
Engineering, Technology & Applied Science Research Vol. 12, No. 1, 2021, 8013-8016 8013

www.etasr.com El Touati: Deadline Verification for Web Services Using Timed Automata

Deadline Verification for Web Services Using Timed

Automata

Yamen El Touati

Faculty of Computing and IT
Northern Border University
Kingdom of Saudi Arabia

yamen.touati@nbu.edu.sa

Abstract-Many computation tasks are made today on remote

cloud platforms using web services. Beyond the advantages

provided by such services, many new challenges arise. One of the

challenging problems is ensuring that web services respect

critical deadlines. This is a critical issue, especially for real-time

systems that use remote web services. This paper aims to propose
a framework for deadline verification using Timed Automata
(TA).

Keywords-web services; deadlines; timed automata; verification

I. INTRODUCTION

In the last few years, most companies migrated to remote
cloud-based services. In these systems, most of the
communication is ensured via web services that offer quasi-
unlimited resources and computational power. However,
companies face new challenges concerning security [1-4] and
timing constraints [9-11, 19]. A web service is a software
system designed to support interoperable machine-to-machine
interaction over a network [6]. They provide flexible and
efficient solutions to the sharing of information between people
and businesses [6, 20]. By nature, a web service can face many
random interferences that can cause delays in the required tasks
[12-15, 18]. In many cases, it is not easy to check whether the
specification deadlines are respected. In general, this is because
some web services are composed of many correlated tasks,
where delays and timing are propagated according to a
dynamic schedule. In this particular context, timed automata
[6-10] are suitable for modeling the evolution of a system
focusing on time constraints. These are presented as an
extension of finite-state automata with clocks into location.
Transitions can be executed when a linear constraint on clocks,
called guard, is verified. This framework presents an interesting
graphical interface combined with powerful computational
power. Moreover, it is more suitable to solve verification
problems using a timed automata framework than performing
algebraic calculus, which may be difficult to resolve if the size
of the system increases. This paper proposes a new method
based on timed automata reachability checking in order to
resolve the problem of deadline verification.

II. BACKGROUND OF TIMED AUTOMATA AND TIME

TRANSITION SYSTEMS

ℝ� denotes nonnegative reals, X={x1,x2,…,xn} denotes the
finite set of real-valued variables, and the circumflex (~) is
used to denote an element of the set of operators {<,≤,=,≥,>,≠}.
A simple inequality over X is an inequality of the form x~c,
where x∈X and c∈ℝ� . A rectangular predicate over X is a
conjunction of linear inequalities over X. C(X) denotes the set
of linear predicates on X.

A. Timed Automata

A timed automaton [1,3] is a tuple A = (L, l0, X, Σ, E, inv,
F) where:

• L is a finite set of locations (nodes)

• l0 is the initial state

• X is a finite set of non-negative real valued clocks

• Σ is a finite set of actions or events (labels)

• E ⊂ L × C(X) × Σ × 2X × L is a set of transitions. e ∈
E, and e=(l, δ, α, R, li) is defined, where l is the start
location, δ is the guard, α is the action, R is the set of
clocks to reset, and l

i
 is the end location

• inv ∈ C(X)L is a function that associates an invariant to
each location

• F ⊂ L is the set of final states

B. Semantic of Timed Automata

The semantic of timed automata A=(L, l0, X, Σ, E, inv) is
given by a Time Transition System [2] SA= (Q, q0, →), where:

• Q = L × ℝ�
X

• q0 = (l0, 0) is the initial state

• →⊂ Q × (Σ ∪ ℝ�) × Q is defined by:

o (l,v) →a
 (l

i
,v
i
) (discrete transition) if ∃ (l, δ, a,

R, ρ, l
i
) ∈ E such that δ(v)=true,

and vi=v[R ← 0][ρ] and inv(l
i
)(v

i
)=true

o (l,v)→t
(l
i
,v
i
) (continuous transition) if l=li and

vi=v+t and inv(li)(vi)=true

Corresponding author: Yamen El Touati

Engineering, Technology & Applied Science Research Vol. 12, No. 1, 2021, 8013-8016 8014

www.etasr.com El Touati: Deadline Verification for Web Services Using Timed Automata

It is noted that (l,v)→*(li,vi) in the case of a transition
sequence of leading from (l,v) to (li,vi).

C. Reachability in Timed automata

A run of a timed automaton A is a path in SA starting from
	
. [[A]] denotes the set of all runs in the timed automaton A. It
is noted that �	,
� →� �	′,
′� →� �	′′,
′′� is equivalent to
�	,
� →�

� �	′′,
′′�. A state �	� ,
�� is considered as reachable,
if:

∃�	
,

� →��

�� �	� ,
�� →��

�� �	� ,
�� →��

�� … →��

�� �	� ,
��

where �	
 ,

� � �
. A run:

�	
,

� →��

�� �	�,
�� →��

�� �	� ,
�� →��

�� … →��

�� �	� ,
��…

starting from �
 � �	
,

� is a timed trace, denoted as:

� � ��
 � �
,
� → ���, �� → ���, �� → ⋯��� , ��…		

where � is a sequence of pairs ��� , ��, �� ∈ E is a transition,
and ��� ∈ �� is the delay between the two successive events
�� and ���� where:
 � 0 and ∀# $ 1	:

	 � � &� ' &�(�.

III. DEADLINE VERIFICATION IN WEB SERVICES

A web service can be modeled by a set of tasks with a
timed automaton, where each location corresponds to a specific
configuration in the web service’s lifecycle. Transitions
between locations correspond to a configuration change. Thus,
locations can be considered as elementary subtasks to fulfill the
entire web service. Some of these tasks may take a longer than
expected time to be fulfilled. Since the sequence of tasks and
their exact duration is not easy to tackle in these systems, it
would be interesting to investigate a way to check whether any
critical deadline was broken.

Fig. 1. Example of a timed automaton.

A. Checking Deadline in Timed Automata

Consider the example shown in Figure 1 and suppose that
this timed automaton represents the behavior of a web service
composed of 5 subtasks (those represented by locations L1 to

L5). It can be assumed that the deadline of this web service is
16 time units (t.u). Checking whether this deadline is respected
is equivalent to checking if L3 is reached always before 16 t.u.
In this case, L3 is always reached before 8 t.u, which means
that the previous deadline is respected by the web service. To
resolve this problem, a universal clock x0 (a clock that is never

reset) can be added and check if the constraint x0≤15 is always
verified.

B. Generalization

This problem can be generalized for a timed automaton

A=(L, l0, X, Σ, E, inv) as:

Given A1 = (L, l0, X∪{x0}, Σ∪{d}, E, inv) and Deadline∈	
��,	Deadline is respected if:

∀ l∈ L, ∀ v∈ ℝ� such that (l0,0)→
*
(l,v), v(x0)≤Deadline (1)

C. Deadline Verification Steps

To ensure that property (1) is respected, this problem is
transformed into a reachability verification problem as follows.

• A new derivative automaton is constructed

A2=(L∪{ld}, l0, X∪{x0}, Σ∪{d}, E∪Ed, inv), such that:

Ed�{(l, x0>Deadline, {d}, {}, ld), l∈L-F}

• The reachability of ld should be checked. If ld is
reachable, then the deadline is not guaranteed to be
respected by the web service.

The ld location has the behavior of a typical dead state.
Transitions are added from each nonfinal location to ld, with
the guard x0>Deadline, without any reset.

Fig. 2. Updated Timed Automaton with dead state and universal clock –

 ld is not reachable

In the example shown in Figure 2, the suggested method is
applied to proceed to deadline verification. Location ld is
reachable if the universal clock t0 reaches the limit defined by
the deadline, here 16. In this particular case, the location ld is
not reachable, which means that the web service satisfies the
deadline constraint. However, if a more restrained deadline

constraint is considered, e.g. x≤6, the transition guards leading

Engineering, Technology & Applied Science Research Vol. 12, No. 1, 2021, 8013-8016 8015

www.etasr.com El Touati: Deadline Verification for Web Services Using Timed Automata

to ld will have the form t0>6, as shown in Figure 3. In this case,
the location ld is reachable from any non-final location. In
general, if the location ld is accessible from even a single
location, then the deadline constraint becomes unsatisfied.

Fig. 3. Updated timed automaton with dead state and universal clock –

ld is reachable

Fig. 4. Automata and computation of reachable space.

Fig. 5. Reachable space.

For any web service modeled by a timed automaton, the
problem of checking deadlines is decidable. By construction,
checking the deadline respect on automaton A is equivalent to
checking the reachability of ld in automaton A2. If a transition
is executed in Ed, then the universal clock x0 exceeds the
defined deadline, since the guard x0>Deadline becomes true.
Furthermore, the reachability problem is known to be decidable
for general timed automata [1], ensuring that the verification of
the deadline is decidable. The proposed method to check a
deadline is structural. It is sufficient to add a new ld location, a
new universal clock, and as many transitions as the cardinality
of the locations set.

The proposed method was applied to the examples in
Figures 2 and 3 using the Phaver tool [17]. Phaver allows the
computation of reachable space of timed automata. The
automata and the computation of reachable space were defined,
conforming to the Phaver syntax, as shown in Figure 4. The
result reachable space is shown in Figure 5.

D. How to Respect Deadline Constraints

Some web services may not meet some deadline
requirements. When the number of clocks/locations increases,
it is difficult to determine what are the possible updates on the
behavior of the system to converge to the requirements. It is
interesting to find a solution that describes the required values
of the clocks with respect to the deadline constraints by
following the following steps:

• Mark all locations where ld is reachable. This set is
denoted as Ld

• ∀ l∈ Ld, update inv(l) by adding the constraint t0 ≤
Deadline

• Foreach l ∈ Ld, perform a backward analysis
considering the reverse automata and the new location
environment [16]

• Merge all the reachable space.

The result of these steps is a new automaton where the ld
location is never reachable. The implementability of these new

constraints on the web service can be checked by the

developers or designers based on the new constraints obtained

on locations and guards. Moreover, it could be a starting point
to enhance and upgrade the web service considering the new

constraints.

Engineering, Technology & Applied Science Research Vol. 12, No. 1, 2021, 8013-8016 8016

www.etasr.com El Touati: Deadline Verification for Web Services Using Timed Automata

IV. CONCLUSION

This paper focused on the problem of deadline verification
for web services that could be modeled by timed automata.

This framework offers the possibility to model the internal

behavior of a web service with explicit consideration of timing
constraints. The contribution of this paper is to propose a way

to transform this problem into a reachability verification

problem of a derived automaton. This new automaton is

obtained by a structural and linear transformation. Future work
consists of the generalization of this problem for a sequence of
subtasks of a web service with multi-deadline constraints.

Moreover, it is possible to tackle the deadline verification in

the context of web service composition [4, 8]. In this case, it is
necessary to deal with the synchronous composition of timed

automata as modeling frameworks.

REFERENCES

[1] A. Bourouis, K. Klai, N. B. Hadj-Alouane, and Y. E. Touati, "On the
Verification of Opacity in Web Services and Their Composition," IEEE

Transactions on Services Computing, vol. 10, no. 1, pp. 66–79, Jan.
2017.

[2] A. Burouis, N. B. Hadj-Alouane, and K. Klai, "Computing Quantified

Opacity for SOG-Abstracted Web Services," in 2017 IEEE International
Conference on Services Computing (SCC), Jun. 2017, pp. 362–369,

https://doi.org/10.1109/SCC.2017.53.

[3] S. Tiwari and P. Singh, "Survey of potential attacks on web services and
web service compositions," in 2011 3rd International Conference on

Electronics Computer Technology, Apr. 2011, vol. 2, pp. 47–51,
https://doi.org/10.1109/ICECTECH.2011.5941653.

[4] A. Bourouis, K. Klai, Y. E. Touati, and N. B. Hadj-Alouane, "Checking

Opacity of Vulnerable Critical Systems On-The-Fly," International
Journal of Information Technology and Web Engineering (IJITWE), vol.

10, no. 1, pp. 1–30, Jan. 2015, https://doi.org/10.4018/ijitwe.
2015010101.

[5] A. Bourouis, K. Klai, Y. El Touati, and N. B. Hadj-Alouane, "Opacity

Preserving Abstraction for Web Services and Their Composition Using
SOGs," in 2015 IEEE International Conference on Web Services, Jun.

2015, pp. 313–320, https://doi.org/10.1109/ICWS.2015.50.

[6] R. Alur and D. L. Dill, "A theory of timed automata," Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, Apr. 1994,

https://doi.org/10.1016/0304-3975(94)90010-8.

[7] T. A. Henzinger, Z. Manna, and A. Pnueli, "Timed transition systems,"

in Real-Time: Theory in Practice, Berlin, Heidelberg, 1992, pp. 226–
251, https://doi.org/10.1007/BFb0031995.

[8] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, "Symbolic

Model Checking for Real-Time Systems," Information and
Computation, vol. 111, no. 2, pp. 193–244, Jun. 1994, https://doi.org/

10.1006/inco.1994.1045.

[9] Y. El Touati, "Minimization of Linear Constraints in Constant Slope
Hybrid Dynamic Systems," International Journal of Advanced

Computer Science and Applications, vol. 18, no. 10, pp. 19–23, 2018.

[10] Y. E. Touati, S. Altowaijri, and M. Ayari, "Control of Industrial Systems
to Avoid Failures: Application to Electrical System," International

Journal of Advanced Computer Science and Applications, vol. 9, no. 5,
2018, https://doi.org/10.14569/IJACSA.2018.090561.

[11] Y. E. Touati, M. Ayari, and S. Altowaijri, "Extended Time Petri Net and

Hybrid Petri Net : Modeling Multi- Instance Dynamic Hybrid Systems,"
International Journal of Computer Science and Network Security, vol.

18, no. 5, pp. 75–83, 2018.

[12] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, "Run-Time
Monitoring of Instances and Classes of Web Service Compositions," in

2006 IEEE International Conference on Web Services (ICWS’06), Sep.
2006, pp. 63–71, https://doi.org/10.1109/ICWS.2006.113.

[13] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, "Constraint driven
Web service composition in METEOR-S," in IEEE International

Conference onServices Computing, 2004. (SCC 2004). Proceedings.
2004, Sep. 2004, pp. 23–30, https://doi.org/10.1109/SCC.2004.1357986.

[14] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz, "Experiences in

engineering flexible Web services," IEEE MultiMedia, vol. 8, no. 1, pp.
58–65, Jan. 2001, https://doi.org/10.1109/93.923954.

[15] M. Mao, J. Li, and M. Humphrey, "Cloud auto-scaling with deadline and

budget constraints," in 2010 11th IEEE/ACM International Conference
on Grid Computing, Oct. 2010, pp. 41–48, https://doi.org/10.1109/

GRID.2010.5697966.

[16] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, "What’s

Decidable about Hybrid Automata?," Journal of Computer and System
Sciences, vol. 57, no. 1, pp. 94–124, Aug. 1998, https://doi.org/

10.1006/jcss.1998.1581.

[17] G. Frehse, "PHAVer: Algorithmic Verification of Hybrid Systems Past
HyTech," in Hybrid Systems: Computation and Control, Berlin,

Heidelberg, 2005, pp. 258–273, https://doi.org/10.1007/978-3-540-
31954-2_17.

[18] G. A. Tarnavsky and E. V. Vorozhtsov, "Cloud Computing in Science

and Engineering and the ‘SciShop.ru’ Computer Simulation Center,"
Engineering, Technology & Applied Science Research, vol. 1, no. 6, pp.

133–138, Dec. 2011, https://doi.org/10.48084/etasr.87.

[19] B. O. Odedairo and V. Oladokun, "Relevance and Applicability of
Multi-objective Resource Constrained Project Scheduling Problem:

Review Article," Engineering, Technology & Applied Science Research,
vol. 1, no. 6, pp. 144–150, Dec. 2011, https://doi.org/10.48084/etasr.53.

[20] F. H. Khoso, A. Lakhan, A. A. Arain, M. A. Soomro, S. Z. Nizamani,

and K. Kanwar, "A Microservice-Based System for Industrial Internet of
Things in Fog-Cloud Assisted Network," Engineering, Technology &

Applied Science Research, vol. 11, no. 2, pp. 7029–7032, Apr. 2021,
https://doi.org/10.48084/etasr.4077.

