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Abstract-The optimal use of electric power consumption is a 

fundamental indicator of the normal use of energy resources. Its 

quantity depends on the loads connected to the electric power 

grid, which are measured on an hourly basis. This paper 

examines forecasting methods for hourly electrical power 

demands for 7 days. Data for the period of 1 January 2015 and 24 
December 2020 were processed, while the models' forecasts were 

tested on actual power load data between 25 and 31 December 

2020, obtained from the Energy System Operator of the Republic 

of Bulgaria. Two groups of methods were used for the prognosis: 

classical regression methods and clustering algorithms. The first 

group included "moving window" and ARIMA, while the second 

examined K-Means, Time Series K-Means, Mini Batch K-Means, 
Agglomerative clustering, and OPTICS. The results showed high 
accuracy of the forecasts for the prognosis period. 

Keywords-short-term prognosis; hourly electricity power 

demand; regression analysis; clustering methods 

I. INTRODUCTION 

Electric power consumption is a key to the normal function 
of any economy. In recent years, the consumption of electrical 
power has increased along with the human population and the 
development of technology. Proper use of the available energy 
resources is a necessity since solid fuels are finite, they will run 
out in the future, and, their extraction and processing pollute 
the environment. For these reasons, various types of renewable 
energy sources have emerged. Unfortunately, for some of them, 
the generation of electricity depends on the season, 
geographical location, type of energy extraction technology, 
certain economic and political factors, etc. Also, the storage of 
this type of energy is difficult and costly. On the other hand, 
the production of electric power should neither exceed nor fall 
short of the amount of electric power required by the end-users. 
For this reason, algorithms have been developed for power 
generation in hydraulic power plants, guaranteeing the optimal 
parameters of the produced energy under the dynamic change 
of requirements from the electric supply companies and the 
market [1, 2]. Despite the physical nature of the predicted 
subject, the forecasts are long-term, medium-term, and short-
term. The requirements that any reliable forecast must satisfy 

were given in [3]. There are various models for determining 
forecast assessments using different mathematical approaches 
to obtain the prognoses. For the operational control of power 
plants, it would be desirable to obtain precise short-term load 
forecasting assessments to guarantee power supply and load 
dispatch. The Empirical Mode Decomposition (EMD) method 
and the Particle Swarm Optimization (PSO) algorithm were 
successfully hybridized with the Support Vector Regression 
(SVR) to produce a satisfactory forecast performance in [4]. 
Decomposed Intrinsic Mode Functions (IMFs) are defined as 
three items: 1) containing the random and the middle term, 2) 
containing the middle and the trend (residual) term, and 3) 
containing the middle terms only, where the random term 
represents the high-frequency part of the electric power load 
data, the middle term represents the multiple-frequency part, 
and the trend term represents the low-frequency part. Based on 
these assumptions, the SVR-PSO was created, and the forecast 
results were calculated as (1) + (2) – (3). The suggested model 
improved the forecast accuracy, while the data for the model 
synthesis were taken from the Australian electricity market. 

Short-term power demand forecasts contribute significantly 
to the synthesis of the smart grid. In [5], a deep model based on 
Convolutional Neural Networks (CNNs), Long Short-Term 
Memory (LSTM), and Discrete Wavelet Transform (DWT) 
was proposed. This model was divided into two parts. The first 
part corresponded to the time-domain feature extraction, while 
DWT was responsible for the frequency domain. The model 
extracted both time and frequency-domain features separately 
using the neural network. Subsequently, they merged as time-
frequency features. The latter was fed into LSTM to mine the 
features, which had a long-time dependency. In [6], a daily 
power consumption forecast was created for the high-
temperature period. The model was based on a portrait-based 
multivariate regression model. The portrait of each substation 
area was derived using the clustering method based on the label 
system. Then, the regression model was applied to forecast 
each cluster. The synthesized model was validated using 
electricity consumption data from Shanghai. A hybrid deep 
learning neural network framework, which combined CNN 
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with LSTM for making power consumption forecasts, was 
proposed in [7]. The original short-term forecasting strategy 
was extended to a multi-step forecasting strategy to introduce 
more response time for electricity market bidding. The 
following forecasting approaches were built: Auto-Regressive 
Integrated Moving Average (ARIMA), persistent model, SVR, 
and LSTM. In addition, a k-step power consumption 
forecasting strategy was used to promote the proposed 
framework for use in real-world applications. 

Power production of PhotoVoltaic (PV) plants is an 
important way of producing green energy, and different models 
exist to predict their self-consumption. Two hybrid models 
were suggested in [8] to forecast power consumption (CNN-
LSTM and ConvLSTM) were suggested in [8]. These models 
were found to be more accurate than the standard LSTM. In 
[9], a deep model named TL-MCLSTM was proposed as a 
multiple-output strategy to predict multi-step short-term power 
consumption. The model contained three channels: power 
consumption, time location, and customer behavior. The first 
channel reflects the change and the general trend of use. The 
second channel reflects the hidden pattern of customer habits, 
recording information about time, day of the week, and 
holidays. The third channel combines a convolution 
autoencoder and K-means to identify customer behavior. The 
first two channels were individually trained through the LSTM, 
as it had an excellent memory function. The extracted features 
from the LSTM in these channels were combined with 
customer behavior as comprehensive features to forecast. Other 
mathematical approaches for creating short-term forecasting 
models are Imperialist Competitive Algorithms, Support 
Vector Machines (SVM), and Hierarchical Cluster Analysis 
SVM. These approaches were used in [10] for the prognosis of 
the hourly electricity load. In [11], a new modeling approach 
was proposed for medium-term probabilistic power 
consumption using neural networks and incorporating trend, 
seasonality, and weather conditions as explicative variables in a 
neural network with an autoregressive feature. In [12], fuzzy 
logic was incorporated into a neural network. In this study, a 
model was divided into two subsystems: a network with back-
propagation making the forecast and using data from previous 
months, and an autocorrelation module using temperature and 
production load differences for air conditioning and 
consumption between the previous and the forecast months. 
This model is appropriate for two types of industrial 
consumers: consumers for climate control and consumers for 
production activities. 

A mid-long term load structure forecasting model was 
developed in [13], based on grey theory, where the system state 
equations and the grey dynamic model group on various types 
of electrical load were established. The model provided a mid-
long-term forecast, in terms of the system dominant and 
associated factors determined by the grey correlative degree 
analysis method, using the GM(1, N, x ((0))) model derived 
from the GM(1, N). The power consumption of the considered 
grid was predicted in the medium and long term in a case study 
utilizing the proposed model. 

Long-term forecasting of electricity consumption is quite 
difficult as its reliability depends on many different factors. 

During daytime, there may be several peaks in consumption 
which lead to a complete discharge of the battery to one of the 
peaks. As a result, the total peak power consumption does not 
decrease. To optimize the operation of storage devices, a day-
ahead forecast is often used, which allows determining the total 
number of peaks. In this sense, a long-term forecast of power 
consumption based on the use of exogenous parameters in the 
decision tree model was used in [14]. This forecast was based 
on the idea of determining the optimal storage capacity for a 
specific consumer, which optimizes the costs of leveling the 
load schedule. In [15], a detailed overview of current 
forecasting methods for power consumption was presented. 
Some forecast approaches were summarized as grey and 
artificial neural network theory, among which the forecasting 
principle of the Grey Model GM(1,1) was developed. The 
econometric model method was also discussed. In addition, 
comprehensive analysis, analysis prediction, and other 
methods, which could be applied in short-term, medium-term, 
and long-term electricity demand forecasting were also 
discussed. The accuracy of the methods mentioned above 
improved by applying newly developed machine learning smart 
algorithms, such as deep learning, Q-learning, extreme 
learning, etc. The processed data described the power 
consumption of Guangzhou city between 2000-2008, and the 
forecasts were made for 2009. 

This study examines a short-term 7-day forecast of the 
hourly demand for electric power in the Republic of Bulgaria. 
These prognoses can be used to analyze the energy system 
models used for planning the Bulgarian energy market, as 
described in [16]. A similar prognosis was presented in 2002 
[17], but these models are obsolete today and do not guarantee 
high forecast accuracy. The increasing price of natural gas 
during the recent months has led to the rising prices of the 
entire production, supplies, and services. The sharp increase in 
the price of European natural gas prices [18] leads to lifetime 
evaluation and the urgent need to use the available gas 
resources economically and appropriately, by finding ways to 
make the production of other types of energy resources cheaper 
(nuclear plants, photovoltaics, wind turbines, etc.) as well as to 
forecast the quantities needed as accurately as possible. 

II. THE ESSENCE OF FORECASTING METHODS 

The models created by all forecasting approaches for 
electric power demand predict the consumption for a given 
period, based on data for power consumption in previous 
periods. The forecast value is either a point or an interval, 
where the actual electrical load is most likely wrong. Various 
methods use a variety of mathematical frameworks to make 
such forecasts, such as regression analysis [19-24], regression 
analysis, neural networks, and least square SVMs [25], 
regression analysis, decision tree, and neural networks [26], 
cluster analysis [27], fractional Brownian motion [28], etc. 

A. Classical Regression Analysis Methods 

Regression analysis is a time series approximation of points 
by a specific function, usually in the form of a polynomial. The 
accuracy of the approximation depends on the amount of input 
data and the order of the approximating function. Therefore, a 
compromise must always be searched between the amount of 
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input data and the order of the approximating polynomial. This 
study used the following two methods to perform short-term 
hourly electrical power demand forecasts based on regression 
models using the moving window and Autoregressive 
Integrated Moving Average (ARIMA) methods. 

• Moving window [22]: This method takes samples from the 
input data and applies a formula to calculate the forecast 
value. The moving window method is commonly used for 
solving practical problems. When working with averaged 
data, the resulting value is used as the predicted value. The 
accuracy of the method increases as the processed data 
increase. But this fact, on the other hand, increases the time 
to process the data until the final forecast is obtained. 

• ARIMA [23, 24]: This method consists of introducing a 
distance between the data in the form of an error. This 
distance can be computed using the Euclidean or another 
type of norm. The predicted quantity at a given moment is 
computed as a function of that quantity at previous 
moments and/or error values. 

B. Cluster Analysis Methods 

For each studied time interval, the measured data of the 
hourly electrical power demand are obtained and form an 
acceptable range of variation. The accuracy of the synthesized 
model is tested by checking whether the actual electrical power 
load during the hour is between the predicted interval. If so, the 
method determines to which part of it falls into. 

• K-Means [29, 30]: This is a very simple method, for simple 
applications, which converges relatively quickly. Its main 
weakness is that it is not stable to statistical errors. On the 
other hand, there is a different result for each execution. 
Some improvements of classic K-Means were suggested in 
[31], by defining a hypercube of constraints for each 
centroid that acquires weights for each attribute of each 
class to use a weighted Euclidean distance as a similarity 
criterion in the clustering procedure and thus reduce the 
limitation effects. 

• Time Series (TS) K-Means [32]: This method uses 
Dynamic Time Distortion and Soft Dynamic Time 
Distortion algorithms for distance calculation between the 
data, instead of the Euclidean formula. This ensures higher 
forecast accuracy of the TS K-Means algorithm but 
increases significantly the data processing time. 

• Mini Batch K-Means [33]: This method was designed to 
process large data partitioned into clusters. Its main 
advantage over K-Means is the reduced time to partition the 
data into clusters, which is proportional to the size of the 
clusters formed. This is very important when processing the 
data from hourly electrical power demand measurements 
for a day. Thus, 24 new values are processed each day. 

• Agglomerative Clustering [34, 35]: This method belongs to 
methods that use a hierarchical structure and is based on the 
so-called bottom-up approach. The algorithm supports an 
"active set" of clusters and decides which two clusters to 
merge at each stage. When two clusters are merged, the 
latter disappears from the set while the newly formed is 

added. This is repeated until all clusters are finally merged 
into a single. During the execution of the algorithm, a 
binary tree that accounts for the union of pairs of clusters is 
formed and called a dendrogram. In this method, the 
problem of defining the number of clusters is solved by 
design. There is no need to change the algorithm as new 
data come in, as in Time Series K-Means and Mini Batch 
K-Means. A basic problem in K-Means forecasting is the 
problem of defining the number of clusters. This is not a 
problem when working with fixed data ranges, but when 
working with time series, updating the value for the number 
of clusters is required, and this is not an automatic process. 
Agglomerative clustering solves this problem at the core of 
its design. 

• Ordering Points To Identify the Clustering Structure 
(OPTICS) [36, 37]: Like Mini Batch K-Means, this method 
is designed to process large data which can be fast changed 
and temporally ordered. This method is based on the 
density principle. The implemented algorithm (DBSCAN) 
searches for the point with the highest local density and 
forms a cluster around it. When the radius of a 
neighborhood change, the algorithm keeps the hierarchy of 
the clusters formed so far. OPTICS has high classification 
accuracy and smaller error than the above-mentioned 
clustering methods. Its main disadvantage is the slow 
performance due to large data processing. 

III. ANALYSIS OF THE FORECASTS’ RESULTS 

This study examines the forecast models using data for 
electricity power demand (in MWh) on the territory of the 
Republic of Bulgaria. Data were acquired from the Bulgarian 
Electricity System Operator (ESO) [38]. The analyzed period 
was from 1 January 2015 to 24 December 2020. The load was 
averaged for each hour of the investigated day. The forecast 
assessments were also performed hourly for each day in the 
period between 25 and 31 December 2020. The forecasts were 
compared with the actual hourly electrical power demand for 
this period. For simplicity, without losing generality, only the 
forecast results for the 21st (8-9 p.m.) hour of the prognosis 
days are provided. This interval was chosen as the electrical 
power load is at its highest, and its prediction is the most 
important. The application for making forecasts was written in 
Python 3. Two regression forecasting methods were used: 
regression with moving window and ARIMA. The accuracy of 
the ARIMA model is determined by the extended Dickey-
Fuller rooting test [39] implemented using the 
statsmodels.tsa.stattools function [40]. This study used five 
cluster forecasting methods: K-Means, Time Series K-Means, 
Mini Batch K-Means, Agglomerative clustering, and OPTICS. 
The quality of the clusters obtained by each method was 
evaluated by applying the Silhouette method [41]. This method 
calculates the distances between individual points in a cluster, 
as well as the distances to points belonging to other clusters. 
This gives an idea of the density of the cluster and the fitting of 
each point to the others in the cluster. The forecasted electrical 
power demand results for the 21st hour of the day (8-9 p.m.) 
for the period 25th - 31st December 2020 from each method 
used is shown in Figures 2-8 in blue, while the actual electrical 
power load is marked in red. 
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Fig. 1.  Forecasts from moving window compared with real power load. 

 
Fig. 2.  Forecasts from ARIMA compared with real power load. 

 
Fig. 3.  Forecasts from K-Means compared with real power load. 

 
Fig. 4.  Forecasts from TS K-Means compared with real power load. 

 
Fig. 5.  Forecasts from Mini Batch K-Means compared with real power 

load. 

 
Fig. 6.  Forecasts from Agglomerative clustering compared with real 

power load. 

 
Fig. 7.  Forecasts from OPTICS compared with real power load. 

In both regression methods, moving window and ARIMA, 
the actual electrical power consumption data are dispersed 
around the predicted ones determined by the corresponding 
approximating polynomial. Therefore, the classical regression 
algorithms are quite inaccurate and do not follow the trend of 
the actual values as the cluster methods. This is because they 
provide point estimates of the forecasted values, while cluster 
algorithms provide ranges, defined by minimum, average, and 
maximum values. For the cluster methods, except for OPTICS, 
the actual hourly electrical power demands are always less than 
the lower bound of the respective forecast variation ranges of 
the load. On the one hand, this is preferable because it 
introduces conservatism to the resulting estimates. On the other 
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hand, it shows that the estimates given by the OPTICS cluster 
method are the most accurate. Mini Batch K-Means ranks right 
behind OPTICS. Its minimum forecasting assessments are the 
closest, mostly at the top and sometimes at the bottom, to the 
actual hourly power load. The TS K-Means graphs are similar 
to the Mini Batch K-Means, i.e. the actual hourly electrical 
power demands are quite close to the lower bound of the 
calculated range. These differences are slightly larger 
compared to those obtained with Mini Batch K-Means. 
Otherwise, they are all smaller than the corresponding 
differences estimated with the other clustering methods. The 
forecast ranges, determined by Agglomerative clustering, are 
the most compact (short) in comparison to the other clustering 
methods. However, the actual hourly power load for the study 
period is much smaller than the minimum forecast value for 
each time zone considered. Perhaps, with a larger input sample, 
the actual hourly electrical power demand would fall in those 
areas that are almost point-wise. Then the forecast assessments 
in the Agglomerative clustering method will be more accurate. 
The graphs in Figures 2-8 show that the most inaccurate 
estimates were obtained by K-Means and Agglomerative 
clustering. They contained the greatest degree of conservatism 
on actual electrical power loads. This is not dangerous, as it 
leads to a surplus of produced electric power and the users' 
needs will always be met. 

The accuracy of each method, shown in Figures 9-15, was 
calculated for each hour of the day based on the resulting 7-day 
forecast period. The most accurate forecasts were obtained by 
the OPTICS method, closely followed by the Mini Batch K-
Means. K-Means and Agglomerative clustering methods gave 
the most inaccurate prediction results. The largest error was 
seen in the estimate given by each method for the 7th hour of 
the day. The two methods using regression analysis gave 
similar accuracy results. For both methods, the most inaccurate 
estimate was for the 7th hour (0.22%), followed by about 0.5% 
for the 17th and 18th hours. The regression estimates were 
more accurate than K-Means and Agglomerative clustering, 
and they are comparable to TS K-Means, and Mini Batch K-
Means, but contain a larger degree of dispersion around the 
average value of 0.2%. Last but not least, they are much less 
accurate than OPTICS.  

 

 
Fig. 8.  Accuracy of the moving window method. 

 
Fig. 9.  Accuracy of the assessments obtained by the ARIMA method. 

 
Fig. 10.  Accuracy of the assessments obtained by the K-Means method. 

 
Fig. 11.  Accuracy of the assessments obtained by the TS K-Means method. 

 
Fig. 12.  Accuracy of the Mini Batch K-Means method. 
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Fig. 13.  Accuracy of the assessments obtained by Agglomerative 

clustering. 

 
Fig. 14.  Accuracy of the assessments obtained by the OPTICS method. 

The most accurate and compact was the OPTICS method, 
varying in the interval [0%, 0.02%] coincident with the mean 
of the exact interval 0.01%. It was followed by the TS K-
Means, whose range of variation of estimates was very narrow 
[0.18%, 0.2%] and the dominant error values were 0.19%. Mini 
Batch K-Means was third in terms of compactness of the 
forecasting error. It also provided estimates with small variance 
(0.18%) around the average value, and the range of variation of 
the estimates was [0.9%, 1.3%]. The error graphs of K-Means 
and Agglomerative clustering were quite similar. In both cases, 
the largest error was observed in the prediction for the 7th 
(0.4% and 0.38%) and the 15th hour of the day (0.3% and 
0.28%) for K-Means and Agglomerative clustering 
respectively. The execution time of TS K-Means was worse by 
far in comparison to the other algorithms, although its 
performance is good enough for algorithms to be implemented 
and executed daily without compromising the process of 
forecasting. Regression methods were less accurate than the 
cluster ones, except K-Means and Agglomerative clustering. 
Another disadvantage is that they require a long time to train 
the models and a large amount of data to guarantee an adequate 
forecast, which is not typical for clustering methods. K-Means 
and Agglomerative clustering are in the last place in terms of 
forecasting accuracy, but their largest error is 0.38% and occurs 
only for one hour of the day, which is not fatal for short-term 
forecasts. In principle, the accuracy of the forecast results can 
be increased by increasing the amount of input data used to 

train each algorithm. However, data older than 10 years should 
not be utilized, as the influence of many economic, political, 
geographic, and other factors change the trend of the forecasts 
and cannot be reliable. 

IV. CONCLUSION AND FUTURE RESEARCH 

Although the delta between the minimum and maximum 
forecast cluster values is smaller for insufficient data input, the 
results showed a decrease in accuracy with the quantity of input 
data. As a greater number of input points was fed to the 
algorithms, the predicted outcome was not as precise but much 
more accurate. This study trained each method with data for 4 
years, 1 year, and 4 months. One conclusion is that there is no 
real impact from feeding the algorithms with data larger than 1 
year since the accuracy remains roughly the same, but the 
precision is harmed. 

Using additional functions and methods to adjust the needs 
to the strengths of the algorithms may be a great advantage, as 
the clustering algorithms are not very well suited to forecast 
time-series data. However, using the right toolset could 
advantage the system to be applied to an environment that does 
not provide enough input data, where other algorithms may 
suffer from data scarcity. Cluster methods' forecast results are 
much more accurate than those obtained by regression analysis 
methods. Moreover, they require fewer time resources to 
process the input data to train the models and obtain the final 
predictions. The data used in the models synthesized in this 
paper to persform short-term forecasts of hourly electricity 
power demand on the territory of the Republic of Bulgaria are 
universal. They can be used to perform any kind of short-term 
hourly forecasts of arbitrary quantities. They were applied to 
this case because the authors had this kind of data to process. 
And they are only illustrative of their applicability. 

One prospect for further research could be to examine 
additional clustering methods, while the considered input data 
period could be enlarged to 10 years 
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