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Abstract-A Non-parametric Ensemble Empirical Mode 

Decomposition (NCEEMD) method is a novel technique for 
nonlinear and non-stationary signal analysis to detect a gearbox 

fault. The NCEEMD method was based on the CEEMD, but the 

Gaussian white noise was replaced by the fractional Gaussian 

noise. The NCEEMD method does not need to choose the 

appropriate SNR and the number of ensemble trials before signal 

processing, which makes it a non-parametric method. This new 
approach was evaluated using a simulated malfunction signal 

representing two typical faults in gearbox systems: modulation 

and rub-impact. Its performance was evaluated in terms of MSE 

and computation time. A comparative study between the EMD, 

EEMD, CEEMD, and NCEEMD methods showed that the latter 

performed better by improving the computation time and 

accuracy of CEEMD. The proposed method is a non-parametric 
method that provides a powerful tool in extracting the 

modulation and the rub-impact features from a vibration signal. 

The NCEEMD method helps to track down the gearbox faults 
and resolve this crucial problem in mechanical machines. 

Keywords-complementary ensemble empirical mode 

decomposition; fractional Gaussian noise; gearbox fault detection; 
nonlinear signal analysis 

I. INTRODUCTION  

Gears are common and vital components in rotating 
machines, having a typical nonlinear and non-stationary signal. 
Monitoring the condition of a gear can help in the early 
detection of potential failures and avoidance of damages [1]. 
The predictions are based on the analysis of vibration signals 
generated by mechanical equipment. Many conventional 
methods of signal processing, such as statistical methods and 
Fourier analysis, have been applied to the analysis of vibration 
signals to diagnose gearbox faults. However, these methods are 
based on the assumption that the signals are stationary and 
linear, while gear defects have the nature of non-stationary 
processes [1].  

Several methods have been proposed to deal with non-
stationary signals. Among these techniques, the wavelet 
transform has good localization properties in the time and 
frequency domains, and it has been applied to the detection of 
damage in gear systems [2, 3]. However, the main drawback of 
the wavelet transform is the definitive choice of the wavelet 

base function before it is used [1, 4], making it non-adaptive. 
The Empirical Mode Decomposition (EMD) was developed as 
a powerful tool to analyze nonlinear and non-stationary signals 
[5], and it has been applied in machine fault diagnosis [1, 6-
10]. EMD decomposes a signal into a finite number of Intrinsic 
Mode Functions (IMFs) by taking advantage of the signal’s 
local properties. However, the main drawback of EMD is the 
mode mixing problem, where oscillations of different time 
scales can appear in one IMF, or oscillations with the same 
time scale can appear in different IMFs. To overcome the mode 
mixing problem, the Ensemble Empirical Mode Decomposition 
(EEMD) was proposed as an improved method of EMD [11]. 
EEMD is a noise-assisted data analysis method where the true 
IMFs are defined as the mean of an ensemble of trials, each 
consisting of the original signal plus a finite white noise. 
EEMD has been applied to the diagnosis of rotating machinery 
faults [12-14]. However, the resulting IMFs can be corrupted 
by additive white noise. The residue noise can be decreased by 
using a large number of ensemble trials (Ne), resulting in high 
computation times. The Complementary EEMD method 
(CEEMD) was proposed to reduce computational times [15]. 
For this purpose, the white noise is added and subtracted 
separately from the original signal to generate two sets of 
IMFs. The average of IMFs of the same order could effectively 
reduce the final white noise residue. 

This study proposes a new method named NCEEMD to 
enhance the performance of CEEMD by reducing the number 
of ensemble trials and therefore the amount of calculation and 
computation time. The NCEEMD method is based on the 
principles of the CEEMD, but the Gaussian white noise is 
replaced by fractional Gaussian noise [16, 17]. The proposed 
method was evaluated using a simulated malfunction signal 
caused by modulation and rub-impact that represent two typical 
faults in gearbox systems. Its performance was evaluated in 
terms of fault diagnosis and computation time, and it was 
compared with the performance of EMD, EEMD, and CEEMD 
methods. 

II. MATHEMATICAL THEORY  

A. EMD Algorithm 

The EMD method decomposes any non-linear and non-
stationary signal into a finite number of IMF components by 
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taking advantage of the local properties of the signal. This 
process is applied without requiring an a priori basis as the 
wavelet method by using a sifting algorithm. So, the original 
signal can be obtained by superposing the obtained M-1 IMFs 
and one residual r(t) as [5]: 

���� � ∑ ��	
��


�
 ��� � ����    (1) 

A more detailed description is provided in [5]. However, 
the main disadvantage of EMD is the problem of mode mixing, 
which affects the decomposition accuracy and the 
interpretation of the results. 

B. EEMD Algorithm 

The EEMD was proposed in [11] to overcome the mode 
mixing problem of EMD. The EEMD method defines the true 
IMF as the mean of an ensemble of trials, each consisting of 
the investigated signal corrupted by an additive white noise 
[11]. For a given number of ensemble trials Ne, a finite white 
noise is added to the signal in each trial, and then this noisy 
signal is decomposed into IMFs by using the EMD method 
[11]. Eventually, the true IMFs are obtained by averaging the 
IMFs of the same order. A complete description can be found 
in [11]. The EEMD method removes the problem of mode 
mixing. However, the resulting IMFs will be contaminated by 
the added noise. The added noise in the decomposed results can 
be reduced by using a large number of ensemble trials, 
increasing computation time. 

C. CEEMD Algorithm 

The CEEMD method was proposed to reduce the 
computational time of EEMD and the white noise residue. In 
this approach, white noise is added and subtracted separately 
from the original signal to generate two sets of IMFs with 
positive and negative noises [15]. The average of IMFs of the 
same order could eliminate the noise residue in the final IMFs. 
A drawback of CEEMD is the selection of the right level of 
added white noise and the number of adequate trials before 
each signal processing. 

D. NCEEMD Algorithm 

This study proposes the NCEEMD method to further 
reduce the number of ensemble trials. This method is based on 
the CEEMD method, but the Gaussian white noise was 
replaced by the Fractional Gaussian Noise (FGN). The FGN is 
a stationary process obtained by periodically sampling the 
fractional Brownian motion process BH(t) and by computing 
the first difference, defined by [17]:  

���� � ������ ���� � 1�    (2) 

The autocorrelation of FGN is given by: 

����� �
��

�
�|� � 1|�� � 2|�|�� � |� � 1|���    (3) 

The FGN is characterized by the Hurst exponent H, where  
0 < H < 1, and its variance σ2. For � � ½ the FGN process is a 
white noise process, while other values produce nonzero 
correlations. For 0 < H < ½ the correlation is negative, the 
autocorrelation decays very rapidly, and the frequency response 
looks like a high-pass filter. For ½ < H < 1 the correlation is 

positive and the autocorrelation decays very slowly. The 
frequency response is similar to a low-pass filter. 

E. Hurst Exponent Selection 

The FGN is characterized by a Hurst exponent H which is 
defined in two intervals. Two criteria were used in a systematic 
approach to select an appropriate H and ensure a successful 
NCEEMD decomposition. The first criterion was to determine 
the values of H that provide decomposition without mode 
mixing and no redundant IMF components. Figure 1(a) 
represents the different results of NCEEMD decomposition for 
the simulated malfunction signal described in Section III, 
according to the Hurst exponent where a value of 0 represents 
no redundant IMF component and the value of -1 represents the 
mode mixing [18]. Therefore, H within the range of [0, 1/2] is a 
good value for a successful NCEEMD decomposition. 
Furthermore, it has been shown that the bandwidth of each IMF 
in the EMD method was much narrower for H lower than ½, 
and it increased with H greater than ½ [16]. Then, to ensure 
that the NCEEMD method behaves like an effective filter 
without mode mixing, the range 0 ! � ! ½ must be chosen. 

The second criterion was used to determine the exact value 
of H in the selected range. To reach this aim, the accuracy of 
the decomposition using RMSE between the IMF1 and the rub-
impact component of the simulated malfunction signal was 
evaluated according to the Hurst exponent, as shown in Figure 
1(b). As it can be noted, the method has fewer errors in the 
range of 0.16 < H < 0.20, while RMSE has a minimum at 
H=0.185. Therefore, the appropriate value of the Hurst 
exponent is H=0.185. 

 

(a) 

 

(b) 

 
Fig. 1.  Hurst exponent selection: (a) Relationship between the Hurst 

exponent and decomposition results obtained from NCEEMD,  
(b) Relationship between the Hurst exponent and RMSE (NCEEMD method). 

III. SIMULATION EXPERIMENTS 

Simulation experiments were conducted on a gearbox 
signal model, as an example of a non-linear and non-stationary 
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signal, to analyze the performance of the proposed method and 
compare it with the conventional empirical method. 

A. Gearbox Signal Model 

The vibration signal, acquired from a normal gearbox, 
composed of a pair of gears and meshing under a constant load 
and speed, is represented by [19]:  

���� � ∑ "#�
#�$ %&��2'()*+� + ,#�   (4) 

where M is the number of tooth-meshing harmonics, Xm and φm 
are the amplitude and the phase modulation function of the mth 
meshing harmonic, respectively, N is the teeth number of the 
gear, fs is the rotating frequency, and Nfs is the meshing 
frequency. When gears with faults are meshing, the amplitude 
and the phase of the vibration signal would be modulated. The 
gear fault vibration signal can be expressed by [19]: 

-��� � ∑ "#.1 + /#���0�
#�$ %&�.2'()*+� + ,# + 1#���0    (5) 

where am(t) and bm(t) are periodic functions whose frequencies 
are the rotating frequency and its multiples that include the 
fault information of the gear vibration signal. 

In this study, the normal gear vibration signal was used 
with one periodic function of the m

th
 meshing harmonic of the 

amplitude and phase. When gears with a fault are meshing, 
both the amplitude and phase of this signal are modulated by 
the same periodic functions ((am(t)=bm(t)). In addition to the 
modulation, the gear fault vibration signal can also include a 
rub-impact fault. Therefore, all the decomposition methods 
mentioned in Section II were tested and compared on a 
simulation signal that included modulation and rub-impact 
components. 

B. Application of NCEEMD on the Gearbox Signal 

The NCEEMD and two conventional methods were tested 
on a simulated gearbox signal as an example of a nonlinear and 
non-stationary signal. Two typical faults exist in a fault 
diagnosis of a gearbox: modulation and rub-impact. When the 
local rub-impact occurs in the gear, it produces an impact 
signal characterized by pulses of very short duration whose 
amplitude decreases exponentially. In addition, the normal gear 
vibration signal, with one periodic function of the mth meshing 
harmonic, was modulated by amplitude and phase modulation. 
The rub-impact signal, the amplitude, the phase-modulating 
signal, and the simulated malfunction signal that combines 
them are shown in Figure 2.  

The simulated malfunction signal was decomposed by 
NCEEMD and the conventional methods EMD and EEMD to 
extract the rub-impact component and detect a fault, as shown 
in Figures 3-5. By comparing the decomposed components, 
NCEEMD successfully extracted the various components 
embedded in the simulated malfunction signal without mode 
mixing. This best performance in terms of RMSE was obtained 
with one trial and a low level of added FGN (SNR=25dB). On 
the other hand, EMD failed to extract the rub-impact 
component due to mode mixing between different IMFs. 
Likewise, EEMD extracted the rub-impact component but with 
a high computation time (number of ensembles Ne=200) and 
high error rate. These results suggest that NCEEMD is a 
sufficient method to diagnose a gearbox signal. 

(a) 

 

(b) 

  
Fig. 2.  Gearbox signal: (a) The rub-impact signal, (b) The simulated 

malfunction signal. 

(a) 

 

(b) 

 
Fig. 3.  The decomposed two components obtained by NCEEMD. (a) 

IMF1, (b) IMF2. 

In conventional empirical methods, the level of noise added 
and the number of ensemble trials are the two primordial 
parameters needed to ensure a successful decomposition. 
Therefore, to measure the performance of NCEEMD and show 
that it can solve the problem of choosing the level of white 
noise added and determine the number of ensemble trials 
before processing, the appropriate number of ensemble trials is 
calculated by evaluating the correlation between the IMF1 and 
the high-frequency component in the simulated malfunction 
signal.  
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(a) 

 

(b) 

 
Fig. 4.  The decomposed two components obtained by EMD. (a) IMF1, (b) 

IMF2. 

(a) 

 

(b) 

 
Fig. 5.  The decomposed two components obtained by EEMD. (a) IMF1, 

(b) IMF2. 

The relationship between the number of ensemble trials and 
the decomposition results obtained by EEMD (SNR=20dB), 
CEEMD (SNR=10dB), and NCEEMD are shown in Figure 6. 
These results show that NCEEMD requires a high SNR and 
one trial to reach a 95% of correlation. This means that the 
proposed method needs a low level of noise added with one 
trial to ensure successful decomposition. On the other hand, 
conventional methods need low SNR and a large number of 
ensemble trials before signal processing. Furthermore, the 
proposed method is non-parametric and decomposes any 

nonlinear and non-stationary signal in low computation time 
and high accuracy, compared to the classical methods. 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 6.  Relationship between the correlation coefficient and the number of 

ensemble trials: (a) EEMD, (b) CEEMD, (c) NCEEMD. 

IV. CONCLUSION 

Gearbox fault detection is a crucial task in mechanical 
machines. This paper proposed an efficient fault detection 
technique by introducing a new method named NCEEMD. 
Three techniques were compared, namely EEMD, CEEMD, 
and NCEEMD. Simulation experiments showed that EEMD, 
CEEMD, and NCEEMD managed to extract the gear meshing 
and the rub-impact fault components from a gearbox signal. 
However, the EEMD and CEEMD methods used a large 
number of ensemble trials and a high level of added noise that 
caused large computational time and more contamination with 
noise. However, the proposed NCEEMD method achieved 
better performance in terms of accuracy and computational 
time, without choosing any parameters before signal 
processing. Therefore, the proposed method is non-parametric 
and more adequate to deal with a nonlinear and non-stationary 
signal. 
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