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Abstract- In this paper, a new Visual Object Tracking (VOT) 

approach is proposed to overcome the main problem the existing 

approaches encounter, i.e. the significant appearance changes 
which are mainly caused by heavy occlusion and illumination 

variation. The proposed approach is based on a combination of 

Deep Convolutional Neural Networks (DCNNs), Histogram of 

Oriented Gradient (HOG) features, and discrete wavelet packet 

transforms. The problem of illumination variation is solved by 

incorporating the coefficients of the image discrete wavelet 

packet transform instead of the image template to handle the case 

of images with high saturation in the input of the used CNN, 

whereas the inverse discrete wavelet packet transforms are used 

at the output for extracting the CNN features. By combining four 

learned correlation filters with the convolutional features, the 

target location is deduced using multichannel correlation maps at 

the CNN output. On the other side, the maximum value of the 

resulting maps from the correlation filters with convolutional 
features produced by the previously obtained HOG feature of the 

image template are calculated and are used as an updating 

parameter of the correlation filters extracted from CNN and 

from HOG. The major aim is to ensure long-term memory of the 

target appearance so that the target item may be recovered if 

tracking fails. In order to increase the performance of HOG, the 

coefficients of the discrete packet wavelet transform are 
employed instead of the image template. The obtained results 
demonstrate the superiority of the proposed approach. 

Keywords-visual tracking; deep convolution neural networks; 

wavelet transform; HOG features 

I. INTRODUCTION  

Visual Object Tracking (VOT) is becoming a very active 
area of research, attracting much attention due to its importance 

within numerous applications such as unmanned control 
systems, motion analysis, and video processing [1-5]. VOT is 
basically used to estimate an unknown visual target trajectory 
based on a known initial starting state of the considered target. 
However, the visual tracking remains a difficult problem to be 
solved accurately despite the efforts in this area during the last 
decade, due to the new challenges that have been induced by 
new technology evolution and which make the target objects 
often experience important changes in their appearance, such as 
the scale variation, fast motion, in-plane rotation, deformation, 
motion blur, occlusion, illumination variation, out-of-plane 
rotation, background clutter, etc. 

Convolutional Neural Network (CNN) features have been 
recently put to use in a variety of computer vision applications 
[6-8], e.g. object identification, image segmentation, and image 
classification [9]. The effective use of the rich hierarchical 
features of CNNs in visual tracking, has brought significant 
improvement. It has been proved that the convolutional layers 
have the ability of ensuring the presentation of the invariant 
features against the variation of the target appearance which 
can be very useful in visual object tracking applications. 
Unfortunately, it has been found that the CNNs have a major 
limitation resulting from the fact that they are built based on 
the principles of other visual classification tasks [10]. Authors 
in [11] proposed the exploitation of the rich hierarchical 
features of the Deep Convolutional Neural Networks (DCNNs) 
to ensure enhanced accuracy and robustness of visual object 
tracking. It has been proposed that, in order to ensure invariant 
feature representation with respect to significant variations in 
the target appearance, the outputs of the last convolutional 
layers should be used to encode the semantic information of the 
target. This technique faced the problem of losing the precise 
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localization of the target due to large spatial resolution, it has 
even been resistant to target significant appearance changes. In 
the same time, it has been observed that the features of the 
earlier convolutional layers can ensure precise localization of 
targets but in the same time they are less sensitive to target 
appearance changes. Based on the concept that various layers 
in a CNN model give varying levels of information in 
describing an object [2-4], some authors have attempted to 
address this issue by combining feature representations 
provided by different CNN layers with correlation filters to 
realize efficient tracking performance [2-5]. Despite the 
achieved advantages of these techniques, compared to those 
based on CNN, this proposal presented some limitations. It has 
been based essentially on the learning and updating of the 
correlation filters in the frequency to overcome the problem of 
appearance variations. This led to unwanted boundary effects 
and important degradation of the tracking model quality. 
Furthermore, it has been found that it cannot be effective for 
long time tracking and it cannot ensure the detection of the 
target position failures. In the same time, it has faced a major 
problem against changes of illumination within specific color 
sequences [13]. Authors in [14] proposed an efficient hybrid 
image fusion method based on the Integer Lifting Wavelet 
Transform (ILWT) and the Discrete Cosine Transform (DCT) 
to generate fused images with high visual quality which can be 
used to reduce some visual tracking problems. 

Traditional signal processing methodologies, such as multi-
resolution analysis utilizing wavelets, have been thoroughly 
investigated, allowing them to be more interpretable than 
CNNs. In fact, there have been several prior works, which have 
incorporated wavelet representations into CNNs [15]. Authors 
in [16] proposed Wavelet CNNs (WCNNs) and demonstrated 
how to generalize filtering and downsampling by reformulating 
convolution and pooling layers. Authors in [17] presented a 
CNN that is similar to the dense convolutional network 
(DenseNet). Haar wavelets were employed as convolution and 
pooling layers, which are often used in multi-resolution 
analysis. In this approach, the feature maps generated by the 
subsequent convolutional blocks have been concatenated with 
these wavelet layers. Authors in [18] used the Dual-Tree 
Complex Wavelet Transformation (DTCWT) in addition to 
WCNNs to solve the organ tissue image segmentation problem, 
whereas, by moving activation layers into wavelet space, 
authors in [19] employed a new concept of learning filters 
based on activations in the domain of wavelet. Authors in [15] 
describe the Deep Adaptive Wavelet Network (DAWN) 
architecture, which employs a combination of the lifting 
technique and CNNs to learn features via multi-resolution 
analysis. The DAWN algorithm is designed to obtain a wavelet 
representation of the input at each decomposition level. This 
contrasts with the black-box nature of CNNs. The DAWN 
architecture, unlike standard wavelets, is data-driven and 
adapts to the input pictures. Additionally, it is trainable from 
start to finish and achieves cutting-edge texture classification 
with a small set of trainable parameters. 

During the recent years, many detection and classification 
problems have been solved with the Histogram of Oriented 
Gradient (HOG) features [20-22]. Local forms of the 

designated object are captured exactly by the HOG. Two sets 
of feature descriptors are commonly used [20]. This 
combination enhances detection efficiency but increases feature 
dimensions and computational complexity. Authors in [23] 
proposed a Haar-HOG-based approach which has shown better 
performance in terms of speed and efficiency than the 
algorithms based only on separate use of the Haar-like feature 
or the HOG descriptor. The proposed Haar-HOG algorithm has 
been found to be more accurate than the Haar-like features- 
based algorithm. On the other side, compared with algorithms 
using HOG descriptor only, this algorithm has a higher 
detection rate and a reduced false positive rate. The main 
contributions of this article can be summarized as: 

• The wavelet decomposition based on different frequency 
sub-bands such as Low-Low (LL), Low-High (LH), High-
Low (HL), and High-High (HH), have been used instead of 
RGB (Red-Green-Blue) image to resolve the problem of 
illumination variation in such cases when the saturation 

exceeds 
�

�
× 100% . 

• Based on the importance of combining feature 
representations from different CNN layers [3, 4, 24], a 
model of Hierarchical Convolutional Filters (HCF) is 
proposed. The proposed model is composed of different 
convolutional layers (conv1-4, conv3-4, conv4-4, and 
conv5-4). 

• Wavelet decomposition, made up of four layers [LL, LH, 
HL, HH] instead of using the original image, has been used 
to improve the performance of the extracted HOG features. 

• In addition, an update control approach has been designed 
to allow the appearance changes identification while 
preventing model drift. This has been carried out by 
calculating the maximum value of the resulting maps from 
correlation filters with convolutional feature products of 
HOG features for the image template that has been 
previously obtained, and which has been used as a 
parameter to the updating of the correlation filters. 

• For the evaluation of the proposed approach, the large-scale 
benchmark datasets OTB50 with 50 challenging image 
sequences and OTB100 with 100 challenging image 
sequences have been used. 

II. THE PROPOSED ALGORITHM 

The main aim of the algorithm proposed in this paper is to 
present a new contribution that can overcome the main 
difficulties encountered in visual tracking most of the previous 
proposed approaches face under target appearance changes 
such as severe occlusion and illumination variation. In this 
section, the proposed algorithm is described in detail. The 
different stages of the proposed tracking algorithm are shown 
in Figure 1. Firstly, based on [3, 4], the target location is 
estimated by learning 4 two-dimensional correlation filters with 
CNN features. Secondly, according to the properties of the 
input image, the selection of the use of RGB or GRAY with the 
wavelet decomposition is carried out. 
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Fig. 1.  Main stages of the proposed algorithm.

Thirdly, the maximum value of the resulting maps is 
calculated from the correlation filters with convolutional 
feature products of HOG features based on the previously 
obtained image template. This calculated value is used as a 
parameter to update the correlation filters. 

A. Convolution Features 

Due to the very interesting properties of CNNs in ensuring 
accurate separation between the object and its background, they 
have been used largely to improve many aspects of computer 
vision. We present the translation estimation with the creation 
of a translation model by form extraction using a CNN model. 
VGGNet-19 [25] feature extractor trained on the ImageNet 
dataset [26] is used to encode the target appearance. While the 
characteristics propagate to deeper layers, the spatial resolution 
progressively decreases, but semantic discrimination between 
objects belonging to various categories is enhanced. The 
determination of the exact target item position in visual object 
tracking is more relevant than semantic category. Bilinear 
interpolation [3] is used to resize each input frame to 224×224 
size. 

Firstly, the fully connected layers are removed and the 
outputs of the convolution layers conv1-4, conv3-4, conv4-4, 
and conv5-4 are used as deep features. In addition, a cosine 
window to weight each feature channel is used to eliminate the 
boundary discontinuities [16, 27]. When the CNN depth 
increases, the spatial resolution of a target object decreases 
progressively because of the pooling processes. By using the 
bilinear interpolation given in (1), each feature map is also 

rescaled to size 
4 4

M N
× , where M and N are the dimensions of 

the feature vector x , to correct the spatial resolution across the 
pooling layers. 

�� 	 ∑ �����     (1) 

B. Correlation Filters 

Usually a correlation tracker search for the maximum value 
on the response in a discriminative classifier to locate target 

objects is used [28-30]. In this research, all convolutional layer 
outputs are used as multi-channel features [31, 32]. We assume 
that � is the lth layer of a feature vector of size � ×� × �, 
where �, �, and � are the image width, image height, and the 
number of channels respectively. We ignore the dependence of 

�, �, and � on the layer index � and note ����directly as �. All 
the circular shifts of � along the � and � dimensions are taken 
as training samples. A Gaussian function label: ���, �� 	

��
���� � !

�
"�#�$ � !

�

�%� , where & is the kernel width, is attributed to 
each shifted sample ��',(���,�� ∈ *0,1,… ,� , 1- �
*0,1,… ,� , 1-. By solving the minimization problem (2), a 
correlation filter W with the same size of � is trained. 

W∗ 	 argmin6∑ 78 ∙ �',( , ���,��7
�
: ;',( ‖8‖�    (2) 

where ; is a regularization parameter �; = 0�. 

Linear kernel in a Hilbert space is used to induce the inner 

product in (2), i.e. 8 ∙ �',( 	 ∑ 8',(,>
?@

>AB �',(,> . As the label 
���,�� is soft (not binary), so no hard-threshold sample is 
required. The minimization problem in (2) could be solved in 
each individual feature channel using Fast Fourier 
Transformation (FFT), since it's similar to training the vector 
correlation filters [33]. The capital letters denote the Fourier 
transformed signals. In the frequency domain, the learned filter 
on the d

th
 �C ∈ *1,… , �-�channel is given in (3): 

8> 	 D⨀FGH

∑ FI⨀FGIJKL
IMN

    (3) 

where O  is the Fourier transformation form of � 	
P���, ��|��, ��*0,1,… ,� , 1- � *0,1,… ,� , 1-R  and the 
bar refers to the complex conjugation. The operator ⨀	 is the 
Hadamard product. For each image patch in the next frame the 
l
th
 layer feature vector is noted as z with size �� � � �. The 

l
th
 correlation response map is given by: 

T� 	 U�B�∑ 8>⨀V̅>@
>AB �    (4) 
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The operator U�B	refers to the inverse FFT transform, the 
position of maximum value of the correlation response map T� 
of size ��� refers to the target location on the lth convolution 
layer.  

C. Estimation of Coarse-to-Fine Translation 

For each set of correlation response maps *T�- , we can 
deduce the target translation of each layer, i.e. to search for the 
maximum value of the earlier (l-1)

th
 layer, the location of 

maximum value in the last, l, layer is taken as regularization. If 
��X,�Y� 	 argmax

',(
	T���, ��  refers to the location of the 

maximum values on the lth layer, then the optimal location of 
the target in the (l-1)

th
 layer is given by: 

argmax	T��B��, �� : [T���, ��
',(

    (5) 

where |� ,�X| : |� , �Y| \ ]. 

The constraints imposed on m and n limit the searched area 
in the (l-1)th correlation response map to the ] � ] neighboring 
regions of ��X, �Y� . From the last to the inner layers, each 
response value is weighted by a regularization term [  and 
propagated back to the response maps of the earlier layers [3, 
4]. Finally, by maximizing the result of (5) on the layer with 
the best spatial resolution, the target location is estimated. On 
the other hand, using (2), (3), and (5), we can calculate the 
maximum response of the correlation filter of HOG 
considering � =1, and [ =1. 

D. Model Update 

In this work, the correlations filters are updated as proposed 

in [33]. Initially, we update the numerator ^> and denominator 
_>  of the correlation filter 8>  in (3), separately using a 
moving average: 

^`> 	 �1 , a�^`�B> : a	O⨀bG`>    (6a) 

_`> 	 �1 , a�_`�B> : a	 ∑ b`�⨀bG`�@
�AB     (6b) 

8̀> 	 cd
H

ed
HJK
    (6c) 

We update the correlation filters extracted from CNN and 
HOG features conservatively, because the conservatively 
learned filter is robust to noisy updates and succeeds in 
estimating the confidence of every tracked result. To see if 
tracking failures occur, we establish a fg  threshold. If the 
maximum filter response of the correlation filter of HOG is 
greater than fg, the tracked result z has a very high degree of 
confidence. In that case, we update the correlation filters.  

III. DISCRET WAVELET PACKET TRANSFORMS 

Two-Dimensional Discrete Wavelet Transform (2D-DWT) 
can be used to decompose an image into sub-signals, which 
present the original image components (I) under different 
frequency ranges. 2D-DWT is used in the input side to ensure 
the process of splitting the original image (I) into 4 sub images 
(ILL, IHL, ILH, and IHH). At first, two down-sampling filters 
(noted as ↓2) of low (L) and high (H) bands are used yielding 
to two rows (IL and IH). Then each obtained images in both 
rows passes through two filters of low (L) and high (H) down-

sampling bands which means 4 filters are used in this phase to 
obtain 4 sub-images as 2 columns: the first column is (ILL, 
IHL) and the second column is (ILH, IHH). ILL presents the 
approximation coefficient matrix which is obtained from the 
passage through 2 simultaneous low-pass filters and the other 3 
present the detail coefficients matrices IHL (horizontal 
features), ILH (vertical features), and IHH (diagonal features), 
as shown in Figure 2. Moreover, the 2-D DWT has a separable 
characteristic with the scaling function hii��, �� and three 2D-
wavelets,jki��, ��,jik��, ��, and jkk��, ��, which can be 
expressed as follows [34]:  

hii��, �� 	 h���h���    (7) 

jki��, �� 	 j���h���    (8) 

jik��, �� 	 h���j���    (9) 

jkk��, �� 	 j���j���    (10) 

where h��� and h��� are the wavelet functions following the 
x-axis (horizontal) and the y-axis (vertical), j��� and j��� are 
the horizontal and vertical 1D scaling functions.  

 

 
Fig. 2.  Downsample and upsample comparison of DWT and IDWT. 

In contrast, the inverse DWT (IDWT) is used in the output 
for adding 4 sub-images to the original one using up-sampling 
filters (noted as ↑2) with the same concept as the DWT but 
with the inverse operation as shown in Figure 2. It is clear that 
the inputs are the 4 sub-images (ILL, IHL, ILH and IHH) and 
the output is the filtered original image (I). 

IV. SATURATION CONDITION 

In the proposed approach, the illumination variation has 
been handled in a reliable way based on a new proposed 
concept. The main idea of the proposed concept is based on 
integrating the wavelet decomposition obtained from the DWT 
[ILL, ILH, IHL, IHH] when the saturation of the image is very 
high instead of using the image components (RGB) directly in 
the network. The saturation power state can be computed for 
each input frame according to the following steps:  

• First step: the conversion of the red, green, and blue values 
of an RGB image to hue (H), saturation (S), and value (V) 
values of an HSV image. 

• Second step: the calculation of the saturation energy 
according to [13]: 

lm 	 100 �
∑ ∑ �nIo!

�#
oMN

�
IMN

pq
    (11) 



Engineering, Technology & Applied Science Research Vol. 12, No. 3, 2022, 8745-8754 8749 
 

www.etasr.com Bourennane et al.: An Enhanced Visual Object Tracking Approach based on Combined Features of … 

 

 

l? 	 ∑ ∑ �r�s!
�(

sAB
'
�AB :∑ ∑ �t�s!

�(
sAB

'
�AB :∑ ∑ �u�s!

�(
sAB

'
�AB     (12) 

where lm refers the saturation energy and l? refers to the total 
energy of the input frame.  

• Third step: if 
2
100

3
sE > × , then the illumination is very 

weak. In this case, the wavelet decomposition [LL, LH, HL, 
HH] is used in the input of CNN. In the opposite case, the 

RGB decomposition of the input image is used. This step is 
carried out following the proposed approach. 

The combined DWT and CNN method is found to be robust 
and therefore it is capable of alleviating the problem of 
illumination variation. As an example, Table I presents the 
percentage of energy saturation of the Singer2 sequence 
calculated along 6 frames following (11). 

TABLE I.  THE PERCENTAGE OF ENERGY SATURATION IN THE SINGER2 SEQUENCE 

Frame 6 8 10 12 14 16 18 

Energy saturation (%) 76.58 76.30 76.82 25.16 71.62 73.39 72.03 
 

It is clear from Table I that the energy saturation varies 
from a frame to another between the minimum value of 25.16% 
corresponding to frame 12 and the maximum value of 76.82% 
corresponding to frame 10. Based on the condition mentioned 
in the third step, it can be observed that energy saturation is 
low only in the case of frame 12 and the required condition is 
not satisfied. In this case the RGB approach is used. It is 
obvious that for the other frames this required condition is 
satisfied, hence the wavelet decomposition [LL, LH, HL, HH] 
is used in the input of CNNs in these frames. It can be 
concluded that under the application of the proposed approach, 
the case of illumination variation can be handled more 
accurately based on the beneficial features of 2D-DWD. Figure 
3 illustrates the accurate placement of the target within the 6 
chosen frames of the Singer2 sequence. The blue frame 
corresponds to the initial position of the tracked object and the 
red frame to the used tracker based on the proposed approach 
combining the wavelet and the CNNs. It is obvious that the 
proposed approach allows robust tracking of the moving object 
under illumination variations and in the same time it maintains 
the long-term memory of target appearance which ensures a 
high degree of accuracy in locating the target in the majority of 
the frames of the sequence. On the other hand, for the 
validation of the proposed approach based on the proposed 
saturation condition, two tests have been carried out based on 
the calculation of the error tracking in both cases, with (red) 
and without (blue) the saturation condition. It is clearly 
observed in Figure 3 that the tracking error obtained under the 
proposed approach is minimized to a very low value compared 
to the standard case in which the saturation condition variation 
is not taken into account. 

 

 
Fig. 3.  A frame-by-frame display of the results of the Singer2 sequence 

tracking, with and without the saturation condition (in pixels). 

V. EXPERIMENTAL RESULTS 

The proposed algorithm has been validated and evaluated 
on two benchmark datasets, OTB50 [35], which includes 50 

videos and OTB100 [35], which includes 100 videos. The 
tracking algorithm has been implemented in MATLAB on an 
Intel I7-8750H 2.20GHz CPU with 16GB RAM and the 
MatConvNet toolbox [36], while the feature extraction using 
CNN forward propagation has been carried out on a GeForce 
GTX1060 GPU. The CNN-based VGG-Net-19, consisting of 
19 layers (16 convolution layers, 3 fully connected layers, 5 
MaxPool layers, and 1 SoftMax layer) [25], has been trained on 
the free large-scale hierarchical image database ImageNet [26] 
and was adopted for feature extraction. The features are used 
only from the outputs of pool 1, pool 3, pool 4, and pool 5. The 
size of the search window is fixed to 1.8 times the target size. 
The regularization parameter of (2) is set to λ = 10

-4
, the kernel 

width is taken as 0.1 for the generation of the Gaussian 
function labels, the learning rate η in (6) is set to 0.01, and fg  is 
taken as 0.3. The value of γ is set as 1, 0.5, 0.25, and 0.15 for 
the conv5-4, conv4-4, conv3-4, conv1-4 layers respectively.  

The performance of the proposed tracker has been 
evaluated based on two performance metrics, the Area-Under-
the-Curve (AUC) and the Distance Precision (DP). For the 
validation of the proposed tracker's performance, a comparison 
has been carried out based on trackers presented in previous 
works: ASLA [37], CSK [38], DSST [30], MEEM [39], 
MUSTER [40], SAMF [41], SRDCF [27], Struck [42], 
siamfc3s [43], HCFTs [4], HDT [11], Staple [44], CNN-SVM 
[45], CF2 [3], LCT [46], KCF [32], TLD [47], KCF_GaussHog 
[32],KCF_LinearHog [32], BACF [48], DeepSRDCF [49], 
DRVT [50], MemDTC [51], MemTrack [51], SRDCFdecon 
[52]. The obtained results, corresponding to the two considered 
performance metrics, have been shown by two curves for One-
Pass Evaluation (OPE), such as the DP rate vs. the location 
error threshold which measures the proportion of frames with 
distance between the tracking results and the ground truth less 
than a certain number of pixels, and the success rate vs. the 
overlap threshold which describes the percentage of successful 
frames as shown in Figures 4 and 5 for the OBT50 and 
OBT100 datasets respectively. The location error threshold 
variation is taken within the interval of [0, 50] and the overlap 
threshold variation within the interval of [0, 1]. The legend of 
the precision plots of OPE shows the ranking of the different 
trackers compared to the proposed tracker based on the DP 
score sat a threshold of 20 pixels, whereas the legend of 
success plots of OPE shows the ranking of the same trackers as 
in the previous Figure based on the AUC score. The obtained 
results for both datasets prove that the proposed tracker 
outperforms the other state-of-the-art trackers. 
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Fig. 4.  OPE curves on the OTB50 dataset. Left: Overlap Precision (OP), 

right: Center Localization Error (CLE). 

 
Fig. 5.  OPE curves on the OTB100 dataset. Left: OP, right: CLE. 

 
Fig. 6.  Overlap success plots and distance precision plots in 10 tracking challenge situations. 

For the clarity of result presentation, only the top 10 ranked 
trackers are taken into account as shown in Figures 5-6. It is 
clear that the proposed tracker performs favorably with an 
AUC of 64.5% and 60.5% and a DP of 90.1% and 87.8% on 
OTB-100 and OTB-50 respectively. 

The obtained results prove clearly that the proposed tracker 
outperforms the second best tracker (HCFT), with a gain of 
3.1% in the average DP, and with by 0.8% in the average 
overlap precision the second best tracker (MemDTC) in the 
case of OTB-100. For the OTB-50, the proposed tracker has an 
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improved gain of 4.7% and 2.1% for the average DP and 
average overlap precision compared to the second best tracker 
which is the same as the case of OTB-100. Figure 6 illustrates 
the overlap success rate plots and the DP plots obtained on 
OTB100 dataset for 10 challenging instances such as scale 
variation, fast motion, in-plane rotation, deformation, motion 
blur, occlusion, illumination variation, out-of-plane rotation, 
background clutter, and out-of-view. It can be clearly noted 
within all the sub-figures of Figure 6 that the proposed tracker 
outperforms the aforementioned state-of-the-art counterparts. 

 

 
Fig. 7.  Qualitative results of the proposed method, along with trackers 

from [3, 4, 32, 33, 45] challenge sequences. 

Figure 7 shows the tracking performance of several 
representative trackers such as HCFTs [4], CNN-SVM [45], 
CF2 [3], DSST [30], KCF [32], and the proposed tracker on 6 
challenging sequences. From top to bottom, the sequences are 
Human3, Girl2, Human5, Box, Car1, and Lemming 
respectively. Human3 has the challenge of scale variation 
occlusion, deformation, background clutters, and out-of-plane 
rotation. Girl2 contains scale variation, occlusion, deformation, 
out-of-plane rotation, and motion blur. Human5 includes scale 
variation, occlusion, and deformation. Car1 compromises 
illumination variation, motion blur, scale variation, fast motion 
and background clutters. Box holds illumination variation, 
motion blur, occlusion, out-of-plane rotation, in-plane rotation, 
background clutters, scale variation, and out-of-view. Lemming 
gathers illumination variation, fast motion, occlusion, scale 
variation, out-of-view, and out-of-plane rotation. It is obvious 
that the proposed tracker handles all these complicated 
scenarios better than the other trackers. 

CNN-SVM with deep features performs well when scale 
variation, out-of-plane rotation, and occlusion are present 
(Human3, and Girl2), but it is less effective in handling drastic 
variations (Human5, Box, Lemming). CF, DSST and KCF are 
less effective in dealing with occlusion and deformation 
(Human3, Girl2, Human5, Box, and Lemming). HCFTs 
performs well in presence of scale variation, occlusion, motion 
blur and background clutter (Box, Lemming) but it is less 
effective in dealing with deformation (Human3,Girl2 and 
Human5). Overall, the proposed tracker operates adaptively 
and robustly when confronted with a variety of challenging 
factors. It is worth noting a minor drawback which has been 
faced during the application of the proposed tracker. The 
significant change in the aspect ratio in the case of Jump 
sequence has caused the missing of the target, which implies 
that a more robust design is required for scale variation, and 
aspect ratio adjustment strategy for the proposed tracker to 
overcome completely these kinds of deficiencies. 

 

 
Fig. 8.  The proposed tracker failed on the sequence Jump from OTB-100. 

The red and blue bounding boxes indicate the ground truth and the proposed 
tracker results respectively. 

To check the effectiveness of the proposed tracker, it has 
been implemented based on two different proposed methods 
such as the HOG with wavelet (HOG-DWT) and HOG without 
wavelet, which have been combined with Hierarchical 
Convolutional Features (HCFs), with and without wavelets and 
it has been evaluated with the OTB-100. The obtained results 
of the tracker based on the two proposed methods, are shown in 
Figure 9, taking into account different combinations such as: 

• Proposed: the tracker is based on HOG with DWT and 
HCFs with DWT. 

• Proposed, No DWT in CNN: the tracker is based on HOG 
with DWT and HCFs without DWT. 

• Proposed, No DWT in HOG: the tracker is based on HOG 
without DWT and HCFs with DWT. 

• Proposed, No DWT in HOG and CNN: the tracker is based 
on HOG without DWT and HCFs without DWT. 

• Proposed, No HOG: the tracker is based only on HCFs with 
DWT. 

• Proposed, No HOG, No DWT in CNN: the tracker is based 
on HCFs without DWT. 

It is clear that combining HCF, HOG, and wavelets ensured 
optimal results, although HOG affects the proposed method in 
object tracking under the occurrence of out-of-view, occlusion, 
out-of-plane rotation, motion blur, scale variation, deformation, 
and illumination variation. From the obtained results, it can be 
said that the exploitation of wavelets in HOG has improved the 
proposed tracker in handling occlusion, scale variation, and 
out-of-plane rotation. Furthermore, the use of wavelet in HCFs 
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improves the proposed tracker's behavior in handling only the 
illumination variation occurrence. Through the above analysis, 
it can be concluded that the combination of HCFs, HOG, and 
DWT can greatly improve the robustness and accuracy of the 
proposed tracker. 

 

 
Fig. 9.  Performance evaluation of the proposed tracker at each stage using 

the OTB-100 dataset. 

In the present analysis, the use of different types of 
wavelets has been investigated on the tracker's performance. 
Figure 10 shows the calculated precision for a series of distance 
thresholds (percentage of frames where the distance to the 
ground truth is within the threshold) of Singer2 sequence. It 
can be clearly noticed that the wavelet type 'bior2.4' leads to 
obtaining the best result of 98.4%, which further justifies the 
validity of the proposed approach. 

 

 
Fig. 10.  Precision of sequence Singer2 with different types of wavelets. 

VI. CONCLUSION 

In this paper, an effective combination among CNN layer 
features, HOG features, and DWT image wavelet transforms, 
based on the exploitation of the hierarchical CNN features 
which have been trained on a large scale data base, has been 
proposed for the improvement of the visual object tracking 
algorithm. The output layers of the CNNs are used to preserve 
the semantics of the target objects, which are robust to 
significant appearance changes. The input layers of the CNNs 
are exploited for encoding more precise spatial details, which 
are useful for precise localization. Both features with the 
precise details are used at the same time for visual object 
tracking, while a linear correlation filter has been trained on 
each CNN layer for the deduction of the targeted location based 
on hierarchical correlation maps in a coarse-to-fine manner. In 
the same time, to enhance the accuracy of the proposed tracker 

and to overcome the problem of drifting encountered during the 
update process of the correlation filter, an approach for 
ensuring such process in real time along each step has been 
proposed. This approach is based on training of the correlation 
filter on HOG features in order to make it a tool to update the 
filters produced by CNN and HOG features. Furthermore, to 
improve the performance of the proposed tracker, the DWT has 
been utilized to achieve two main goals: the calculation of the 
HOG features instead of using RGB and the calculation of 
CNN features in the case of images with high saturation. The 
obtained results from the extensive carried out simulations, 
show that the proposed tracker outperforms the state of the art 
trackers. However, despite the proven effectiveness of the 
proposed tracker, there is a need to further improve its 
robustness in the future. 
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