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Abstract-This study examined the discretization random field of 

the elastic modulus by a point method to develop a stochastic 

finite element method for the stochastic buckling of a non-

uniform column. The formulation of stochastic analysis of a non-

uniform column was constructed using the perturbation method 

in conjunction with the finite element method. The spectral 

representation was used to generate a random field to employ the 
Monte Carlo simulation for validation with a stochastic finite 

element approach. The results of the stochastic buckling problem 

of non-uniform columns with the random field of elastic modulus 

by comparing the first-order perturbation technique were in 

good agreement with those obtained from the Monte Carlo 

simulation. The numerical results showed that the response of the 

coefficient of variation of critical loads increased when the ratio 
of the correlation distance of the random field increased. 
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I. INTRODUCTION  

Science and technology revolution has produced many 
high-strength and lightweight materials used in a variety of 
slender structures such as steel structures [1-7] and functionally 
graded beams [8]. The problem of stability calculation of these 
structures is very important, e.g. in a steel truss bridge with 
many slender compression members. In many cases, column or 
tower structures are designed with variable cross-sections to 
match the bearing characteristics of the structure and save 
materials. Many studies have examined the stability of bars 
with variable cross-section and many basic problems on the 
stability of bars with variable cross-section were presented in 
[9-12]. In addition, many researchers studied the stability of the 
replacement with a changing cross-section with different forms, 
calculated by different methods. In [13], a polynomial series 
approximation was used to solve the problem of column 

stability with variable cross-sections subjected to axial forces. 
In [14], the column was calculated with a cross-sectional 
variation of the ladder using the Rayleigh-Ritz method. In [15], 
the stability of a column of the variable cross-section with 
elastic connections was calculated by approximating the 
stability differential equation. In [9], the stability of reinforced 
concrete columns with elastic connections was studied. An 
exact solution for some types of columns with variable cross-
sections with elastic connections under distributed axial forces 
was presented in [16]. In addition to analytical methods with 
exact solutions, some studies used finite element methods. In 
[17], the stability of a bar with variable cross-section was 
studied using the Galerkin finite element method. In [18], the 
stability calculation of columns with stepped and cracked 
cross-sections was studied using the finite element method. In 
[19], a finite element model of circular concrete-filled steel 
circular-tube columns was studied under axial compression 
loading. 

However, these studies were limited to deterministic 
problems. In most practical engineering, structure analysis 
ignores the random heterogeneity of materials. For the 
advanced analysis of structures, a probabilistic model is needed 
to consider random variables, random fields of geometry, and 
material properties of structures. Several methods for random 
field discretization were developed for stochastic finite element 
methods, such as the integration point method [20, 21], the 
nodal point method [22, 23], and the local averaging method 
[24]. In [25], a stochastic finite element method was presented 
using the weighted integration approach to analyze the static 
behavior of non-uniform columns. In [26], a semi-analytical 
method was applied to investigate the buckling of composite 
beam-columns with random elastic stiffness and geometric 
properties. In [27], the free vibration of functionally graded 
beams was examined using a stochastic perturbation-based 
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finite element method. The random finite element method was 
improved for the seismic analysis of gravity dams in [28]. In 
[29, 30], a probabilistic problem was developed for the seismic 
analysis of cabinet facilities in nuclear power plants and soil 
properties.  

In this study, a stochastic finite element model was built for 
the buckling of the non-uniform column with the random field 
of elastic modulus. 

II. THE FINITE ELEMENT MODEL OF THE NON-UNIFORM 

COLUMN 

Consider a non-uniform column with the coordinate system 
(x, z) as shown in Figure 1:  

 

 
Fig. 1.  Model of non-uniform columns  

The column element is assumed to have two degrees of 
freedom, one rotation and one translation, at each end. The 
location and positive directions of these displacements in a 
typical linearly tapered column element are shown in Figure 2, 
where Le is the length of the element, E and I are the area and 
inertia moment of the cross-section column. The depths of the 
cross-sections at the smaller and larger end of the column are 
denoted as h2 and h1, respectively. The longitudinal axis of the 
element lies along the x-axis. The element was assumed to 
have two degrees of freedom at each end: a transverse 
deflection u1, u3, and an angle of rotation of slope u2, u4.  

 

 

Fig. 2.  Model of a non-uniform finite element. 

The displacement field is approximated by the shape 
function as: 

�� = ��� �� �� �	
 ��������	

 = ��
����    (1) 

where � = ��� �� �� �	�, and ��  is the shape function 
of the i-th degree of freedom, and the Hermite polynomial 
functions [31] are:  

�� = 1 − 3 ����� + 2 �����   �� = � �1 − 2 ��� + ������  
�� = 3 ����� − 2 �����   �	 = � �− ��� + ������  

  (2) 

The deformation potential of the column is: 

�� = �� �  !"�# $%�&�%�� '� (���)     (3) 

The potential energy of load is: 

*� = − +� � $%&�%� '� (���)     (4) 

The cross-section moment of inertia in the element is 
approximated by linear interpolation:   "�#!�"�# =  "�#!�� $1 − ���' +  "�#!�� ���    (1) 

The random field of elastic modulus is assumed as:   "�# =  )�1 + ,"�#
    (2) 
where E0, r(z) are the mean elastic modulus and a one-
dimensional Gaussian random field with a mean equal to zero 
respectively. The form of the autocorrelation function of 
random field r(x) is: -".# = � � ,"�#,"� + .#/�"�, � + ., .#(,"�#(,"� + .#∞1∞

∞1∞
 (7) 

The random field elastic modulus requires discretization to 
random variables for the governing equation of buckling 
problem by finite element formulation. 

 

 
Fig. 3.  Average model for approximating random field of elastic modulus. 
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By averaging random variables within the element as 
illustrated in Figure 3, the random field of the elastic modulus 
in the element is calculated as:  ,̄ = 3453�5⋯5378   

 =  ) 91 + 3453�5⋯5378 :  (8) 

Taking the variation with respect to q, the resulting 
equation [32] is obtained for the buckling of the column: ;�<
 − =�<
>?��� = 0    (9) 

[K] and [M] denote the assembled and global stiffness 
respectively of the cross-section column and λi denotes the 
critical load. The stiffness matrix [K]e  is defined as:  �<
� =  ) 91 + 3453�5⋯5378 : ×  

×
BCC
CCC
DE"F4�5F��#��� 	F4�5�F����� − E"F4� 5F�� #��� �F4�5	F������F4�5F���� − 	F4�5�F����� F4�5F����E"F4�5F��#��� − �F4� 5	F�����GHI. F4�5�F���� KLL

LLL
M
    (10) 

The geometric stiffness matrix is defined as: 

�<
>� = N
BCC
CCC
D EO�� ��) − EO�� ��)��O�� − ��) − ��)��EO�� − ��)Sym ��O�� KLL

LLL
M
    (3) 

III. FORMULATION OF THE STOCHASTIC FINITE ELEMENT 

METHOD USING THE PERTURBATION TECHNIQUE FOR THE 

BUCKLING OF THE COLUMN 

The governing equation of the buckling problem in (9) 
includes random variables and can be perturbed concerning the 
mean of the random variables as follows:  

S �<
) + ∑ U�V
U3W ,�X3�Y� −$=) + ∑ UZU3W ,�X3�Y� ' �<
>[ \�) + ∑ U]U3W ,�X3�Y� ^ = 0    (12) 
Solving the stochastic equation (12), the zeroth-order and 

the first-order solutions can be obtained as: 

zeroth-order:  ;�<
) − =)�<
>?��)� = 0    (4) 
and first-order: ;�<
) − =)�<
>? \U]U3W^ = − $U�V
U3W − UZU3W �<
>' ��)�    (14) 
Premultiplication of (14) by \�) + ∑ U]U3W ,�X3�Y� ^_

gives: 

\�) + ∑ U]U3W ,�X3�Y� ^_ ×  

× \�<
) + ∑ U�V
U3W ,�X3�Y� − $=) + ∑ UZU3W ,�X3�Y� ' �<
>^  
× \�) + ∑ U]U3W ,�X3�Y� ^ = 0  

(15) 

Solving (15) using the orthonormal property, the first-order 
partial derivatives of critical load respect random variable is 
given by: 

UZU3W ≈ �]a�Wbc�d
ceW �]a��]a�Wb�f
�]a�     (16) 
The mean of the critical load given solved by the first-order 

perturbation solutions is: μZ = � \$=) + ∑ hZh3W ,�X3�Y� ' − =)^ i",�#(,�j1j = =)    (17) 
The variance of the critical load is solved by the first-order 

perturbation solution as follows: 

*k,Z = � � \$=) + ∑ UZU3W ,�X3�Y� ' − =)^ ×
l× �=) + ∑ UZU3m ,nX3nY� � − =)o ×× /�;,�, ,n , ,n − ,�?(,�(,n

∞1∞

∞1∞
  

= ∑ ∑ \UZU3W UZU3W -".#^X3nY�X3�Y�   

 (18) 

where R(τ) denotes the autocorrelation function of the random 
field, and the relative distance vector is defined as τ=rj-ri. The 
autocorrelation function was assumed in the form: 

-".# = q� rsi $− t�%�'    (19) 
where σ, d are the Coefficient Of Variation (COV) and the 
correlation distance of the random field of elastic modulus 
respectively. The response variability can be represented using 
the COV defined as: 

uv* = wxy3z||z|     (20) 
IV. EXAMPLES 

A. Validation of the Finite Element Approach for 

Deterministic Analysis 

The buckling non-uniform column in Figure 1 was 
considered to validate the proposed finite element for the non-
uniform column with the moment of inertia as a formulation:  

 !"�# = }Fa� \√2 − �� ;√2 − 1?^�
    (21) 

The analytical solutions of the column were given by [9] 
with a critical load factor m=2.023: N�3 = 2.023 }Fa��    (22) 
where the critical load factor m is given by: I = +�e��}Fa     (5) 
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Fig. 4.  Comparison of critical load factor between analytical and finite 

element method. 

 
Fig. 5.  Error depending on mesh refinement. 

As shown in Figure 4, the finite element agreed with the 
analytical solution if a reasonable number of finite elements 
was used in the model (approximately more than 10 finite 
elements). The convergence features of the proposed finite 
element are shown in Figure 5. The discrepancies between the 
analytical and finite element solutions of the critical load factor 
tend rapidly to zero as the mesh is refined. 

B. Response Variability of Critical Load Due to the 

Randomness of Elastic Modulus 

A scheme of Monte Carlo Simulation (MCS) was employed 
to validate the response variability of critical loads of the non-
uniform columns. MCS repeats the deterministic analysis on a 
set of samples of the random field of the elastic modulus. Using 
the spectral representation proposed in [33], the numerical 
generation of the homogeneous univariate random field r(z), 
with zero mean in one dimension, can be generated via the 
summation formula of cosine functions as follows: ,"�# = √2 ∑ �� ���"��� � ��#X1�

�Y)   
�� � w2G33"���#��  

�� �
�]

�
, �� � ���,  � � 0,1,2, . . . , � � 1 

(24) 

where, �], G33  are the upper cut-off frequency and the power 
spectral density functio, respectively. 

The stochastic buckling of linearly tapered cantilever 
columns with a concrete rectangular cross-section was 
considered, as shown in Figure 6. The mean modulus of 
elasticity of the column was assumed to be 33.103MPa. The 

geometric dimensions of the example cross-section columns 
were: h0 =1m, h1 =0.5 m, H=12m, and b=0.6m. 

 

 
Fig. 6.  Linearly tapered cantilever columns with a concrete rectangular 

cross-section. 

 
Fig. 7.  Effects of the correlation distance d on the different standard 

deviation σ of the critical load. 

Figure 7 shows the comparison of the effect of the 
correlation distance d of the random field on the variability of 
the critical load of the proposed formulation with the MCS, for 
the same cases of the stochastic finite element method. The 
results of the MCS with 10,000 samples, presented by the 
dashed-dotted line, denote the corresponding COV of the 
random field of elastic modulus 0.1 and 0.2. As shown in 
Figure 6, the response variability of a critical load is 
converging to COV of the random field of the elastic modulus, 
as the correlation distance tends to move to infinity in both 
analysis schemes. As can be observed, the increasing rate of the 
correlation distances is accelerated with an increase in the 
coefficient of variation of the random field. 

V. CONCLUSION 

The paper presented a perturbation technique in conjugation 
with finite element analysis that was successfully developed for 
the stochastic buckling problem of non-uniform columns with a 
random field of elastic modulus. MCS was performed 
employing 10,000 random samples to simulate the validity of 
the proposed first-order perturbation solution of the stochastic 
finite element method. The efficacy of the first-order 
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perturbation method was verified using a homogeneous 
Gaussian random field by the stochastic finite element method 
and was in perfect agreement with the MCS, where the 
correlation distance was as high as 5. The effect of the 
correlation distance on the response COV of a critical load was 
obvious, and the response COV increased when correlation 
distances increased. 
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