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Abstract-The smart grid is a new concept that has been 

developed during recent years to improve the intelligence and 

efficiency of electric power system management. Traditional 

electricity systems are combined and integrated with information 

technology, communication technology, and intelligent control 

technology in the smart grid. Demand Response (DR) refers to 

the changes in consumers' electricity consumption behavior in 
response to dynamic pricing or financial incentives. Based on the 

control manner, DR methods are classified as centralized or 

distributed. In distributed techniques, customers communicate 

with the other consumers and provide data to the power utility 

about the overall use. In this paper, we focus on the distributed 

approach of DR using the shifting method for a short-term 
horizon. To be more specific, three well-known solutions were 

studied: the Resource Allocation with Legitimate Claims, the 

Constrained Fair-Splitting Dispatch, and Real-Time Pricing. 

Finally, we compare the different techniques of DR distributed 
approaches based on the control mechanism. 

Keywords-demand response; distributed approach; resource 
allocation with legitimate claims; constrained fair-splitting dispatch 

problem; real-time pricing  

I. INTRODUCTION  

Demand Response (DR) is a technique describing the way 
the demand side responds to the supply-side price techniques or 
incentive measures [1-3]. DR leads to modifications in end-use 
customer consumption patterns as a result of the changes in 
electricity pricing over time or incentive payments designed at 
encouraging lesser energy use during periods when the market 
prices are higher or when system reliability is affected. DR is a 
cost-effective way to minimize power usage, and the cost of 
putting it in place is less than the cost of adding more 
generation capacity to get the same result [4]. The fundamental 
advantage of DR is that it improves power system use by 
establishing a closer relation between customers' consumption 
and the electricity price [5]. DR is becoming increasingly 
crucial in the interaction between supply and demand, which is 
the most critical aspect of the smart grid compared to 
traditional power systems. When consumers participate in DR 
programs, they are more likely to decrease their electricity use 

during critical peak periods or shift some peak demand to off-
peak periods [6]. As a result, the economy and security of the 
electricity systems are improved. Customers can react to high 
prices in one of the following methods [7]: 

• Foregoing is a method for limiting electricity consumption 
during times of high prices, but not consuming it thereafter. 

• Shifting is a technique to reschedule power usage from 
high-priced periods to other times. 

• Onsite generation is a method where some users have 
backup emergency generators that can be used to respond 
partially or totally to their use demands. 

In this paper, we are interested in the shifting method as it 
is the most used in DR.  

DR methods are classified as centralized and distributed, 
based on their control mechanism. In the centralized approach, 
costumers interact directly with the power utility, without 
communicating with each other. In the distributed approach, 
consumers communicate with the others and inform the power 
utility about its use [8]. The main contributions of this paper 
are: (1) the introduction and exhibitions of results of the most 
famous distributed solutions for DR using the short-term 
horizon shifting method, (2) addressing a comparison between 
the distributed solutions. 

II. BACKGROUND 

DR methods are classified as centralized or distributed, 
based on the control mechanism. In centralized DR, the 
response decisions for energy assignment or load scheduling 
are solely handled by the power utility, based on groups formed 
by sets of customers. In this method, each consumer 
participates without having to be aware of the other customers 
in the group's involvement [9]. Furthermore, fixing the 
problems centrally necessitates transferring all the consumers' 
personal data to the aggregator, resulting in significant 
communication overhead and privacy problems. This central 
strategy, on the other hand, always entails a large 
computational load along with the privacy issue. In the 
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distributed approach, the power utility's key role is the delivery 
of pricing information, depended on the total system 
consumption. Customers can manage directly with one another 
to accomplish aggregated load reduction. Unlike a central 
authority which collects data to make decisions, the 
decentralized control ensures scalability and protection of 
consumer privacy [10]. In the literature review, there were 
found two primary families on distributed DR approaches. The 
first group includes techniques that treat energy uses as 
continuous [11] which makes the underlying DR issue convex 
and hence computationally feasible. The second group includes 
techniques representing energy uses as a combination of 
discrete and continuous uses [12]. 

The interaction between consumers and providers can be 
divided into 3 approaches based on the time scale: long-term 
horizon, medium-term horizon, and short-term horizon. Price-
based demand response is concerning customers' energy 
consumption changes in reaction to changes in their purchase 
prices [13]. This category includes Real-Time Pricing (RTP), 
Time-Of-Use (TOU), and Critical-Peak Pricing (CPP). For 
RTP, electricity prices are set for a short-term horizon of time, 
usually one hour [14], to match fluctuations in wholesale 
electricity prices. Customers are frequently given price 
information a day or hour ahead of time. TOU defines different 
costs for medium-term horizon of time, which are commonly 
established in 24-hour increments [15]. CPP is a combination 
of TOU and RTP, and it is more difficult to implement [16]. 
The base program is TOU, and under certain circumstances, 
substantially higher peak pricing is used (e.g. whenever the 
system reliability is affected or when power costs are very 
elevated). Incentive-Based Programs (IBPs) control 
consumption without using power costs. Instead, customers 
agree to reduce their load during crucial circumstances and to 
be paid for that [17]. The load can be controlled in two ways. It 
might be the utility that guides the load and takes appropriate 
actions, or it could be the consumers the ones who take 
appropriate actions in the event of an emergency. Classic 
programs and market-based programs [18-20] are the two types 
of incentive-based programs. 

To the best of our knowledge, no research has been 
published about the evaluation of the different DR techniques 
in a distributed way using the shifting method for a short-term 
horizon. In this paper, the assessment of three different 
distributed DR techniques is conducted. The scope is to provide 
a very contribution in the awareness of the best approach based 
on specific criteria. 

III. DISTRIBUTED DR CONTROL ALGORITHMS 

In a centralized solution, the DR procedure is controlled by 
only one unit, which gathers the demand information from the 
customers and then makes decisions for demand scheduling. In 
distributed DR, demand information is not centrally gathered 
and customers have direct access to grid state meters. With this 
information, consumers are able to react based on the system’s 
state, if it is critical. In this section, we present the most 
important techniques related to DR of smart grid as distributed 
approach. 

A. Resource Allocation with Legitimate Claims (RALC) 

In RALC, the provider agent must determine how much 

energy 
,

in

i tπ
 
each customer agent should be assigned, taking 

into account certain limits. As a result, the energy demand 
allocation problem is to consider how much energy should be 

allocated to each customer agent
,

in

i tπ . The proposed allocation 

method is based on distributive fairness and is self-organized 
[21]. Customer agents agree on the criteria for conducting the 
allocation. Any of the provider agents then computes this 
allocation. The allocation is done pursuant to a set of canons in 
distributive justice. To this purpose, we propose the following 
mechanism for agreeing on load allocation at a certain time t 
(hour): 

1. Information about the load L(t) is available at the provider 

agent (t). 

2. Every customer agent i sends a request to the provider agent 

asking the desired power
,

in

i tπ  as well as the constraints min

,i tπ

and max

,i tπ . 

3. The provider agent calculates the total amount of power 

requested min max, ,t t tπ π π . There could be a variety of scenarios: 

• min

t tL π= : If the equality holds, all customer agents are 

given the smallest amount of authority, 
min

, ,

in

i t i tπ π= . 

• min max

t t tLπ π≤ ≤ : Customer agents are assigned power 

within their needed range. Each customer agent's power is 
assigned by the provider agent based on a rank attributed 
according to a set of weights. Weights are assigned to all 
customer agents after they reached an agreement a set of 

canons. In this case, every customer receives power ,

in

i tπ  

such that: 

min min min

, , , , ,min( , )
in

i t i t t i t i t i tLπ π π π π← + − −  

• max

t tL π≥ The customer agent obtains the exact amount of 

power required, 
, ,

in

i t i t
π π= . 

4. The provider agent provides each customer agent with the 

computed allocation
,

in

i tπ . 

5. Each customer agent must pay 
,

in

t i tλ π× in accordance to the 

provided energy
,

in

i t
π . 

The second protocol in step 3 is crucial, as it requires the 
customer agents to agree on the way the load will be divided. 
To do so, the Rescher's canons are used as voting functions f* 
for the allocation, and the relevance of each function is decided 
by its associated weight w*. The process of determining the 
way the load is divided is essentially an allocation procedure 
that is frequently applied. The weights' initial value is set at 

*

1
w

m
=  (where m represents the functions number), and the 

procedure proceeds as follows: 

A consensus on a particular ranked list of customer agents 
should be reached in order to proceed with the allocation. The 
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Borda count protocol is used as a consensus-based voting 
approach. In the Borda count process, each function f∗ is 
considered as a voter. Each vote in Borda count voting sorts the 
candidates based on a specific criterion. Each candidate in the 
list is given Borda points: for example, if we have n customer 
agents, then the rank k receives n - k + 1 Borda points. The 
Borda points obtained from each vote are added together to 
give a total Borda score for every agent. The candidate having 
the highest Borda score gains the Borda count procedure, 
however it is possible to find several "winners," therefore we 
construct a Borda point queue in decreasing order and assign 
electricity to the head of the queue until there are no more to 
allocate. Under a set of functions F, the Borda score B of 
candidate i is calculated by:  

* *
* 1

( , ) ( ( ))
F

B i F w bpts f i
=

= ×∑     (1) 

where f∗(i) determines each f∗'s rank order for candidate i, 
bpts() computes the Borda points for that rank, and w∗ is the 
weight associated with the function f∗. 

The Borda count function returns the Borda_ptq list after 
computing the Borda score B for each agent i. Algorithm 1 
presents the main idea explained above, where A is a set of N 
Consumer agents, and F is a set of m voting functions f∗, each 
with its own weight w∗. 

Algorithm 1. Resource Allocation with Legitimate Claims. 

1: For each time slot t ∈ T do 

2: 0tπ ← , min 0tπ ←  

3:  for each customer agent i ∈ N do 

4:   
,t t i tπ π π← +  

5:  
min min min

,t t i t
π π π← +  

6:  end for 

7:  Lt ←  update(Lt) 

8:  If Lt > tπ  then 

9:  for each customer agent i ∈ N do 

10:   , ,

in

i t i t
π π←  

11:  End for 

12: Else if  Lt >
min

t
π   // Lt < t

π  

13:   rank orders ← [ ] 

14:   for every voting function f∗ ∈ F do 

15:    rank orders ← rank orders ∪ f∗(A) 
16:   end for 
17:   Borda_ptq ← Borda count(rank orders, F) 

18:  repeat 

19:  i ← head(Borda_ptq) // customer i 

20:  Borda ptq ← tail(Borda_ptq) 

21:  min min min

, , , , ,
min( , )in

i t i t t i t i t i t
Lπ π π π π← + − −   

22:  
,

in

t t i t
L L π← −   

23:  until (Borda_ptq = Null) 

24:  else // Lt = 
min

tπ  then   

25:   for each customer agent i ∈ N do 

26:    min

, ,

in

i t i tπ π←  

27:  End for 

28:  End if 

29: End for 
30: End 

 

As a running example, Figure 1 depicts the agents ranked 
by a group of voters, each of whom creates its own rank list. 
Borda points are assigned to each rank in a list and then are 
combined together in a weighted sum to produce a single final 
rank list and final Borda score for each agent. 

 

 
Fig. 1 The Borda count voting mechanism in a simple form. 

B. Constrained Fair-Splitting Dispatch (CFSD)  

SFSD is the most famous DR method. At first, we consider 
a direct graph G = {V, E} where each customer i can possibly 
transmit information to other customers called its neighbors Ni. 
The customers sending data (respectively receiving data) to the 
customer i are called the in-neighbors (respectively out-

neighbors) of i and are represented by the set 
i

N − (respectively 

i
N + ) = {j ∈ V: (i, j) ∈ E}. The number of in-neighbors 

(respectively out-neighbors) of agent i is called the in-degree 

(respectively out-degree) and is denoted by
iD
− (respectively 

iD+ ). Π denotes the total amount of power that the system 

should collectively deliver, i.e.: 
1

n

i
i

Π π
=

= ∑ . The ratio consensus 

technique is explained below. Consider the exchange of data 
between customers in a direct graph where each customer i in 
the graph keeps two values, yi and zi, called internal states, 
which are independent and updated as a linear combination of 
customer i's prior internal states and the past internal states of 
its in-neighbors respectively. For each k ≥ 0, each customer i 
updates yi and zi, in the following way [22]: 

1
( 1) ( )

i

i j
j N j

y k y k
D− +

∈
+ = ∑     (2) 

1
( 1) ( )

i

i j
j N j

z k z k
D− +

∈
+ = ∑

    

(3) 

∀ k, customer i computes: 

( )
( )

( )

i
i

i

y k
k

z k
γ =

   

 (4) 
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Lemma 1: For every customer i, it is demonstrated in [22] 

the convergence of ( )i kγ to some constant γ. 

Then, each customer i asymptotically obtains: 

1

1

(0)

lim ( )
(0)

n

j
j

k i n

j
j

y

k
z

γ γ =
→∞

=

∑
= =

∑
    (5) 

Without loss of generality, we assume that the total 
resource amount Π is known to a power entity V, who is able to 
exchange data with specific customers V+ (having a number m). 
Besides, the initial conditions in (2) are set to  

(0)
i

y  = Π / m− min

iπ if i ∈ V
+
, and (0)

i
y  = − min

iπ otherwise. 

Moreover, the initial conditions in (3) are set to 

max min(0)i i iz π π= − , ∀ i. Then, as long as min max

1 1

n n

i i
i i

π Π π
= =

≤ ≤∑ ∑ , 

we conclude from Lemma 1 that the i-th node can 

asymptotically determine its contribution 
iπ  as: 

min max min( )i i i iπ π γ π π= + −     (6) 

where: 

min

1

max min

1

( )
lim ( ) lim

(0) ( )

n

j
ji

k i k n

i
j j

j

y k
k

z

Π π
γ γ

π π

=
→∞ →∞

=

− ∑
= = =

−∑
    (7) 

Note that (6) satisfies min max

i i iπ π π< < , ∀ i, and also

1

n

i
i

π Π
=

=∑ . Additionally, every customer i can independently 

declare infeasibility if γ > 1 or γ < 0. The solution in (6) is not 
considered as the optimal solution, but it ensures a "fair" 
splitting of the total amount of resource Π proportional to the 
"excess" capacity of each node. 

As a running example, Figure 2 depicts the convergence of 

( )i kγ for j = 1, .., 4 over 30 iterations. We can conclude from 

the graph that after about 13 iterations, all customers obtain a 
common value γ = 0.9. As a result, the customers decide the 
solution is possible and update their output in accordance with 
(6), obtaining x = [0.279, 0.129, 0.364, 0.228]T.  

 

 
Fig. 2 Convergence of constrained fair-splitting dispatch algorithm. 

C. Real-Time Pricing (RTP) Algorithm 

The provider agent modifies its energy supply tactics in 
every iteration, based on the consumer agents' energy 

consumption strategies, whereas the consumer agent i adjusts 
its energy consumption based on real-time costs (see Figure 3). 
We present here the Optimal RTP algorithm based on the 
utility maximization for smart grid [23] in which: 

*

,

t

i j
π

 
is the optimal requested power by the consumer agent i 

to the provider agent j, 
t

jλ  is the updated price by the provider 

agent j, *( )
t t

L λ
 
is the capacity update, and 

t

jµ  the coordination 

parameter. The requested power is: 

min max
, , ,

*

, , , ,
( )  U( , ) - argmax

t
i j i j i j

t t t t t

i j j i j i t j i j
ππ π

π πλ λ πω
≤ ≤

=     (8) 

and the price update is provided by: 

( )1 * *

,
1

( ) ( )
N

t t t t t

j j i j j t j
i

Lλ λ λ λπγ
+

+

=

 = + −∑  
    (9) 

where [�]+ = max{�, 0}. 

The capacity update is given by: 

min max

* ( )   - ( )argmax
t

j j j

t t t t t

j j j j t j
L L L

L L C Lλ λ
≤ ≤

=     (10) 

and the coordination parameter by: 

( )1 *

,
1

( )
N

t t t t

i i i j j i
i

bµ µ γ λπ
+

+

=

 = − −∑  
    (11) 

1) Real-Time Pricing Formulation 
 

Algorithm 2: Executed at consumer agent i.  

1: for every t ∈ T 

2:  Receive the new price t

jλ  from the provider agent j. 

3: Compute the consumption value *

,

t

i j
π  using (8). 

4:  Send the updated *

,

t

i j
π to the provider agent j. 

5:  Calculate the coordination parameter t

iµ  by (11). 

6: end for 
 

Algorithm 3: Performed by the provider agent j. 

1: repeat 

2:     if time t ∈ T 

4:   Calculate the new electricity price t

j
λ  by solving (9). 

5:   Send the new price t

j
λ  to each consumer i. 

6:     else 

7:  Update the capacity value ( )t
t j

L λ  using (10). 

8:  Receive *

,i tπ
 
from all the consumer agents i ∈ N. 

9:  Update the total load 
*

,

t

i j
i N

π
∈
∑  accordingly. 

10:   end if 

11: until the end of planned period. 
 

The pricing mechanism proposed in this study aims to align 
social benefit with individual welfare, i.e. to find a suitable 
pricing so that the locally optimal solution is the same as the 
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globally optimal solution. From the Algorithm 2, the consumer 
agents are regarded independent agents who are responsible for 
their own well-being. To improve their benefits and 
contentment, each consumer agent requires a specific quantity 
of power. The mission of a smart grid is to manage the 
coordination of the customer agents to cover the requested 
power, so that there is a balance between energy production 
and consumption. Form the Algorithm 3, it is clear that the 
provider agent is trying to fulfill the consumer agents' requests 
or facilitate the coordination between customer agents so that 
they can guarantee the total requested power and maintain a 
balance between energy production and consumption (in 
accordance with the consumer agents' needs and constraints). 
The following characteristics are included in the proposed 
algorithms. 

• Algorithms 2 and 3 are considered distributed algorithms in 
which each utility company and user solves the 
subproblems locally to allocate energy. There is no 
requirement for a central controller or a third party. 

• Each user helps energy allocation by coordinating the 
demand from several power entities to satisfy his need. 

• The distributed Algorithms 2 and 3 protect power entities' 
and customers' privacy. However, this leads to a more 
complicated solution. 

Figure 3 depicts the communication between the utility 
company and the user in a multiseller–multibuyer system. The 
electricity pricing and energy demand are the two pieces of 
information that must be exchanged between the utility 
provider and the customer. Algorithms 2 and 3 summarize the 
distributed algorithms at each utility business and each user 
respectively. Each utility business adjusts its supply in response 
to the electricity price. Each utility company determines the 
price of power depending on its supply and demand from all 
customers. The price is then made public to all users. The 
electricity price and the user's coordination parameter are used 
to update each user's demand. 

 

 
Fig. 3 Information exchange between the provider and the consumer 

agents. 

2) Running Example 
Figure 4 depicts the relationship between the provider's 

hourly fee and the consumed electricity. Customers actually 
lower their use during peak hours (as shown in the Figure at 
hours 18 and 19) because the price is doubled. Furthermore, 
clients determine the optimal consumption at the lowest price 
(in the Figure at hours 11 and 12): this is illustrating the most 
significant benefit of the RTP algorithm. 

 

 
Fig. 4 Total power consumed with RTP algorithm. 

IV. NUMERICAL RESULTS 

Through this section, we study the features of each 
technique: DR with RALC, CFSD, and the RTP algorithm. 
Some numerical results illustrating the results of each are 
provided and compared. For the purposes of simulation 
throughout our research, we will use a network with C = 7 
companies and U = 150 clients. 

Figures 5 and 6 show the customers' average utility and 
energy usage as functions of the timeslots required for all 
comparative frameworks to converge to the steady customers' 
association with power companies. The results show that the 
RTP algorithm produces the highest consumer utility (Figure 5) 
and the lowest customer electricity consumption (Figure 6). 
This trend is the result of the use of (8)-(10), including both 
monetary and electricity-related aspects, as described above. 
Furthermore, the RALC, which is self-organized and based on 
distributive fairness, delivers acceptable outcomes in terms of 
consumers' utility and electricity consumptions. CFSD, on the 
other hand, does not optimize the electricity consumption and 
achieves the lowest customers’ utility and high electricity 
consumption. When compared to the other two algorithms, the 
RTP algorithm outperforms both, demonstrating the huge 
benefit of using optimization in the overall process. The results 
reveal that: (a) The CFSD applies no optimization. Users 
choose time periods at random to place their schedulable loads. 
(b) The RALC is a greedy algorithm, in which everyone strives 
to reduce its total electricity cost by lowering the base price. 
This one simulates a scenario in which there is no cost 
fluctuation fee and users do not collaborate while making 
judgments. (c) The RTP algorithm provides optimal results. 
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Fig. 5 Customers’ average utility. 

 

Fig. 6 Customers’ total energy consumption. 

V. CONCLUSION  

DR is an important subject in smart grid implementations, 
allowing better system operation and extension, and increased 
market efficiency. It can be used to lower the overall load in 
response to peak power constraints as well as for auxiliary 
services like frequency regulation, which has a faster scale 
reaction time. In this paper, we studied the most widely known 
techniques in distributed DR, namely RALC, CFSD, RTP. We 
compared these techniques based on two criteria: customers' 
average utility and energy usage. The results show that the RTP 
technique is the best as it ensures the highest consumer utility 
as well as the lowest customer electricity consumption. For 
future work, it is possible to extend the distributed algorithms 
to make them robust to faulty consumers. 
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