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Abstract-In order to decide the appropriate arrangements of 

fictitious charges in the charge simulation method, the use of the 

Monte Carlo method is proposed for the estimation of the 

probability density function of two variables, the radius ratio, 

and the angle ratio. Τhe scale and shape parameters of the 

Weibull's distribution are determined by the maximum 

likelihood estimator. The obtained results are used to calculate 

the electric field at arbitrary points in the neighborhood of high 

voltage transmission lines. The comparisons between the results 

computed by this method, the results calculated by the genetic 

algorithm, and those measured, confirm the effectiveness and 

accuracy of the proposed method. 
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I. INTRODUCTION  

Designing any high voltage device and analyzing discharge 
phenomena requires complete knowledge of electric and 
magnetic field distribution [1]. The potential surface gradient is 
a critical design parameter for planning and designing overhead 
lines (insulation or discharge) [2, 3]. The electric fields can be 
calculated using several analytical and numerical methods. The 
most used is the Charge Simulation Method (CSM) [4-9]. The 
CSM was introduced in 1969 [4]. Its basic concept is to replace 
the distributed charge of conductors and the polarization 
charges on the dielectric interfaces with a large number of 
fictitious discrete charges. The magnitudes of these charges 
have to be calculated so that their integrated effect satisfies the 
boundary conditions precisely at a selected number of points on 

the boundary. The principle of this method is to simulate an 
actual field with a field formed by a finite number of 
simulation charges (point and line charges of infinite and semi-
infinite length [11]) placed outside the region where the field is 
to be calculated. The values of the discrete charges are 
determined by satisfying the boundary conditions at a selected 
number of contour points: 

���� = ������	
�   (1) 

where [Vb] is the vector of contour point voltages, [Qs] is the 
vector of unknown simulation charges, and [P] is the matrix of 
potential coefficients calculated by contour points and 
simulation charges. 

For overhead lines consisting of n parallel conductors 
placed above the ground, the elements of the matrix of 
potential coefficients are given by the following relation: 
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where ε0 is the electric permittivity of vacuum ≈8.854 10
-12

F/m, 
Dij, dij are respectively the distance between the jth point charge 
and the image of the ith point charge and the distance between 
the jth point charge and the ith point charge. 

Based on the Laplace equation (3), the superposition 
theorem and image charge theory, the components at an 
arbitrary point in the plane y-z plane produced by n point 
charges M(y,z) can be calculated by (4) and (5): 
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where Γ is the reflection coefficient of soil's surface, ($ is the 
distance between the arbitrary point M(y,z) and the ith point 
charge, yi and zi are the coordinates of the ith contour point, and 
Qi is the ith fictitious charge. The reflection coefficient of the 
soil can be approximated as ! = −1. 

The current paper aims to optimize CSM parameters using 
stochastic optimization employing the Monte Carlo Method 
(MCM). This optimization is based on estimating the 
Probability Density Functions (PDFs) of the polar coordinates 
of the simulation charges where the relative mean square error 
of the voltage on the conductor surface is less than a threshold. 
To ensure the accuracy of this method, a comparison is made 
with the measured values of the electric field at arbitrary points 
near high voltage transmission lines with standard dimensions 
of the tower on the 40kV line SS Sarajevo 10 –SS Sarajevo 20 
[10]. 

II. RELATED WORK 

Since 1969, when the CSM was used for the first time [4], 
it has been applied and developed in many cases. Some of the 
main contributions, in chronological order, are: 

Authors in [12] used CSM combined with the 
Rosenbloom’s method to solve the potential distribution of the 
rod-plane. Authors in [13] calculated the field distribution for 
multi-phase AC sources or in configurations including volume 
resistance. Authors in [5] simulated the sheathed three cores 
belted power cable using the complex fictitious charges. 
Authors in [14] combined CSM with the Genetic Algorithm 
(GA) to optimize the CSM for a 2D electrode system with an 
asymmetrical structure. Authors in [15] used CSM-GA to 
calculate the electric field of a 35kV Vacuum Interrupter (VI). 
GA has been utilized to compute the electric field [16], to 
model the horizontal sphere gap [17], and to model the 
horizontal sphere gap above the ground plane [18]. Authors in 
[19] calculated the electric field around the head of a 
transmission tower and its composite insulators by coupling 
CSM with BEM. Authors in [20] used an optimization strategy 
to arrange the simulated charges in the thin electrode. Authors 
in [21] combined CSM with GA to solve the inverse problem 
in electric-fields of high voltage insulators. Authors in [22] 
combined CSM with Hashing integrated Adaptive GA 
(HAGA) to the contour design of support insulators. Authors in 
[23] used CSM combined with the gold section method to 
calculate the conductors' surface electrical field of ±800kV 
UHVDC transmission lines. Authors in [24] used CSM-GA to 
enhance the computation precision of electric fields associated 
with plate‐type electrostatic separators. An adapting Particle 
Swarm Optimization (PSO) combined with CSM was used for 
calculating the field distribution with non-axial symmetry 
resulting from a floating spherical conductor between the 
spheres in [25]. Authors in [26] improved the calculation 
accuracy of the electric fields associated with electrostatic plate 

separators by using CSM-GA. For the optimization of high 
voltage electrode surfaces, authors in [27] used CSM combined 
with a Biogeography-based algorithm. Authors in [28] used 
CSM-PSO for sphere-plane gaps. 3D calculation of electric 
field intensity under transmission lines with CSM-PSO and 
CSM-GA was conducted in [29]. Authors in [30] made a 
comparison between the performance of PSO, GA, and Grey 
Wolf Optimizer (GWO) in 3D quasi-static modeling of the 
electric field produced by High Voltage (HV) overhead power 
lines. To optimize the ion flow field calculation, authors in [31] 
used CSM combined with the Flux Tracing Method (FTM). 

III. THE PROPOSED ALGORITHM 

A. Intoduction 

The proposed algorithm is based on Stochastic 
Optimization (SO) methods. The SO methods generate and use 
random variables [32]. They are used in many areas, including 
aerospace, medicine, transportation, finance, electrical 
engineering, and many more science and engineering fields. 
SO can rely on sampling methods such as MCM [33], Latin 
hypercube sampling [34], or the Quasi-Monte Carlo Method 
(QMCM) [35]. The algorithm aims to optimize the location of 
fictitious charges by generating a bivariate distribution of N×N 
random variables 〈Cr, Ca〉 which are respectively the ratio 
between ,-  and ,
, .- and .
 according to (6)-(8). As shown in 
Figure 1, the contour points are arranged at equal distances on 
the perimeter of the conductor and are determined by their 
polar coordinates rc and θ

k
b according to (7)-(8). The simulation 

charges are also arranged at an equal distance on the perimeter 
of a virtual circle inside and are determined by their polar 

coordinates ,-  and .-/. 

.
/ = �0/
#1
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,- = 67,
    (7) 
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/ + 68. �0
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where rb is the radius of the conductor, θ
k
b the angle of the k

th
 

contour point, NC the number of contour points, rc the radius of 
the virtual circle that contains simulation charges, θ

k
c the angle 

of the k
th
 fictitious charge, and Cr and Ca the radius and angle 

ratios ranging between 0 and 1. 

 

 
Fig. 1.  Arrangement of contour points, fictitious charges, and test point. 
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B. The Algorithm 

For each iteration, we have a set of coordinates of fictitious 

charges, denoted by �67$ , 68$ � such that: 

The set of all coordinates is: ℇ � 〈67 , 68〉  and the set of 

acceptable coordinates is ℇ< � 〈6=7 , 6=8〉. The work is carried out 
in two steps. 

1) Step 1: Extraction of the Set of Solutions  ℇ< 

Data: The electrical and geometric parameters of the line 
such as the potential of point contour Vb, the number of 
conductor nc, the number of fictitious charges Nc, the objective 
function threshold Fobjthreshold,, the number of iterations N 
which generate N random (Cr,Ca) pairs. 

From i=1 to N 

Do 

Calculate Nc*nc coordinates of fictitious charges with (6) 
and (7). 

Calculate the potential created by these fictitious charges 
with (2). 

Calculate the fictitious charges with (1). 

Calculate the potential created by these fictitious charges: 

�	>� � ��>�����  
Calculate the objective function Fobj: 

?@AB � 1
C D�	>  	
�� 

Compare Fobj with Fobjthreshold 

If Fobj > Fobjthreshold then (Cr,Ca) is rejected. 

Else add (Cr,Ca) to the ℇ< 

2) Step 2: Statistical Study 

The followed steps are: 

1. Establish the histograms of Cr and Ca 

2. Estimate the Weibull law parameters A and B with the 

Maximum Likelihood Estimator (MLE). 

3. Calculate the mean and standard deviation of Cr and Ca 

The above algorithm is executed for a simple geometry 
problem (Figure 2) where nc=2, Nc=3, N=100, 
Fobjthreshold=4×10

-12
, h=11m, d=2m, rb=7cm, and V=400kV. 

After the iterations are completed, there are 26 accepted 
bivariates (Cr,Ca) and their histograms are shown in Figures 3 
and 4. It is quite obvious that the greatest PDF is concentrated 
around 0.95 for Cr and 0.49 for Ca. From the obtained results, it 
should be noted that the shapes of the two histograms are 
asymmetrical. The obtained data of the first histogram are 
grouped near the upper limit and incline to the left towards the 
lower values. On the other hand, in the second histogram, the 
data are grouped towards the center, which leads to estimating 
the two parameters of the Weibull distribution as follows. 

 

Fig. 2.  Histogram geometry problem. 

 
Fig. 3.  Histogram of Cr. 

 
Fig. 4.  Histogram of Ca. 

The Weibull distribution is used in reliability studies, for 
example, to study the voltage breakage of electric circuits [36]. 
The Weibull distribution has two parameters, denoted in the 
following equation: 

E�F|H, I� � I. H�JFJ��K�LM
NOP

    (10) 

where A> 0 is the scale parameter and B > 0 is the shape 
parameter of the distribution. 

The Maximum Likelihood Estimator (MLE) [37] estimates 
the Weibull parameters A and B. The results are given in Table 
I and the estimate distributions are shown in Figures 5 and 6. 

TABLE I.  ESTIMATED WEIBULL PARAMETERS 

Data A B 

67 Relative radius 0.968882 31.02033 

68 Relative angle 0.507651 27.0408 
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Fig. 5.  Estimate distribution of Cr. 

 

Fig. 6.  Estimate distribution of Ca. 

The estimated distributions shown in Figures 6 and 7 agree 
with the histograms obtained in Figures 3 and 4. The estimated 
distributions have mean and variance μr=0.9519, σr=0.0015 for 
the relative radii Cr, and μr=0.9519, σr=0.0015, μa=0.4975, 
σa=5.2887 10

-4
 for the relative angular distribution Ca. The 

optimum position of the coordinates of the fictitious charges 

obtained are Cr Є [μr–σr, μr+σr] and Ca Є [μa –σa, μa+σa] with 
respective mean [0.9505; 0.9534] and [0.4970; 0.4980]. For 
example, for Cr=0.95 and Ca=0.49 the optimum arrangement of 
the fictitious charges is shown in Figure 7. 

 

 
Fig. 7.  Optimum arrangement Cr=0.95 and Ca=0.49. 

To verify this approach, an example of the electric field 
calculation around an overhead- transmission line, already 
treated in the literature [10] is examined below. 

IV. RESULT COMPARISON 

The considered example is a 400kV line with a horizontal 
conductor configuration, as shown in Figure 2. Measurements 
were taken at 1m height according to recommendations [38], 
and were performed in the middle of the range between the two 
adjacent transmission line towers. The electric field is 
calculated without considering the effect of conductor end, arc 
sag, and the influence of the tower. In addition, the 
electromagnetic fields caused by the overhead transmission 
lines can be approximated by quasi-static fields [39], where 
quasi-static field displacement current and changes in the 
magnetic flux are negligible, so the electric field has exactly the 
same characteristics as the static one. It is assumed that the 
component of the electric field vector in the x direction is equal 
to zero, and the electric field vector in an arbitrary point, 
caused by the n point charges, can be calculated using (7) and 
(8). 

The application of CSM with a relative radius Cr=0.95 and 
relative angle Ca=0.497 normally leads to optimum results 
close to the measured results, but to ensure its effectiveness it 
must be compared with another method already used with 
CSM. The choice fell on the GA because it is the most used 
with CSM as shown above. Also, it has been widely used in the 
field of electrical engineering [40-43]. Figure 8 illustrates the 
graphs of the electric fields calculated by this method, by 
CSM-GA, and the measured values (the values are listed in 
Table II). It can be seen that the field calculated with the 
proposed method is closer to the measured field than the field 
calculated with CSM-GA. 

 

 

Fig. 8.  Distribution of the electric field. 

TABLE II.  COMPARISON OF MEASURED AND CALCULATED RESULTS 

Distance 

(m) 

Measured 

(kV/m) 
CSM-MCM CSM-GA 

0 4.13 17.69% 02.50% 

5 4.45 02.50% 06.86% 

10 5.93 01.44% 03.17% 

10.8 6.09 01.11% 03.50% 

15 5.81 03.20% 07.66% 

20 3.84 01.75% 06.26% 

25 2.30 00.99% 03.61% 

30 1.39 04.69% 00.04% 

35 0.81 16.11% 10.90% 

Mean  04.38% 04.95% 
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V. CONCLUSION 

A new approach for optimizing the charge simulation 
method using the MCM has been presented in this paper. The 
proposed algorithm aims to determine the PDFs of the classes 
of polar coordinates for which the error is minimal. The two 
PDFs follow Weibull's law. The PDF of relative radius (Cr) is 
asymmetric and concentrated near 1, while the PDF of the 
relative angle (Ca) is symmetric and is slightly centered at 0.49. 

The proposed algorithm offers excellent flexibility and 
accuracy in determining the optimal locations of simulation 
charges. Accurate results are achieved for the electric field 
calculation around the overhead transmission lines. In addition, 

the solution is not a single element (Ca,Cr) like the results of 

other methods, but a range distributed according to the Weibull 
distribution whose parameters are calculated. This work aims at 
an optimal calculation of the electric field by CMS by 
arranging the fictitious charges so that they are very close to the 
edges of the conductor, and each imaginary charge mediates 
two consecutive contour points. The main contribution of this 
work is direct optimization without going through optimization 
methods. 
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