for any given 
sample. Otherwise, the loss is zero for a complete match 
between all predicted and target labels for a given sample. 
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9) Hamming Loss 

This gives the fraction of all incorrectly predicted labels by 
quantifying the number of incorrect predictions of all labels 
rather than penalizing individual examples. Hence, if a multi-
label classifier incorrectly predicts 1 out of 10 labels for a given 
instance, the hamming loss for that example is just 1/10 as 
compared to 1 in the case of zero-one loss. It follows that 
hamming loss is lenient compared to the stringent zero-one 
loss. 

E= =	
1

�∗2
∑ #A_B��C� 	⊕	A_F�G��,�2
�91     (13) 

10) Matthews Correlation Coefficient 

The Matthews Correlation Coefficient (MCC) is a binary 
version of Pearson’s correlation coefficient [27]. However, 
multiclass classification problems can also benefit from its 
extended version [28]. MCC compares ground truth and 
predicted vectors, considering all possibilities of prediction, i.e. 
True Positives (TP), True Negatives (TN), False Positives (FP), 
and False negatives (FN). Therefore, it gives a balanced 
evaluation of the performance of the classifier. The correlation 
coefficient lies in the range [-1, +1], with -1 for false 
prediction, 0 for random prediction, and +1 for correct 
prediction. 

HII =	

�∗
�J�∗�

K#
��
�,#
���,#��
�,#���,
    (14) 

The MCC was calculated for every example and its average 
was used to assess the performance of the classifier on the 
entire dataset. 

11) Consolidated Performance Metric 

For the sake of an all-encompassing and more realistic 
comparison of performance, the aforementioned metrics were 
combined in a single Consolidated Performance Metric (CPM) 
as follows: 

I�H =
1	L����∗MNN

2���0/1∗P2
    (15) 

The CPM was constructed in the higher, the better way. 

III. RESULTS 

Table VII shows the performance details of the neural 
networks (M1 to M21) as the samples averages of Precision 
(P), Recall (R), F1 score (F1), Zero-One Loss (ZOL), 
Hamming Loss (HL), MCC, and CPM. 

A wide variety of neural networks was trained and tested on 
a large dataset of proteins. For feature sets F1 and F2, it was 
observed that 5% of the total input and output neurons in the 
single hidden layer networks exhibited better prediction 
performance than other single-layer models. These models 
were designated as M2 and M9, respectively. However, for the 
feature set F3, the optimal count of neurons in the hidden layer 
emerged as 50% of the total input and output neurons. This 
model was designated as M19. The bar graphs in Figures 1-3 
compare the CPM for various neural networks that work on a 
specific feature set. In each case, the best performing single-
layer network was extended by adding a second hidden layer to 
assess any performance edge. Neurons in the second hidden 

layer were the 50% of the first hidden layer to ensure that the 
most relevant features for prediction play their due role. The 
blue bars in Figures 1-3 represent the performance of the best 
performing single-layer networks, while yellow bars show the 
performance of 2-layer neural networks. 

TABLE VII.  PERFORMANCE OF NEURAL NETWORKS 

Model P R F1 ZOL HL MCC CPM 

M1 0.96 0.95 0.95 12.25 0.0159 0.9518 4.6423 

M2 0.96 0.96 0.96 11.36 0.0120 0.9576 6.7437 

M3 0.96 0.96 0.95 11.64 0.0122 0.9571 6.4028 

M4 0.96 0.96 0.95 11.76 0.0122 0.9566 6.3341 

M5 0.96 0.96 0.95 11.90 0.0123 0.9568 6.2100 

M6 0.96 0.96 0.95 12.55 0.0129 0.9546 5.6016 

M7 0.96 0.96 0.95 12.61 0.0132 0.9539 5.4442 

M8 0.96 0.95 0.95 12.21 0.0128 0.9535 5.7959 

M9 0.94 0.94 0.93 15.85 0.0173 0.9341 3.1681 

M10 0.94 0.94 0.93 16.47 0.0179 0.9329 2.9429 

M11 0.93 0.94 0.93 16.70 0.0180 0.9318 2.8828 

M12 0.93 0.94 0.93 17.30 0.0186 0.9298 2.6873 

M13 0.93 0.93 0.93 17.07 0.0183 0.9297 2.7678 

M14 0.93 0.93 0.92 17.17 0.0188 0.9279 2.6446 

M15 0.96 0.95 0.95 12.43 0.0129 0.9535 5.6492 

M16 0.96 0.96 0.96 11.34 0.0117 0.9591 6.9396 

M17 0.97 0.96 0.96 10.43 0.0108 0.9614 8.1935 

M18 0.97 0.96 0.96 10.66 0.0110 0.9614 7.8709 

M19 0.97 0.96 0.96 10.34 0.0107 0.9625 8.3516 

M20 0.97 0.96 0.96 10.39 0.0108 0.9621 8.2310 

M21 0.97 0.96 0.96 10.95 0.0114 0.9593 7.3775 

 

 

Fig. 1.  Neural networks’ comparison on F1 feature set. 

 
Fig. 2.  Neural networks’ comparison on F2 feature set. 



Engineering, Technology & Applied Science Research Vol. 12, No. 1, 2022, 7974-7981 7979 
 

www.etasr.com Tahzeeb & Hasan: A Neural Network -Based Multi-Label Classifier for Protein Function Prediction  

 

 
Fig. 3.  Neural networks’s comparison on F3 feature set. 

F. Optimal Feature Set 

The experiments also focused on exploring an optimal set 
of features for the prediction of protein function. As it was 
noticed, the F3 feature set proved to be the best predictor for 
this multi-label classification. Figure 4 shows a comparison of 
the best-performing models for each feature set, where M19 on 
F3 achieved the best performance. 

 

 
Fig. 4.  Performance comparison of the best performing single-layer 

models on different feature sets. F3 proves to be the best predictor set. 

G. Classification Threshold  

The impact of the classification threshold on the 
performance of a classifier was examined. The models predict 
the probability of each target label associated with every 
instance. These probability values quantify the chance for a 
given instance to belong to a particular class. These probability 
values should be translated into binary labels 0 and 1 before the 
final evaluation of the model. This conversion to binary labels 
required a threshold or probability cutoff value below which all 
values are classified as class 0 and equal or greater values are 
classified as class 1. Classifier performance metrics are 
profoundly influenced by the choice of this threshold. The 
impact of the threshold is more pronounced for imbalanced 
datasets. As the examined dataset is skewed towards more 
negative examples of each label, the performance of the models 
was evaluated for various values of thresholds. Figures 5 and 6 
show two example plots of samples averages of P, R, and F1 

score for models M2 and M19, respectively, against a range of 
classification thresholds. 

 
Fig. 5.  Performance curves of M2 for the F1 feature set. The choice of 

classification threshold plays an important role in improving the performance 

of the classifier. 

 
Fig. 6.  The Performance curves of model M19 for the F3 feature set. 

H. Confusion Matrix 

The confusion matrix is a visualization of a classifier’s 
performance, as it gives the count of TP, FP, TN, and FN class 
predictions. 

 

 
Fig. 7.  Confusion matrices of the best-performing model M19 for F3. Only 

labels having support more than 1,000 are included. 
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Figure 7 presents the confusion matrices of select labels in 
the test dataset for the model M19 that performed best in the F3 
feature set. To highlight the strength of the classifier, only 
labels whose support exceeded 1,000 in the dataset were 
chosen 

IV. DISCUSSION 

The performance comparison of different neural networks 
on a large protein dataset showed that neural networks having a 
single hidden layer and a modest number of neurons achieved 
superior performance on this specific dataset than relatively 
more complex networks. The number of neurons in the single 
hidden layer was empirically determined. The rigorous 
experimentation revealed that only 5% of the total input and 
output neurons were adequate in single-hidden-layer models 
operating on F1 and F2 feature sets. However, this count was 
50% for a single-layer model on F3. This disparity in the 
number of neurons was because these models for the F1 and F2 

feature sets had 9,890 and 8,420 neurons, respectively, in their 
input layers. Therefore, even 5% of the total input and output 
neurons were adequate to effectively train the model for 1,739 
labels. However, for F3, the number of input neurons was 
barely 1,470, and consequently, more neurons were needed for 
better prediction performance. This justifies a 50% count of 
neurons in the single hidden layer for this network. In any case, 
the training time, prediction time, and model size of these 
models were much better than those of other competing 
models. These models showed much better performance (F1 
score: 0.96) compared to the deep learning ensemble [1] (F1 
score: 0.79) on the same dataset. This was also achieved with a 
much lower computational complexity.  

A. Best Predictors  

The findings highlight the impressive role of the 
physiochemical properties and motifs in proteins, pseudo 
amino acid compositions, and other properties derived from the 
protein sequences in predicting protein functions. The proposed 
model for this feature set was extremely efficient as it had 
better performance and lower computational complexity.  

B. Sufficiency of Amino Acid, Dipeptide, and Tripeptide 

Compositions 

The results were suggestive of the sufficiency of amino 
acid, dipeptide, and tripeptide compositions in predicting 
protein functions. Although the performance metrics for this 
particular feature set had lower values than other feature sets, it 
can be used for a sufficient and tolerable approximation. This 
could save time spent in engineering features from existing 
features of the dataset consisting of bare compositions of amino 
acids, dipeptides, and tripeptides.  

V. CONCLUSIONS 

This study culminated in two significant findings regarding 
the examined protein dataset. The first one pertains to the 
exceptional performance of single-layer neural networks on 
this dataset, alhough the number of neurons in this single 
hidden layer must be empirically determined as a percentage of 
the total input and output neurons in the network. The simple 
design of this single-layer model requires minimal computing 
resources. This model showed a performance improvement of 

more than 16% over two-layer neural networks operating on 
the F1 feature set. The corresponding performance 
improvements for the F2 and F3 features set were 20% and 
13%, respectively. This study could play a substantial role in 
the prediction of protein function, due to the tremendous 
predictive power of some physiochemical properties of 
proteins, their pseudo-amino acid compositions, motifs in 
proteins, and some other significant characteristics. The bare 
compositions of amino acids, dipeptides, and tripeptides 
provide a reasonably high level of approximation of protein 
functions. This could be useful in cases where researchers want 
to have an approximate idea of protein functions just from the 
amino acid sequence rather than extracting and relying on 
many other properties of proteins. 
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