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Abstract- Many combustion engines and electric motors drive 

machines or equipment by turning a shaft and thus producing 

work. As a relevant part of a machine principle, torque 

transference deserves deep analysis regarding the techniques that 

determine precisely the Finite Element (FE) boundary conditions 

that are to be applied. This work presents a shaft loaded with a 
torque that causes torsion and results in shear stresses in the 

shaft material. In this context, when designing and calculating a 

shaft to transfer torque, virtual analysis like FE Analysis (FEA) 

must replicate the reality as accurately as possible. Indeed, slight 

changes in load and constraint in a virtual simulation can 

produce considerably different shear stresses and unrealistic 

results. This paper aims to demonstrate how distinct boundary 
conditions for the same torque transference can result in very 

different results when a simulation does not comply with reality. 

The results showed the importance of being very attentive when 

applying loads and constraints on a shaft under torsion while 
calculating it via FEA. 

Keywords-torsion; numerical simulation; boundary conditions   

I. INTRODUCTION  

Finite Element Analysis (FEA) is becoming increasingly 
popular among design engineers who use it as a product design 
tool. Being safe and cost-efficient, the use of FEA as a product-
design tool requires training, practice, and, mainly, experience, 
which is not present in the undergraduate curricula of 
mechanical engineering programs due to time constraints [1-4]. 
Among applications and calculations by the tool, there are 
many books on metallurgy and mechanics that describe many 
types of loads and boundary conditions to consider, torque 
being one among them as an important load.  

Authors in [5-7] presented solid concepts and provided 
examples of real applications for readers. In addition, there are 
scientific works that calculate and analyze torque for several 
interesting applications. Authors in [8] developed a FEA 
program based on FORTRAN for analyzing working behavior 
and calculating torque and drag during oil extraction. The 
values of displacement obtained from the FEA model matched 
those from the analytical model. Authors in [9] presented 

different methods for the calculation of torque as a function of 
rotation angle in an electrical machine. The results obtained by 
the distinct methodology were compared with the experimental 
data, which allowed attaining practical information concerning 
the advantages and limitations of each method. Authors in [10] 
investigated techniques for the optimal design of permanent 
magnet motors considering rotation. By applying the optimal 
design method, the authors reduced about 40% of the volume 
of the permanent magnet of the IPM motor and about 15% of 
the torque ripple. This reinforced the idea that most of the FE 
models should also be evaluated experimentally in order to be 
calibrated with reality. However, even in a virtual simulation 
platform, the model has to be as much realistic as possible and 
should utilize the most accurate and realistic boundary 
techniques. In this context, authors in [11] studied the 
simplification of the design geometry in the FEA of structural 
and other continuum problems and concluded that strategies for 
identifying possible idealizations, controlling their application, 
and estimating the associated errors appear to be feasible. In 
particular, authors in [12] assessed the mechanical properties of 
glass/metal joints. In his study, a Finite Element Method 
(FEM) was implemented to analyze the torsional shear strength 
test designed for glass-ceramic/steel joints aiming towards 
solid oxide fuel/electrolysis cell application. The authors 
concluded that the difference between the analytically derived 
nominal shear strength, and the real critical shear stress derived 
via simulation, reduces with decreasing fracture torque.  

The boundary condition results might end up differently 
and some of them wrong if the simulation is not as close to 
reality as it could be. To the best of our knowledge, there are 
no papers that describe the impacts on the results on FE 
simulations when torque incurs on different (non-realistic) 
boundary conditions. Many pieces of literature and videos on 
media teach watchers how to run a FE simulation. However, 
not always the presentations are correct and precise. For 
instance, [13-15] described a few boundaries conditions for 
torque application incompatible with reality and can cause 
problems in the field. For this reason, this paper aims to 
demonstrate how distinct boundary conditions for the same 
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torque transference can result in expressively distinct results 
when a simulation does not comply with reality.  

II. MATERIAL AND METHODS 

This study used classical equations to determine the torque 
to utilize in the FEM as a torsion load. The shaft used on the 
simulations had one extreme constrained and another one 
receiving a torsional momentum (torque). To calculate the 
shearing stresses by numerical simulation, the shaft diameter 
was kept fixed at 10mm, and the length changed throughout the 
simulations. In addition, the loading region, where torque 
incurred, was altered in the simulations, from face to partial 
body, to whole body, and finally using an arm like if it were a 
wrench. Two opposing torques (T) produce a twisting load 
along the axis of a circular shaft, resulting in a total shear stress 

distribution (τ) given by (1) [16]: 

τ =
�.�

�
    (1) 

where 0 ≤ r ≤ R. r is the distance from the center of the shaft 
and R is the outside radius, both in mm. Since the diameter of 

the shaft is fixed, therefore R.T is the applied torque (N.mm), τ 
the shear stress (MPa), and J is the moment of polar inertia 
(mm4), which is given by (2): 

� =
�

�
.π. 	
    (2) 

Therefore combining (1) to (2) results to:  

τ =
�.�

π.��
  or   =

τ	.π.��

�
	    (3) 

Assuming a fixed shearing stress of 100MPa as well as a 
fixed shaft diameter of 10mm, the torque result comes from (3) 
and is fixed at 19,635N.mm. It is relevant to highlight that 
since the purpose of the simulation is to apply 19,635N.mm as 
a total torque, only half of the torque was input on the shaft 
because the torque reaction generates the whole aimed torque. 
The fixed torque value was used throughout all simulations 
when running the FEA. In addition, each simulation had the 
shaft length altered progressively from 10mm to 1,000mm. For 
numerical simulations Autodesk F360 was utilized, considering 
a linear-elastic analysis and as an output the von Mises stress 
[18-20]. As seen in Table I, the same torque was input in four 
different ways. On the shaft face, along the shaft body, at a 
particular region, and by applying a vertical force on the arm 
attached to the shaft. In terms of mesh configuration, the same 
mesh for all simulations was utilized, which followed a 
maximum number of mesh refinement of 6, a convergence 
tolerance of 5%, a portion (40%) of elements to refine it, and 
an average element size of 10%. 

TABLE I.  BOUNDARY CONDITIONS FOR A SHAFT DIAMETER 10mm LOADED WITH A FIXED TORQUE OF 9,817.5N.mm. 

Simulation boundaries Description 

 

Shaft 10mm in diameter with length from 10 to 1,000mm. 

Simulation with constraint at back surface and torque applied 

on shaft face (SF). 

 

Shaft 10mm in diameter with length from 10 to 1,000mm. 

Simulation with constraint at the back surface and torque 

applied on shaft whole body (SWB). 

 

Shaft 10mm in diameter with length from 10 to 1,000mm. 

Simulation with constraint at the back surface and a torque 

applied on a body region of 15mm length (1.5 times the shaft 

diameter) (SPB). 

 

Shaft 10mm in diameter with length from 10 to 1,000mm. 

Simulation with constraint at the back surface and force 

applied on a wrench extreme (SWR). 
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III. RESULTS AND DISCUSSION 

Figures 1 to 4 show the different equivalent stress (von 
Mises) in MPa for the following configurations: shaft with a 
torque applied at its face (SF), shaft torque body (SWB), shaft 
region (slip body) torque (SPB), and force with arm like a 
wrench (SWR). Figure 1 shows the maximum stress at the edge 
of the face where the torque is transmitted, and it reaches 
105.1MPa for a shaft length of 60mm (SF). Figure 2 shows a 
von Mises stress of 89.08MPa at constraint face. 

 
Fig. 1.  Example of a shaft (10mm diameter × 60mm) simulated with a 

torque applied on the face (SF). 

SWB differed from the SF condition, from 105.1MPa to 
89.08MPa. Not only the shear stress intensity was different, but 
also the stress localization. Unlike SF, the maximum torque for 
SWB moved to the opposite side from the torque load. Figure 3 
shows a change in torque from SWB to SPB. At this case, the 
maximum shearing stress was seen where the load was applied, 
and it reached 92.79MPa. When an arm was added (SWR), 
then a force was applied to simulate the torque. The shearing 
stress reached 107.5MPa and was positioned close to the shaft 
constraint (Figure 4). Figure 5 shows the variance of shearing 
stress for 10mm shaft diameter with a length changing from 
10mm to 1,000mm, and affixed torque of 9,817.5N.mm applied 
on the shaft face (SF). For a short shaft (10mm length), the 
stress was significantly higher than the calculated value of 
100MPa, reaching a peak of 180MPa. The diameter and length 
for this condition are the same and fixed at 10mm. There is a 
wide stress variance and up and down change for lengths from 
10 to 200mm when the stress decreases and reaches a value 
close to the calculated value. However, after 200mm length, the 
measured stress is unstable and has a high standard deviation as 
seen in Table II and Figures 9 and 10.  

 
Fig. 2.  Example of a shaft (10mm diameter × 60mm) simulated with a 

torque applied on the body (SWB). 

 
Fig. 3.  Example of a shaft (10mm diameter × 60mm) simulated with a 

torque applied on a region of the body (SPB). 

 
Fig. 4.  Example of a shaft (10mm diameter × 60mm) simulated with a 

force applied on arm (SWR). 

Moreover, the standard deviation changes, depending on 
the length. It begins from 28MPa for lengths between 10mm 
and 100mm and reduces to 14MPa for lengths between 100mm 
and 300mm and it ends up with 12MPa from lengths between 
300mm and 1,000mm. 

 

 
Fig. 5.  Shear stress with a torque applied on shaft face versus different 

lengths (SF). 

When stress is applied to the shaft body (SWB), it reaches 
the highest stress level of 102MPa to a length of 10mm (Figure 
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6), thereafter it drops with length increment, reaching 86MPa 
when the length is 30mm. Soon after this point, the stress starts 
increasing again and it reaches 95MPa for a length maximum 
of 1,000mm. The standard deviation changes from 4MPa for 
lengths between 10mm and 100mm, then it reduces to 1MPa 
for lengths between 100mm and 300mm and ends up at 1MPa 
for lengths between 300mm and 1,000mm. 

 

 
Fig. 6.  Shear stress with a torque applied on shaft body versus different 

lengths (SWB). 

When the torque is loaded on a specific and limited region 
of the shaft (SPB), the stress starts with a high value for a short 
shaft (103MPa for 10mm length), then it drops to 93MPa, 
thereon stresses fluctuate up and down and reach 95MPa at 
1,000mm length (Figure 7). When it comes to standard 
deviation, it changes from 3MPa for lengths between 10mm 
and 100mm, then it reduces to 1MPa for lengths between 
100mm and 300mm, and ends up at 1MPa for lengths between 
300mm and 1,000mm. This presents a quite similar standard 
deviation when compared with the previous condition (SWB). 

 

 
Fig. 7.  Shear stress with a torque applied on shaft specific region versus 

different length (SPB). 

A distinct behavior from previous situations is verified for a 
shaft that has an arm with a force-generating a torque (SWR) as 
shown in Figure 8. The shearing stress is pretty close to 
100MPa as previously calculated analytically, but for 120mm 
and onwards it raises continually and moderately until 300mm 
when there is a steep inclination on the graph, demonstrating a 
mechanical instability. The standard deviation changes from 
2MPa for lengths between 10mm and 100mm, then it goes up 
to 15MPa for lengths between 100mm and 300mm and it 
steeped up considerably to 89MPa for lengths between 300mm 
and 1,000mm. This presents the highest instability of all 
previous conditions. This stability comes from a lack of rigidity 
of the bar when it gets longer and longer until a point where the 
combination becomes totally mechanically unstable (uneven).  

 

 
Fig. 8.  Shear stress with a torque applied on shaft by a force applied on an 

arm (SWR). 

Table II shows the partial calculations of shearing stress 
averages and standard deviations. It compiles variations of von 
Mises stress average and how data deviation occurs based on 
standard deviation. The shaft with a torque applied on a 
specific region showed the closer value to the calculated 
100MPa (95MPa) and the lower standard deviation throughout 
all shaft lengths. In Figures 9 and 10, there is a comparison 
among stresses generated by torques applied on a region of a 
shaft body. A line at 100MPa is traced to help compare FEA to 
the analytical calculated value. The condition where the torque 
is applied on the face of the bar (Figure 9 left) shows that for 
short bars, the von Mises stress is higher, then it decreases 
constantly until the length of 1,000mm, which is 100 times the 
diameter of the shaft. 

Therefore, this condition shows stress values that, when 
compared with the analytical calculation, do not seem accurate 
enough or reliable. When the torque is applied on the whole 
body (Figure 9(b)), the von Mises values are similar, and close 
to 90MPa for the full range of lengths with a standard value 
very low for short shafts as well as for longer bars. This means 
that the stress value is only 10% lower than the analytical 
calculated von Mises stress. When the torque is applied on a 
specific region of the bar, established as 1.5 times the shaft 
diameter (Figure 10(a)), the stress values were very close to the 
analytical calculation and varied from 95 to 96MPa. 
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TABLE II.  DISTINCT VALUES FOR EACH CONFIGURATION 

Condition 

Von Mises stress 

(MPa) 

Average 

10 ≤ L ≤ 100 

Calculated stress (ττττ) 

(MPa) 

StDev 

10 ≤ L ≤ 100 

Von Mises stress 

(MPa) 

Average 

100 ≤ L ≤ 300 

Calculated stress (ττττ) 

(MPa) StDev 

100 ≤ L ≤ 300 

Von Mises (MPa) 

Average 

300 ≤ L ≤ 1,000 

Calculated stress (ττττ) 

(MPa) StDev 

300 ≤ L ≤ 1,000 

SF 145 28 125 14 115 12 

SWB 90 4 91 1 95 1 

SPB 95 3 94 1 96 1 

SWR 95 2 117 15 276 89 

 

(a) 

 

(b) 

 
Fig. 9.  (a) Torques and standard deviation from distinct length intervals 

for (a) SF, (b) SWB.  

This configuration represents remarkably real conditions 
seen on machines and equipment where an electrical motor has 
a coupling assembled on a specific length of the shaft. The final 
configuration applied a torque indirectly on the shaft by using 
an arm. At the extreme of the arm, the force that generates the 
torque was applied. At this case, the value was very close to the 
analytical one (100MPa analytical value versus 95MPa for 
simulation) for short shafts smaller than 100mm. For shafts 
with lengths between 100mm and 300mm the value surpassed 
the analytical value (117MPa versus 100MPa) and reached 
276MPa, which is completely unrealistic. 

The configurations were ranked comparatively with the 
analytical calculation. The closer value was verified at the 
SWR condition, to shaft length from 10 to 100mm, presenting 
a shear stress average of 95MPa and a standard deviation of 

2MPa. The second was the SPB condition, with also 95MPa for 
shear stress and a standard deviation of 3MPa. The third 
condition was SWB, with an average of 90MPa and a standard 
deviation of 4MPa, and the last one was SF with an average of 
145MPa and standard deviation of 28MPa, see Table II and 
Figures 9 and 10. 

 

(a) 

 

(b) 

 
Fig. 10.  Torques and standard deviation from distinct length intervals for 

(a) torque applied on a specific region of the shaft (SPB), (b) torque inputted 
on an arm like a wrench (SWR).  

For shaft's lengths from 100 to 300mm, the sequence 
changed. The SPB condition ranked first with a von Mises 
Stress of 94MPa and standard deviation of 1MPa, the second 
was SWB with a von Mises Stress of 91MPa and standard 
deviation of 1MPa. SWR was the third with a von Mises Stress 
of 117MPa and standard deviation of 15MPa, and SF was last 
exhibiting a von Mises Stress of 125MPa and standard 
deviation of 14MPa. For longer lengths (300 to 1,000mm) there 
was another change in positions. First was SPB with a von 
Mises Stress of 96MPa and standard deviation of 1MPa, then 
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SWB with a von Mises Stress of 95MPa and standard deviation 
of 1MPa. The third was SF with a von Mises Stress of 115MPa 
and standard deviation of 12MPa, and SWR was last with a 
von Mises stress of 276MPa and standard deviation of 89MPa. 

IV. CONCLUSIONS 

This paper aimed to demonstrate how distinct boundary 
conditions for the same torque transference could result in 
different results when a simulation does not comply with 
reality. The results showed that unrealistic boundary conditions 
might result in unlikely shearing stresses and depending on the 
precision aimed, the results can lead to wrong conclusions, 
sometimes leading to failures. The results reinforced that 
realistic simulations are compulsory when working with FEA, 
even for a simple load as torsion. For this simulation in 
particular, the calculation of shearing stresses' averages and 
standard deviation within intervals helped to define the most 
appropriate way to apply a torque on a shaft with the presented 
dimensions. This simplification can lead to wrong conclusions 
on a system design and generate failure. Therefore, close 
attention and comparison between the simulation and reality 
are essential in order to produce a successful project. 

To sum up, many machines and equipment have alternate 
ways of transferring movement by torsion. It can be by a 
coupling to transfer torque from an electrical motor to a system 
or a mechanism lever to produce a parallel actuating system. 
However, the real matter is that the FEA system can provide 
precise outputs only with precise and realistic inputs (boundary 
conditions). 
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