
Engineering, Technology & Applied Science Research Vol. 12, No. 2, 2022, 8311-8315 8311

www.etasr.com Truong: A Ternary Neural Network with Compressed Quantized Weight Matrix for Low Power …

A Ternary Neural Network with Compressed

Quantized Weight Matrix for Low Power Embedded

Systems

Son Ngoc Truong

Faculty of Electrical and Electronics Engineering
Ho Chi Minh City University of Technology and Education

HCM City, Vietnam

sontn@hcmute.edu.vn

Received: 14 January 2022 | Revised: 2 February 2022 | Accepted: 11 February 2022

Abstract—In this paper, we propose a method of transforming a

real-valued matrix to a ternary matrix with controllable sparsity.
The sparsity of quantized weight matrices can be controlled by

adjusting the threshold during the training and quantizing

process. A 3-layer ternary neural network was trained with the

MNIST dataset using the proposed adjustable dynamic threshold.

The sparsity of the quantized weight matrices varied from 0.1 to

0.6 and the obtained recognition rate reduced from 91% to 88%.

The sparse weight matrices were compressed by the compressed

sparse row format to speed up the ternary neural network, which

can be deployed on low-power embedded systems, such as the

Raspberry Pi 3 board. The ternary neural network with the

sparsity of quantized weight matrices of 0.1 is 4.24 times faster

than the ternary neural network without compressing weight

matrices. The ternary neural network is faster as the sparsity of
quantized weight matrices increases. When the sparsity of the

quantized weight matrices is as high as 0.6, the recognition rate

degrades by 3%, however, the speed is 9.35 times the ternary

neural network's without compressing quantized weight matrices.

Ternary neural network work with compressed sparse matrices
is feasible for low-cost, low-power embedded systems.

Keywords—ternary neural network; deep learning; image

recognition; quantized neural network.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved impressive
success in the field of computer vision [1-4]. Modelling the
human brain using DNNs requires a massive number of
computation tasks including addition and multiplication.
Therefore, it is often challenging to implement DNNs on low-
power edge devices such as mobile embedded systems [5].
Edge computing has been attracted much attention recently
because it has a lot of advantages in terms of cost and security.
To run DNNs on low-power edge devices, many optimized
DNN architectures have been proposed. To increase the
accuracy, DNNs can be trained on a GPU and then the trained
models are loaded to low-cost embedded systems, such as the
Raspberry Pi board [6-8]. Another method is to add the
external accelerating Neural Computer Stick (NCS) to the
Raspberry Pi when deploying the DNNs on it [9]. These

deployments of DNNs on the low-cost Raspberry Pi board are
based on the full-precision weight, which dramatically
consumes power and processing time. The memory usage and
inference speed of such models have not been considered. An
alternative technique to enhance the performance of DNNs
deployed on low-cost computers is to quantize the parameters
to speed up the DNNs' run-time and reduce memory
consumption [10-17]. Traditionally, 32-bit floating-point is
used for numerical formats in DNNs, which has a big impact
on speed and memory usage. Reducing the number of bits
representing DNN parameters is considered for low-power
edge devices. In particular, using numerical formats with lower
precision than 32-bit floating point yields numerous benefits.
16-bit floating-point and 8-bit floating-point are commonly
used for lightweight DNNs without sacrificing accuracy [5].
Substantial research efforts to use lower precision such as
ternary and binary representation of parameters (synaptic
weights) have been invested to make possible the implement of
DNNs on low-power edge devices [10-17].

A binary neural network constrains synaptic weights to the
binary space of {-1,1}. In a binary neural network, the
conventional 32-bit floating-point multipliers are replaced by
the logical XNOR operations to speed up running time and
reduce memory consumption. However, the accuracy of binary
neural networks is lower than full-precision neural networks
because only one bit is used to represent the synaptic weight
and the activation function. To increase the accuracy, ternary
neural networks that constraint the synaptic weights to the
ternary space {-1, 0, 1} have been proposed [14-16]. When
training a ternary neural network, the weights are updated using
real-valued variables and are then constrained to -1, 0, or +1
using the ternarization function [14-16]. The ternazization with
dynamic threshold yields faster convergence in the training
phase and higher accuracy in the inference phase [18].
However, the dynamic threshold, which is based on the mean
and standard deviation of real-valued variables, produces an
unpredicted number of -1, 0, and +1 bits in the synaptic weight
matrices. In this work, we adjust the threshold during the
quantization process to obtain sparse weight matrices with

Corresponding author: Son Ngoc Truong

Engineering, Technology & Applied Science Research Vol. 12, No. 2, 2022, 8311-8315 8312

www.etasr.com Truong: A Ternary Neural Network with Compressed Quantized Weight Matrix for Low Power …

different sparsity (number of zero values), and measure the
accuracy of the ternary neural network with different sparsity
of quantized weight matrices. It turned out that we can increase
the sparsity quantized weight matrices with small loss in
accuracy. The sparse weight matrices are then compressed to
reduce the size and speed up the matrix multiplication, which
consumes most time in the forward pass of DNNs.

II. TERNARY NEURAL NETWORK WITH COMPRESSED

WEIGHT MATRICES FOR LOW-POWER EMBEDDED SYSTEMS

Figure 1 shows the concept of a ternary neural network in
which the weights are constrained to -1, 0, and 1 [18, 19].
x1 - xn are binary inputs and h1 - hm are the neuron outputs of
the hidden layer, which are also quantized to binary. y1 - yk are
the neuron outputs for k classes. In Figure 1, Wh is the input-
to-hidden layer weight matrix and Wo is the hidden-to-output
layer weight matrix. Here, the weight matrices are composed of
-1, 0, and 1 representing the inhibitory, contactless, and
excitatory synapses.

Fig. 1. The conceptual diagram of a ternary neural network, where the

synaptic weights are -1, 0, or +1 representing inhibitory, contactless, and
excitatory synapses.

Ternary neural network represents weights using fewer bits
than a full-precision neural network. The ternary weights can
be represented by lower bit signed integer values or
complementary binary arrays [19]. The amount of required
memory for the model’s parameters of ternary neural networks
is substantially less than that of the full-precision neural
networks. The ternary neural network is trained using the
traditional gradient descent method that updates the weights in
the direction of the maximum decrease of the loss function.
The weights are updated with real values and transformed to
the binary values using the following quantization function
[18]:

r threshold

t threshold r threshold

r threshold

-1, if w <=-w

w = 0, if -w <w <w

+1, if w >=w

 (1)

where wthreshold is the threshold weight, wr is the real-valued
weight, and wt is the ternary weight of -1, 0, or +1. By using
(1), the ternary weights are obtained by comparing the real-
valued weights with a positive threshold value. It can be
observed that for every training iteration, the distributions of
synaptic weights are different. Therefore, a dynamic threshold
is selected using the Gaussian distribution proposed in our
previous work [18]. The proposed method attempts to equalize
the number of negative weights, zero weights, and positive
weights. The quantization function with dynamic threshold is
presented in (2) [18]:

r

t r

r

-1, if w <=µ-0.44σ

w = 0, if µ-0.44σ<w <µ+0.44σ

+1, if w >=µ+0.44σ

 (2)

where µ and σ are respectively the mean and standard deviation
of real valued synaptic weights. According to the Gaussian
distribution, if the threshold is selected to be µ-0.44σ and
µ+0.44σ, we obtain 33%, 34%, and 33% as the number of
negative synaptic weights, zero-value synaptic weights, and
positive synaptic weights respectively [18]. The percentages of
negative, zero, and positive synaptic weights are maintained
constantly every epoch of the training process because the
threshold is adapted to the distribution of synaptic weights.

Increasing the number of zero values in quantized weight
matrices leads to higher sparsity. The sparse matrix can be
compressed to reduce the memory consumption and the matrix
multiplication time. In this work, we control the percentage of
zeros by modifying the quantization function as follows:

r

t r

r

-1, if w <=µ-λσ

w = 0, if µ-λσ<w <µ+λσ

+1, if w >=µ+λσ

 (3)

where λ is a variable that controls the threshold. In (3), if we
increase λ, the number of zeros will increase. The higher the
value of λ, the higher the sparseness of the quantized weight
matrices. The sparse weight matrices can be compressed to
reduce the memory usage and speed up the forward pass. The
sparse weight matrices are compressed using the Compressed
Sparse Row (CSR) format, which potentially leads to a
substantial decrease in computational time and speeds-up the
neural networks [20-23].

Fig. 2. An example of CSR. (a) Sparse matrix with high sparsity and (b)

CSR representation of the sparse matrix

x1

xi

xn

h1

h2

+1

-1

-1

hj

hm

y1

yk+1

+1

0

0

-1

+1

+1

-1

Wh=

+1 -1 +1

+1 0 +1

0 -1 0

+1 0 -1

0 -1 0

+1 0 -1

Wo=

1000 0-100 10-10 -101-1(a) 0 3 4 6(b) 71 1 -1 -1 -1 Row pointer Column indices1 -10 2 3 1 2 3 3 Data values00000 0 1 0 0 12

Engineering, Technology & Applied Science Research Vol. 12, No. 2, 2022, 8311-8315 8313

www.etasr.com Truong: A Ternary Neural Network with Compressed Quantized Weight Matrix for Low Power …

Figure 2 shows an example of the CSR format when
representing a sparse matrix. Figure 2(a) shows a sparse matrix
and its CSR representation is shown in Figure 2(b). CSR is a
popular and general-purpose sparse matrix representation. The
matrix is stored using three arrays, which are the row pointer
array, the column indices array, and the data values array [23].
The pointer array stores the pointers to the beginning of every
row, the column indices stores the corresponding column
indices, and the data value array stores the nonzero values, as
illustrated in Figure 2. The row pointer array begins with the
value of 0, for the first row, the first, the 2nd, and the 3rd column
of the sparse matrix have the values of respectively 1, 1, and -1,
presented in the column indices array and data values in Figure
2(b). The second row of the sparse matrix is represented by the
second element in the row pointer array, which has the value of
3. The value of -1 in the second row is represented by the
column indices of 1 and the data value of -1, as shown in
Figure 2(b). The sparse matrix in Figure 2(a) can be
compressed by using the arrays in Figure 2(b). By doing this,
the memory and time consumption for matrix multiplication
are significantly reduced.

During the forward-pass propagation, the neuron’s output is
calculated by using matrix multiplication. Assume that
x = [x1, x2, ..., xn] is the 1×n input vector, Wh is the m×n input-
to-hidden layer weight matrix, h = [h1, h2, ..., hm] is the output
vector of the hidden layer, the forward-pass propagation
performs the below computational task:

h = σ(xW�
�) (4)

Equation (4) consumes more power and time as we increase
the size of the input vector and the weight matrix. If the weight
matrix is sparse and represented by CSR, we can replace the
matrix multiplication in (4) with the Sparse matrix-vector
multiplication, which is faster than traditional matrix
multiplication [20]. In this work, we represent weight matrices
using sparse matrices and compress them with CSR. The sparse
matrix multiplication is performed by using the Scientific
Python (Scipy) library to save computational time [24].

III. EXPERIMENTAL RESULTS

A three-layer ternary neural network was deployed on a low-
power Raspberry Pi board for the application of image
recognition. The network was trained and tested on the MNIST
dataset for recognizing images of handwritten digits [25]. The
input layer has 784 units corresponding to 784 image pixels.
The inputs are binary. The hidden layer has 512 neurons and
the output layer has 10 neurons for recognizing 10 digits. The
network is trained using Stochastic Gradient Descent with the
Momentum method. The real-valued weights are transformed
to binary weights using the proposed adjustable dynamic
threshold. By adjusting the variable in (3), we achieved the
recognition rate with varied sparsity of quantized weight
matrices, as presented in Figure 3. In Figure 3, the sparsity of
the quantized weight matrix is varied from 0.1 to 0.6 by
adjusting λ, as explained above. The recognition rate slightly
degraded as the sparsity of the quantized weight matrix
increased. When the sparsity of the quantized weight matrices
was as small as 0.1, the ternary neural network produced a
recognition rate of 91%. When the sparsity of the quantized

weight matrix increased to 0.6, the recognition rate was
reduced by 3%. The results indicated that increasing the
sparsity of the quantized weight matrix led to a small decrease
in accuracy. In this work, the training is performed on edge
device, Raspberry Pi board, and the network is simply
constituted of an input layer, a hidden layer, and an output
layer with the weights quantized to -1, 0, and +1. The ternary
weights are obtained by the proposed dynamic threshold
quantization with controllable output sparsity. The accuracy of
the ternary neural network is slightly lower than the full-
precision neural network, however it has the advantages of less
memory usage and faster inference time. More importantly, the
proposed ternary neural network is promising for low-cost edge
devices. Sparse quantized weight matrices were represented
using the CSR format, which significantly enhances the
inference processing. With a fixed-size sparse quantized weight
matrix, the higher sparsity results in the smaller size CSR
representation and faster CSR matrix multiplication.

Fig. 3. Recognition rate with varied sparsity of quantized weight matrices.

Fig. 4. Inference time with varied sparsity of quantized weight matrices.

Figure 4 shows the inference time of the 3-layer ternary
neural network deployed on a low-power embedded system,
Raspberry Pi 3, for an input image with varied sparsity of
quantized weight matrices. The inference time is the forward-

0.1 0.2 0.3 0.4 0.5 0.6
80

82

84

86

88

90

92

94

96

98

100

R
e
c
o
g
n
it
io

n
 r
a
te

 (
%

)

Sparsity

 Recognition rate

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

In
fe

re
n
c
e
 t
im

e
 (
m

s
)

Sparsity

 Inference time

Engineering, Technology & Applied Science Research Vol. 12, No. 2, 2022, 8311-8315 8314

www.etasr.com Truong: A Ternary Neural Network with Compressed Quantized Weight Matrix for Low Power …

pass propagation time required to propagate one image from
the input layer to the output layer, which is also the time for
predicting one image. For the uncompressed quantized weight
matrices, the forward pass propagation takes 87.28ms, and such
inference time does not depend on the sparsity of quantized
weight matrices. Figure 4 shows the inference time with varied
sparsity of quantized weight matrices when the quantized
weight matrices were compressed with CSR. The matrix
multiplication is performed using the Scientific Python library
for the input vector and CSR arrays. For a sparsity of 0.1, the
forward-pass propagation takes 20.606ms, which 4.24 times
faster than the ternary neural network with uncompressed
quantized weight matrices. More interestingly, when the
sparsity increases, the array size of CSR representation for
sparse matrices is more reduced, resulting in faster
multiplication. For a sparsity of 0.6, the inference time of the
compressed-weight-matrix ternary neural network is 9.335ms,
which is 9.35 times faster than the original ternary neural
network.

Quantizing the weight matrix is one of the techniques that
are suitable for deploying DNNs on low-cost computers.
Quantized neural networks can save the required memory for
storing the model’s parameters and internal parameters, and
implementing faster than full-precision neural networks for
speech and image recognition, as presented in [19]. In this
work, we propose a method to control the sparsity of quantized
weight matrices during the training process and compress the
weight matrices using CSR representation. The high sparsity of
quantized weight matrices sacrifices little accuracy, but speeds
up the ternary neural network by a factor that reaches 9.35. The
proposed idea is deployed on a simple 3-layer neural network
for hand-written character recognition. Utilizing high sparsity
quantized weight matrices and CSR makes the ternary neural
network possible to implement on low-cost, low-power
embedded systems such as general-purpose Raspberry Pi 3
board.

IV. CONCLUSION

In this paper, we proposed a quantization function that can
control the sparsity of quantized weight matrices for ternary
neural networks. The sparsity of quantized weight matrices of
the ternary network varied from 0.1 to 0.6 when the ternary
neural network was trained with the MNIST dataset. The
obtained recognition rate varied from 91% to 88%. The sparse
weight matrices were compressed using the CSR format. The
ternary neural network with compressed weight matrices was
4.24 times and 9.35 times faster than the original ternary neural
network, when the sparsity of the quantized weight matrices
was 0.1 and 0.6 respectively. Ternary neural networks with
compressed quantized weight matrices are suitable for
implementation on low-power embedded systems for the
application of image recognition.

ACKNOWLEDGMENT

This research is supported by the Ho Chi Minh City
University of Technology and Education (HCMUTE), Vietnam.

REFERENCES

[1] K. L. Masita, A. N. Hasan, and T. Shongwe, "Deep Learning in Object

Detection: a Review," in International Conference on Artificial
Intelligence, Big Data, Computing and Data Communication Systems,

Durban, South Africa, Aug. 2020, pp. 1–11, https://doi.org/10.1109/
icABCD49160.2020.9183866.

[2] A. Alsheikhy, Y. Said, and M. Barr, "Logo Recognition with the Use of

Deep Convolutional Neural Networks," Engineering, Technology &
Applied Science Research, vol. 10, no. 5, pp. 6191–6194, Oct. 2020,

https://doi.org/10.48084/etasr.3734.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification
with Deep Convolutional Neural Networks," in 26th Annual Conference

on Neural Information Processing Systems, Nevada, USA, Dec. 2012,
vol. 25, pp. 1097–1105.

[4] S. Sahel, M. Alsahafi, M. Alghamdi, and T. Alsubait, "Logo Detection

Using Deep Learning with Pretrained CNN Models," Engineering,
Technology & Applied Science Research, vol. 11, no. 1, pp. 6724–6729,

Feb. 2021, https://doi.org/10.48084/etasr.3919.

[5] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, "An Energy-

Efficient Sparse Deep-Neural-Network Learning Accelerator With Fine-
Grained Mixed Precision of FP8–FP16," IEEE Solid-State Circuits

Letters, vol. 2, no. 11, pp. 232–235, Aug. 2019, https://doi.org/10.1109/
LSSC.2019.2937440.

[6] K. Yokoo, M. Atsumi, K. Tanaka, H. Wang, and L. Meng, "Deep

Learning based Emotion Recognition IoT System," in International
Conference on Advanced Mechatronic Systems, Hanoi, Vietnam, Dec.

2020, pp. 203–207, https://doi.org/10.1109/ICAMechS49982.2020.
9310135.

[7] N. Lee, M. H. Azarian, M. Pecht, J. Kim, and J. Im, "A Comparative

Study of Deep Learning-Based Diagnostics for Automotive Safety
Components Using a Raspberry Pi," in IEEE International Conference

on Prognostics and Health Management, San Francisco, CA, USA, Jun.
2019, pp. 1–7, https://doi.org/10.1109/ICPHM.2019.8819436.

[8] B. H. Curtin and S. J. Matthews, "Deep Learning for Inexpensive Image

Classification of Wildlife on the Raspberry Pi," in 10th Annual
Ubiquitous Computing, Electronics & Mobile Communication

Conference, New York, NY, USA, Oct. 2019, pp. 0082–0087,
https://doi.org/10.1109/UEMCON47517.2019.8993061.

[9] E. Kristiani, C.-T. Yang, and K. L. Phuong Nguyen, "Optimization of

Deep Learning Inference on Edge Devices," in International Conference
on Pervasive Artificial Intelligence, Taipei, Taiwan, Dec. 2020, pp. 264–

267, https://doi.org/10.1109/ICPAI51961.2020.00056.

[10] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
"Binarized Neural Networks: Training Deep Neural Networks with

Weights and Activations Constrained to +1 or -1," Mar. 2016, Accessed:
Feb. 12, 2022. [Online]. Available: http://arxiv.org/abs/1602.02830.

[11] Y. Wang, J. Lin, and Z. Wang, "An Energy-Efficient Architecture for
Binary Weight Convolutional Neural Networks," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 26, no. 2, pp. 280–
293, Oct. 2018, https://doi.org/10.1109/TVLSI.2017.2767624.

[12] T. Simons and D.-J. Lee, "A Review of Binarized Neural Networks,"
Electronics, vol. 8, no. 6, Jun. 2019, Art. no. 661, https://doi.org/
10.3390/electronics8060661.

[13] C. Baldassi, A. Braunstein, N. Brunel, and R. Zecchina, "Efficient
supervised learning in networks with binary synapses," Proceedings of
the National Academy of Sciences, vol. 104, no. 26, pp. 11079–11084,

Jun. 2007, https://doi.org/10.1073/pnas.0700324104.

[14] K. Hwang and W. Sung, "Fixed-point feedforward deep neural network
design using weights +1, 0, and −1," in IEEE Workshop on Signal

Processing Systems, Belfast, UK, Oct. 2014, pp. 1–6,
https://doi.org/10.1109/SiPS.2014.6986082.

[15] H. Yonekawa, S. Sato, and H. Nakahara, "A Ternary Weight Binary

Input Convolutional Neural Network: Realization on the Embedded
Processor," in IEEE 48th International Symposium on Multiple-Valued

Logic, Linz, Austria, May 2018, pp. 174–179, https://doi.org/
10.1109/ISMVL.2018.00038.

[16] S. Yin et al., "An Energy-Efficient Reconfigurable Processor for Binary-

and Ternary-Weight Neural Networks With Flexible Data Bit Width,"

Engineering, Technology & Applied Science Research Vol. 12, No. 2, 2022, 8311-8315 8315

www.etasr.com Truong: A Ternary Neural Network with Compressed Quantized Weight Matrix for Low Power …

IEEE Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1120–1136, Apr.
2019, https://doi.org/10.1109/JSSC.2018.2881913.

[17] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, "GXNOR-Net: Training deep

neural networks with ternary weights and activations without full-
precision memory under a unified discretization framework," Neural

Networks, vol. 100, pp. 49–58, Dec. 2018, https://doi.org/10.1016/
j.neunet.2018.01.010.

[18] S. N. Truong, "A Dynamic Threshold Quantization Method for Ternary
Neural Networks for Low-cost Mobile Robots," International Journal of
Computer Science and Network Security, vol. 20, no. 2, pp. 16–20, 2020.

[19] S. N. Truong, "A Low-cost Artificial Neural Network Model for
Raspberry Pi," Engineering, Technology & Applied Science Research,

vol. 10, no. 2, pp. 5466–5469, Apr. 2020, https://doi.org/10.48084/
etasr.3357.

[20] J. L. Greathouse and M. Daga, "Efficient Sparse Matrix-Vector
Multiplication on GPUs Using the CSR Storage Format," in SC ’14:
Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, New Orleans, LA, USA,
Nov. 2014, pp. 769–780, https://doi.org/10.1109/SC.2014.68.

[21] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, and Z. Shao, "Optimization
of Sparse Matrix-Vector Multiplication with Variant CSR on GPUs," in
17th International Conference on Parallel and Distributed Systems,

Tainan, Taiwan, Dec. 2011, pp. 165–172, https://doi.org/10.1109/
ICPADS.2011.91.

[22] H. Kabir, J. D. Booth, and P. Raghavan, "A multilevel compressed
sparse row format for efficient sparse computations on multicore
processors," in 21st International Conference on High Performance

Computing, Goa, India, Dec. 2014, pp. 1–10, https://doi.org/
10.1109/HiPC.2014.7116882.

[23] J. C. Pichel and B. Pateiro-Lopez, "Sparse Matrix Classification on
Imbalanced Datasets Using Convolutional Neural Networks," IEEE
Access, vol. 7, pp. 82377–82389, 2019, https://doi.org/10.1109/ACCESS.

2019.2924060.

[24] J. Ranjani, A. Sheela, and K. P. Meena, "Combination of NumPy, SciPy
and Matplotlib/Pylab -a good alternative methodology to MATLAB - A

Comparative analysis," in 1st International Conference on Innovations
in Information and Communication Technology, Chennai, India, Apr.

2019, pp. 1–5, https://doi.org/10.1109/ICIICT1.2019.8741475.

[25] L. Deng, "The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web]," IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141–142, Aug. 2012, https://doi.org/

10.1109/MSP.2012.2211477.

