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Abstract-This paper introduces a new algorithm for reducing 
large dimensional second-order dynamic systems through the 

Second Order Arnold Reduction (SOAR) procedure, with a 

stopping criterion to select an acceptable good order for the 

reduced model based on a new coefficient called the Numerical-

Rank Performance Coefficient (NRPC), for efficient early 

termination and automatic optimal order selection of the reduced 

model. The key idea of this method is to calculate the NRPC 
coefficient for each iteration of the SOAR algorithm and measure 

the dynamic evolution information of the original system, which 

is added to each vector of the Krylov subspace generated by the 

SOAR algorithm. When the dynamical tolerance condition is 

verified, the iterative procedure of the algorithm stops. Three 

benchmark models were used as numerical examples to check the 

effectiveness and simplicity of the proposed algorithm. 

Keywords-model order reduction; second-order systems; 

second-order Krylov sub-spaces; second-order Arnoldi procedure 

(SOAR); structure preserving; stability; projection; state space 

I. INTRODUCTION  

The large-scale second-order model is considered a well-
known representation for the modeling of the dynamic 
behavior of multivariable complex systems in various fields of 
science and engineering, such as electrical, mechanical, 
structural, electromagnetic, and micro-electromechanical 
systems (MEMS). Some of these systems encounter 
computational problems in simulation due to the huge model 
order to treat this problem. Therefore, a reliable approximate 
model with reduced order is intended, which could replace the 
original in simulation or control and preserve the second-order 

structure of the original system and the same key properties, 
such as stability [1, 2]. 

This study examined the following large-scale system given 
in the second-order form: 

∑� ∶ 		 ���� 	
� + 	
�� 	
� + 	��	
� 	= ��	
��	
� =	 ���	
� 	    (1) 
where M ∊ ℝN×N is an invertible matrix, q(0)=q0 and q̇(0)=q̇0 
are initial conditions, M, D, and K ∊ ℝN×N

 are respectively the 
mass, damping, and stiffness matrices as known for mechanical 
models, q(t) ∊ ℝN is the state variables vector, and b, l ∊ ℝN 
represent the input and the output measurement matrices, 
respectively [1]. A Model Order Reduction (MOR) of the 
second-order system ΣN using the Second-Order Arnoldi 
(SOAR) algorithm was investigated. The SOAR approach has 
attracted many researchers in recent years and has been used to 
solve the following problems: a quadratic Eigen-value [3, 4], 
the MOR of second-order dynamical systems [1, 6], and in the 
analysis of structural acoustics [5, 6]. From a mathematical 
point of view, the SOAR design is based on a projection-based 
MOR technique that uses a second-order Krylov subspace and 
the SOAR procedure to generate the projection matrix as 
follows: in the first step a recurrence formula is defined for the 
two matrices coefficient A and B and one or two initial vectors, 
and then, in the second step, an orthonormal basis of projection 
subspaces from the famous second-order Krylov subspace 
defined in the recurrence formula is generated. The SOAR 
method is used in MOR, which constructs another reduced 
second-order state-space system Σn with reduced order, where 
the input-output behavior dynamics are completely recovered, 
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i.e., preserving the basic characteristics of the full order system 
[1, 2]. 

This study proposes an automated method to generate the 
best reduced-order model for a large second-order system using 
the SOAR procedure, by defining a new criterion to auto-stop 
the iteration process in the SOAR procedure and auto-select an 
acceptable reduced order of the projection matrix. The 
efficiency and robustness of the proposed algorithm were 
validated by various well-chosen numerical examples of 
second-order models. 

II. MODEL ORDER REDUCTION AND PROBLEM 

FORMULATION  

A. Problem Formulation 

The analysis of the second-order system ΣN leads to 
building a very large complex model. Thus, mathematical tools 
are needed to reduce the computational complexity and 
accelerate the modeling task by constructing a reduced-order 
system Σn. The proposed tools preserve the characteristic 
properties of the original system, such as the second-order form 
and stability [2,10]. The reduced second-order system Σn is 
defined by: 

∑� ∶ 		 �����	
� +	
���	
� +	���	
� 	= ���	
���	
� =	 ����	
�     (2) 

where z(t) represents the state vector with dimension n ≪ N, 
and the matrices Mn, Dn, and Kn ∊ ℝn×n

 are the mass, damping, 
and stiffness matrices respectively, as known in structural 
dynamics. The vectors bn and ln ∊ ℝn are the input distribution 
and output measurement respectively. Applying the Laplace 
transform, the transfer function of the original second-order 
model is given as: 

ℎ	�� = 	 ��		��� + 	
� + �� !	�    (3) 
The power series of the Laplace transformation 

Q(s)=L(q(t)) can be expressed as: 

"	�� = 	#$ + #!� +	… = 	∑ #&� &'&($     (4) 

with Rl being the l
th
 order system moments. The above second-

order system ΣΝ can be rewritten in first-order form by taking 

the following state vector )	
� = *�� 	
��	
�+: 

,-
./� 00 1 2 *�� 	
��� 	
�+ −	 /−
 −�1 0 2*�� 	
��	
�+ = 	 /�02 	�	
�	

	�	
� = 	 40 ��5 *�� 	
��	
�+
    (5) 

Equation (5) can be expressed in matrix form as: 

6)�	
� − 	7)	
� = 8�	
�,					�	
� = :�)	
�    (6) 
where: 

6 = 	 /� 00 1 2 , 7 = 	 /−
 −�1 0 2, 
		8 = 	 /�02		,					:� =	40 ��5 

are respectively the input and the output of the first-order 
system representation. The transfer function h(s) can be 
rewritten as: 

ℎ	�� = 	:�		6� − 7� !	8    (7) 
and the power series of the transfer function h(s) as: 

ℎ	�� = 	;$ +;!� +	… = 	∑ ;&�&'&($     (8) 

The design of MOR Krylov subspace techniques is based 
on moment matching methods. Its principle is to replicate the 
moments of the original system ΣN on the moments of the 
reduced system Σn [11-13]. 

B. SOAR Algorithm for Second-Order Systems 

This section describes the definition of a second-order 
Krylov subspace using the SOAR algorithm. The second-order 
Krylov subspace is defined as: 

7�	<,=,>� = ?@��ABCDE$, E! , … , E� !F    (9) 
where: 

� E$ = >, E! = 	<E$EG = 	<EG ! + 	=EG �		,			H = 2,3,… .	    (10) 
where A, Z ∊ ℝn×n

 are square matrices called constant matrices 
and w ∊ ℝn×1

 is a column vector called the starting vector. The 
sequence r0, r1, ..., rn-1 is known as Krylov second-order basic 
blocks [1]. 

The Gn(A, Z; w) subspace defined in (9) is called an n
th 

second-order Krylov subspace [2, 10, 11]. There is a 
connection between the subspace Gn(A, Z; w) and the standard 
Krylov subspace Kn(A, w) defined in (11), while Gn(A, Z; w) 
can be considered as a generalization of Kn(A, w). ��	<,>� = �ABC	>, <>, <�>,… , <� !>�    (11) 

In the case of the matrix Z = 0, the second-order Krylov 
subspace Gn(A, Z; w) is equal to the general Krylov subspace 
Kn(A, w). The application of the vector sequence {rj} of the 
second-order Krylov sub-space to obtain an orthonormal basis 
{r0, r1, ..., rn-1} is called SOAR (Second Order ARnoldi) 
algorithm [2]. The following Lemma 1 can be used in the proof 
of Theorem 1 [10]: 

• Lemma 1: Let Tn	∈ ℝn×n
 be an upper Hessenberg matrix. 

The k entry M�NO!is zero for k = j+2, ..., n and j = 0, 1, ..., n-
1. In particular, O��M�NO! = 0	 for j=0, 1, ..., n-2 [1]. 

• Theorem 1: Let Qn be the orthonormal matrix defined by 
the sequence vectors Qn={q1, q2,…, qn}, where the vectors 
qi with i =1, ..., n are generated by the SOAR procedure 
after the execution of n iterations. Then the analysis of the 
relationship between the j

th
 system’s moment rj and the 

output of the SOAR procedure can be expressed as [1]: 

/ ENEN !2 = 	PNQ	 = 	 *"�R� +M�NO!, S@E	T = 0,1,… ,V − 1    (12) 
In particular: 

EN =	"�M�NO!	, and, EN ! =	R�M�NO!, for j = 0, 1, ..., N-1 [10]. 
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Theorem 2 provides a sufficient condition for the n first 
output vectors moment of the reduced and the original systems 
to match. 

• Theorem 2: Let Qn be the projection matrix generated by 
the SOAR algorithm to reduce the order of the second-order 
model. If EG ∈ colspan	"�� for j = 0, ..., n then EN 	= "�ÊN  
[1]. This theorem helps to verify that the condition of the 
output moment matching can be maintained. 

• Theorem 3: The first unmatched moment is obtained after 
the execution of the n

th
 iteration of the SOAR procedure, 

and the error ∆;�`! between the two moments ∆;�`! of 
the original and ;a�`! of the reduced system can be given 
by an analytical expression [1]: 

∆;�`! =	;�`! −;a�`! =	6�b∏ 
N`!,N�N(! d��`!    (13) 

C. SOAR Procedure with Deflation and Memory Saving 

In the SOAR algorithm, the pn set vector is closely related 
to qn, and the bi-product vector pn is utilized. To avoid explicit 
references and updates of p vectors, a new version of SOAR, 
shown in Figure 1, was presented in [10] to reduce the memory 
requirements by almost half [15]. Since p1 = 0: 

"� = R�`!Me� =	R�`!	: ,2: C � 1�Me�	2: C � 1, 1: C�    (14) 
 

 
Fig. 1.  SOAR with deflation and saving memory algorithm – Algorithm 1. 

III. PROPOSED STOPPING CRITERION FOR SOAR 

Finding a suitable order q for the reduced model that leads 
to a better approximation is an important component of order 
reduction. The question is when to pause an iterative order 
reduction [16]. The two traditional techniques to stop an 
iterative MOR approach based on the Krylov subspace are: 

A. Finding the Zero Vector 

Although it has an automatic implementation, the 
conventional approach consisting of finding the zero vector 
(tj+1 = 0 in the SOAR procedure) to interrupt the process is 
extremely ineffective. The major drawback of this method is 
that it adds a lot of redundancy to the transformation matrix 

and duplicates the same information about the dynamic 
behavior of the original model once and again. 

B. Time Response Comparison and Manual Termination 

In this method, a reduced-order model is generated in each 
iteration of the SOAR procedure, a time response comparison 
is made for both models, the reduced and the original one, and 
the process is terminated if the errors are acceptable. Some 
fundamental definitions of matrix factorization should be 
presented before the implementation and application of the new 
criterion for stopping and selecting the reduced order in the 
SOAR procedure. 

• Definition 1: Let A ∊ Cn×m, and suppose rank(A) = r, and n 
≤ m. Then, there exist matrices U ∊ Cn×n

, V ∊ Cm×m, and Σ ∊ ℝn×n
 such that: 

< = g	h	i∗    (15) 
U and V are unitary, and ∑ � 	 *∑k 0

0 0+. 
where ∑k  is a diagonal matrix with ∑k=diag{σ1…σr} and σ1 ≥ σi 
≥ ...≥ σr > 0. Positive numbers σi for i = 1,…,r are determined 
uniquely by A and called singular values of A. Εquation (15) is 
called the Singular Value Decomposition (SVD) of matrix A. 
Columns U and V are called the left and right singular vectors 
respectively. The index r of the smallest singular value is called 
the theoretical rank of matrix A. 

• Definition 2: Let σr be the calculated singular values of the 
matrix A ∊ Cn×m, and let δ be a positive real number, δ > 0. 
The numerical δ-rank is defined as the number of singular 
values greater than δ. The numerical δ-rank is written as k, 
if:  

σ1 ≥ σ2 ≥ ….σk ≥ δ ≥ σk+1 ≥ … ≥ σr , r = min(n, m)    (16) 

For each iteration of the SOAR algorithm, the contribution 
of the second-order Krylov vectors, taking into consideration 
the knowledge about the model dynamics stored in them, 
decreases monotonously. It is therefore expected that each 
generated vector ri will be less effective to the numerical rank 
of the transformation matrix Qn. 

The suggested stopping criteria rely on the estimation of a 
signal of progress in the numerical rank of the generated 
transformation matrix with each iteration in the SOAR 
procedure, exactly before adding the new normalized vector. 
To measure this signal, an indicator is assigned for each vector 
generated by the iterative process before being fed to the 
normalization routine (line 12 in Algorithm 1). This indicator is 
called NRPC and has a value range of [0,1]. The greater value 
of the NRPC for the nominee vector harmonizes an important 
contribution of that vector to the improvement of the numerical 
rank and the dynamic progression of the original system and 
must hence be included in Qn. The NRPC for the candidate 
vector ri is given as the inverse of the sum of singular values of 
the current transformation matrix Ql, obtained by appending the 
new non-normalized vector r to the transformation matrix Qn of 
the previous iteration. 

V#R6 = !
∑ lmnmop

    (17) 
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Therefore, it is possible to approximate the stopping criteria as: 

• In each iteration calculate the NRPC indicator using (17). 

• The iteration can be halted as soon as NRPC < ε, where ε > 
0 some specified value. 

Algorithm 2 demonstrates how to integrate this stopping 
criterion into Algorithm 1 of SOAR. 

 

 
Fig. 2.  SOAR with stopping criterion algorithm – Algorithm 2. 

IV. NUMERICAL APPLICATIONS 

Numerical applications were conducted to demonstrate the 
efficiency and accuracy of the SOAR method with the 
proposed stopping criterion and the robustness of the 
terminating mechanism for the Krylov-based reduction method. 
Three practical engineering examples were studied: (i) a shaft 
on bearing supports with a damper originating from a Finite 
Element (FE) [7], (ii) the butterfly gyroscope problem [8], and 
(iii) the FE model of the 3D Cantilever Timoshenko beam [20]. 
Table I displays the size of these and their corresponding 
reduced models and some parameter settings used in the 
simulation, such as the expansion point s0 and the frequency 
range. The output of the relative errors between the original 
and the reduced systems and the related frequency responses 
[7, 8] were considered for comparison. 

TABLE I.  MODEL EXAMPLES WITH PARAMETER SETTINGS 

Model 
Full 

size 

Reduced 

sizes 

Parameters 

S0 Frequency range 

FE model of a shaft on 

bearing supports 
400 10,20,40 150×2π [0,3000] Hz 

butterfly gyroscope 17361 10,19,39 1.05x10
5
 [10

3
,10

6
]Hz 

FE model of 3D Cantilever 

Timoshenko beam 
600 10,19,39 0 [0,1200] Hz 

 

Figure 3 shows the pattern of the stopping criterion and the 
NRPC coefficient, which is the inverse of the sum of the 
singular values of the current transformation matrix Ql, 
obtained by appending the new non-normalized vector r to the 
transformation matrix Qn of the previous iteration. After the 
20

th
 iteration, NRPC decreases slowly and it can be assumed 

that a good reduced-order model can be selected at around 20 
and above. In other terms, an acceptable good approximation 
model can be obtained for NRPC values in [0, 0.5]. A fixed 
tolerance value ε in [0, 0.5] was defined to implement a 
condition to select a good reduced order and stop the SOAR 
procedure. 

 
Fig. 3.  Pattern of variation of NRPC vs number of iterations. 

 
Fig. 4.  Example 1 - Frequency responses of the exact and reduced transfer 

functions h(s) and hn(s). 

 
Fig. 5.  Example 1 - The relative errors ||h(s)−hn(s)||/||h(s)||. 

 
Fig. 6.  Example 1 - Poles distribution for three reduced models. 

 
Fig. 7.  Example 2 - Frequency responses of the exact and reduced transfer 

functions h(s) and hn(s). 
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Fig. 8.  Example 2 - The relative errors ||h(s)−hn(s)||/||h(s)||. 

 
Fig. 9.  Example 2 - Poles distribution for three reduced models. 

 
Fig. 10.  Example 3 - Frequency responses of the exact and reduced transfer 

functions h(s) and hn(s). 

 
Fig. 11.  Example 3 - The relative errors ||h(s)−hn(s)||/||h(s)||. 

 
Fig. 12.  Example 3 - Poles distribution for three reduced models. 

V. CONCLUSION 

This paper introduced a new MOR approach with an 
efficient stopping criterion to find the suitable order of a 
reduced model, by using a modified SOAR algorithm as a 
Krylov MOR approach with auto-selection of the reduced 
order. Based on the obtained results, the proposed algorithm 
showed high efficiency and accuracy in terms of relative error 
against the original systems, while the key properties of the 
second-order form in the reduced model were still preserved. 
Furthermore, its superiority was proven compared to 
conventional SOAR in terms of robustness, where a suitable 
and optimal reduced-order was chosen systematically. The 
proposed approach worked very well for the three examples 
used in numerical tests (FE Model of a shaft on bearing 
supports with a damper, a butterfly gyroscope model, and the 
FE Model of a 3D Cantilever Timoshenko Beam). The key 
properties, such as the preservation of the second-order 
structure and stability were guaranteed with an automatic 
selection of a significantly reduced order as a size of the 
reduced model in the numerical simulation results. 
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