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Abstract-As the energy consumption is an evaluating factor for 

System-On-Chip (SOC) design, this paper presents a power-

aware architecture for a real-time multi-video system on FPGA. 

This architecture aims to optimize power consumption for a 

multi-video system on ARM-based architectures. The proposed 

architecture uses dynamic reconfiguration and voltage scaling 

to create a power-aware system for real-time multi-video 

processing with minimal power dissipation. Dynamic partial 

reconfiguration was used to optimize the utilization of resources 

and reduce dynamic power consumption. Voltage scaling was 

also used to optimize dynamic power consumption, by 

configuring the blocks to use the minimum necessary voltage 

for normal operating conditions. The proposed architecture 

focused on the Zynq platform. The results showed power 

savings of up to 70% concerning performance and real-time 

constraints. 

Keywords-power consumption; Zynq; ARM A9; dynamic 

partial reconfiguration; voltage scaling 

I. INTRODUCTION  

Embedded real-time video applications are widely spread 
in many systems and have important applications in various 
domains such as segmentation [1, 2], object tracking [3], 
visual detection and matching [4], motion estimation [5], etc. 
These systems are generally executed in an embedded 
environment and are subjected to many constraints such as 
power consumption, time, and resources. As the market 
requires these systems to have high performance at a low 
cost, designers have to propose new architectures to meet 
different requirements. Many dedicated technologies and 
methods have been proposed to develop and implement high-
quality real-time applications and optimized systems. The 

proposed technologies range from specific processors like 
General Purpose Processors (GPPs), Graphics Processing 
Units (GPUs), and Digital Signal Processors (DSPs) to 
parallel architectures like Application-Specific Integrated 
Circuits (ASICs) or even programmable logic devices 
(FPGAs). Today, FPGAs are being increasingly used to build 
complex video processing applications. They provide real-
time performance that is difficult to achieve with GPP or DSP 
[6-8] while limiting the extensive design work required for 
ASICs. Furthermore, FPGAs provide the ability to implement 
highly parallel architectures due to the huge number of 
programmable logic available on the chip [9]. 

One of the major problems with FPGA implementations 
compared to ASIC solutions is power consumption, which is 
a limiting factor [10]. Therefore, more efforts are spent to 
propose a design with low-power dissipation. Since FPGAs 
are CMOS-transistors, power consumption can be divided 
into two main types: static power and dynamic power. Static 
power is dissipated when the circuit is in a quiescent state 
caused by leakage currents of the CMOS transistor. These 
currents are the sub-threshold leakage current, the gate 
leakage current, and the junction leakage current [11]. 
Dynamic power consumption is given by: 

�� = α. C. V
�  

. f    (1) 

where C is the capacitance, α is the charging rate depending 
on clock frequency, V is voltage supply, and f is the clock 
frequency. This power is highly related to technology and has 
become a concern with modern FPGAs implemented in 24nm 
[12-14]. To reduce power consumption, the principal causes 
of power dissipation have to be investigated during all steps 
of the design process, from the algorithmic level down to the 

Corresponding author: Lilia Kechiche



Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 8997 

 

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic … 

 

transistor level, considering the latest low-power technology 
methods at all the design levels. 

This paper proposes a power-aware hardware architecture 
for real-time multi-video processing, using dynamic 
reconfiguration and voltage scaling to optimize the power 
consumption of a multi-video system. This method was 
applied to a high-performance video system of 1920×1080 
pixels at 60fps. 

II. FPGA POWER REDUCTION 

Most modern FPGA boards are computing platforms that 
include programmable hardware elements, memory resources, 
configurable I/O, embedded processors, and even embedded 
operating systems. Hardware (HW) and software (SW) 
functionalities allow the combination of hardware's 
performance and software's flexibility. This combination of 
performance and flexibility comes at the cost of high power 
consumption, which is the main limit of FPGA platforms. To 
overcome this limit, new methods to optimize power 
consumption are investigated. The proposed methods explore 
all abstraction levels of the design process, from the system 
level to the circuit level and the technological level. Some 
works used HW/SW partitioning to propose optimal systems 
with low power consumption as power-aware decisions at a 
very early stage of the design process [15-17]. HW/SW 
partitioning is the problem of assigning application tasks to 
the existing computational cores under defined constraints 
such as area and power. It is formalized as an optimization 
problem aiming to minimize an objective function under 
defined constraints. In [15], an algorithm was proposed for 
HW/SW partitioning to find the best tradeoff between power 
and latency, modeling the application as a data flow graph 
and computing the latency and power consumption for every 
proposed partitioning. This algorithm performed a heuristic 
search for the best solution that respected the defined 
constraints. In [17], a data flow graph based on the Bee 
Colony Algorithm was proposed to solve the optimization 
problem of HW/SW partitioning under time and power 
constraints. The heuristic algorithm treated the optimization 
problem as NP-Hard, and the exact resolution may take a 
much longer time. To adjust the constraints according to the 
user's requirements, weighting coefficients were added to the 
constraints to specify which of the two conflicting terms is 
more important for the final partitioning result. 

Other studies examined methods at the architecture level, 
like Dynamic Voltage Scaling (DVS) and Dynamic 
Frequency Scaling (DFS). DVS, DFS, or even Dynamic 
Voltage and Frequency Scaling (DVFS) were first proposed 
to reduce the power consumption of microprocessors [18-20] 
and, as they were successful, they were generalized and used 
on FPGAs [21-22]. In [18], a method for static timing 
analysis in dynamic scheduling schemes was proposed. A 
safe timing analysis was proposed for systems with off-chip 
memories where memory latency did not scale with processor 
frequency. This method, called 'frequency-aware', replaced 
the Worst-Case Execution Time (WCET) [23] obtained by 
static-timing analysis. It expressed WCET bounds with 
frequency-sensitive parameters, where cycles were interpreted 
in terms of processor frequency and memory accesses were 

expressed in terms of the memory latency overhead. The new 
proposed WCET was determined on-the-fly for a given 
frequency. 

The problem of real-time systems with time-critical 
applications was addressed in [19]. A new algorithm was 
proposed for DFS, applied directly to the scheduler to modify 
task management. At first, a static frequency was assigned to 
every task, which was the lowest possible frequency that 
allowed the scheduler to meet the deadlines for a given task 
set. If a task was completed before the worst-case 
specification, the frequency was re-computed using the latest 
information. The new value was used until the release of the 
task for a future invocation. Therefore, the utilization was 
recomputed at every new scheduling time using the real 
computed time for accomplished tasks and the specified 
worst-case for the others. This method allowed a 20-40% 
power reduction. A DVFS technique for non-real-time 
applications was proposed in [20], where the main idea was to 
lower the CPU frequency when accessing off-chip 
peripherals. The temporal distribution of on- and off-chip 
workloads was computed with different scenarios to 
determine the CPU frequency during idle periods. The energy 
savings were up to 70%, with a variable performance penalty 
depending on the saving value.  

Two methods for DVS on commercial FPGAs were 
presented in [21, 22]. In [21], a circuit was used to measure 
the logic delay, which would be used by the voltage controller 
block to dynamically adjust the supply voltage using a closed 
loop. The voltage controller was an external module 
implemented on a PC. Experimental results using a Xilinx 
Virtex XCV300E FPGA were presented, and power savings 
were 4-54%. Although the study noted that implementing the 
voltage controller as an internal module is a way for better 
resource utilization, giving results and statistics based on an 
external module is disputable since it may lack precision and 
can cause delay violations or more resource consumption. 

III. REAL-TIME VIDEO PROCESSING AND ARCHITECTURE 

A. Real-Time Video Processing 

Real-time video processing plays a key role in industrial 
systems and is expanded to many fields. Real-time video 
processing systems process large amounts of image data in a 
short time. The purpose varies from a simple display to the 
extraction of useful information for intelligent scene analysis. 
Digital videos are data-intensive and resource-demanding 
multidimensional signals, as they need an important amount 
of resources for computations and memory operations. A 
typical video system consists of a video source, internal 
processing, and destination, as shown in Figure 1. The video 
processing module is traditionally classified into three levels: 
low, intermediate, and high. Each level differs from the others 
in input/output format and processing type. For example, the 
low-level takes an image and produces an output image, 
while the high-level takes image attributes as input and makes 
high-level interpretation to produce a knowledge-based 
control as output. 
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Fig. 1.  Video processing system. 

A common concern in real-time video processing systems 
is how to deal with large amounts of data. This pushes 
designers to search for a suitable architecture that 
guarantees the required performance with the worst-case 
latency to ensure no frame drops. This remains a challenging 
task, especially for embedded systems that have limited 
resources and power supply. The architecture has to allow 
parallel treatments, as it is hard to perform such a large data 
treatment serially. The best solution often comes with a 
combination of hardware and software approaches. The 
hardware offers high performance using parallelism, and the 
software guarantees flexibility. Fortunately, modern FPGA 
devices are characterized by sufficient logic resources and 
high operating frequencies for video processing. 

B. Hardware and Software Architecture for Real-Time 

Multi-Video Processing 

The design of a real-time system for multi-video 
processing is a demanding task. In addition to the constraints 
discussed above, constraints such as available resources and 
memory access management are added to the problem. The 
design of multi-video architecture needs to answer the 
following demands:  

• Achieve the performance required by different parallel 
and communicating blocks. Blocks concerning video 
processing systems are subjected to timing constraints for 
high-bandwidth and data-intensive operations with the 
need to access the memory at the video rate. 

• Extend it when needed. The extension is the ability to add 
new video processing chains or blocks or the limit of 
available resources. 

• Obtain an optimal use of available resources. System 
partitioning between hard and soft resources allows 
getting the high performance of HW and the flexibility of 
SW. 

In addition to the previous requirements, which are in 
direct relation to the system and platform, power consumption 
is another constraint that has to be considered, as battery life 
has become the main factor in the evaluation of embedded 
systems. The choice of the appropriate target platform is very 
essential for real-time systems. Of the existing FPGA 
platforms, many are appropriate for video processing with 
real-time constraints, as they can work at a frequency that can 
exceed 150MHz, and as a result, can support HD resolutions. 
In addition, FPGA vendors have incorporated various 
hardware and software IP cores that can be used for different 
functions needed in video processing, like timing generation 
and RGB conversions. 

 
Fig. 2.  General architecture for multi-video processing on FPGA. 

Figure 2 shows the general architecture for multi-video 
processing using HW and SW available in the FPGA. The 
HW or Programmable Logic (PL) is used to implement video-
related blocks like video-in, video processing sub-systems, 
and video-out. The SW or Processing System (PS) contains 
the Application Processing Unit (APU), which is responsible 
for system-level control registers, DMA controllers, and the 
Accelerator Coherency Port (ACP). The memory interface 
allows the PS and PL blocks to access the memory. The 
utilization of PS and PL to implement video processing 
modules is performed according to the available resources, 
performance constraints, power constraints, and other issues 
like flexibility and time to market. 

This study used a Zynq ZC 702 based Xilinx evaluation 
kit as a target platform. This kit includes SW, HW, and IP 
components that facilitate the development of custom video 
applications. The APU contains two ARM Cortex-A9 
processors sharing a 512KB L2 cache, which can be used for 
dual-core or single-core devices. Each processor is a low-
power, high-performance core with a 32KB L1 cache for 
instruction and data. The AXI protocol [24] defines 3 types of 
interfaces: AXI4 for high-performance memory-mapped 
requirements, AXI4-Lite for low-throughput memory-mapped 
communications, and AXI4-Stream for high-speed streaming 
data. These application domains make the protocol 
indispensable for every real-time video system. The AXI 
interconnect, AXI3, and AXI Video DMA IP cores can form 
the basis of video systems capable of handling video frame 
buffers and giving access to a shared DDR3 SDRAM. This 
design utilized the AXI4, AXI3, AXI4-Lite, and AXI4-
Stream interfaces. The Accelerator Coherency Port (ACP) is 
used to communicate the PL with the APU, as it is an AXI 
interface that allows the PL to implement an AXI master to 
access the L2 [25-27]. The AXI Video Direct Memory 
Access (VDMA) core implements a video-optimized direct 
memory access engine with a frame buffer. The AXI VDMA 
core transfers video data to and from memory under dynamic 
software control. Figure 3 shows the block diagram of the 
implemented design with the interface connection. The 
processor can access the PL using the AXI3 master General-
Purpose (GP) 32-bit interfaces. The Zynq ZC702 has 4 
AXI_HP interfaces, which allow PL to access DDR memory 
through high-bandwidth data path bus masters.  
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IV. DYNAMIC PARTIAL RECONFIGURATION FOR POWER 

REDUCTION 

The Dynamic Partial Reconfiguration (DPR) offers a way 
to optimize the dynamic power consumption by enabling the 
usage of temporarily shared resources on the FPGA among 
different processing functions in a time-multiplexed manner. 
Hence, DPR enables better resource utilization and efficiency. 
The DPR results in a partial bitstream loaded onto the FPGA, 
targeting a fixed part of its area. Figure 3 shows the general 
architecture of multi-video processing. Fixed areas are 
predefined during HW design and are called the 
Reconfiguration Partition (RP). 

 

 

Fig. 3.  General DPR architecture for multi-video processing. 

V. DYNAMIC PARTIAL RECONFIGURATION FOR REAL-TIME 

MULTI-VIDEO PROCESSING 

Real-time multi-video processing is a demanding task in 
terms of performance, resource utilization, and power 
consumption. The target architecture was composed of the PS 
part, which allows communication with the DR, and the PL 
parts where the video-related blocks are implemented. A 
multi-video architecture is defined as a system with n video 
inputs, where n is limited by the resource constraints of the 
target platform. In this case, n=4 since the target Zynq 
platform has 4 HP ports that allow high performance 
communication with DDR, as shown in Figure 4. 

A DPR-based architecture was proposed to optimize 
resources and power. DPR, also known as active partial 
reconfiguration, allows changing a part of the device while 
other blocks are running. While the FPGA is executing 
different blocks, the partial data will be sent to be configured. 
There are two ways for DPR [28], known as Difference Based 
Partial Reconfiguration (DBPR) and Module Based Partial 
Reconfiguration (MBPR). DBPR is used when a small 
change is made to the design. It is especially useful when 
changing Look-Up Table (LUT) equations or dedicated 
memory block content. MBPR uses modular design concepts 
to reconfigure large logic blocks. MBPR was used to 
implement the DPR on the target platform, defining two 
different parts: static modules and dynamic or Reconfigurable 
Modules (RMs). The static module is the part of the design 
that remains in operation during the PR process. The dynamic 
modules are the parts of the design that can be swapped in 
and out of the device on the fly, where multiple RMs can be 
defined for a specific region. 

 

Fig. 4.   Real-time multi-video processing. 

Figure 5 shows the proposed architecture with both static 
and dynamic parts. PS and the multi-display present the static 
part while the dynamic part contains the PL. 

 

 
Fig. 5.  The proposed architecture with RDP. 

VI. VOLTAGE SCALING 

DVS is the process of varying the voltage of a target block 
at run-time. As voltage is directly related to power 
consumption [1], reducing it allows for a quadric reduction of 
power consumption. The following definitions must be 
considered to use DVS in a target FPGA [29]: 

• The processing strength of a device is the ability and 
degree of variation in the attributes of the integrated 
transistors. There are three classes: weak, nominal, and 
strong. A weak device can operate with the lowest 
acceptable frequency at nominal voltages. Strong devices 
can run at faster frequencies than required at nominal 
voltages and can function at voltages lower than nominal 
at the minimum specified frequency. 

• The voltage domain is defined as the group of modules 
sharing the same power supply voltage for the core logic 
of each device. 
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• The operating performance point is the voltage required 
for every device to operate at the desired processor 
clocking frequency. For example, for the processing 
system DDR I/O supply voltage, the minimum value is 
1.14V and the maximum is 1.89V [30]. 

• The critical path of a system is defined as the longest path 
to achieve the execution of a program from the source to 
the sink of a data flow graph. This information is used to 
track the critical tasks when scaling voltage and frequency 
to ensure the performance of the system.  

To implement DVS on a specific platform for a defined 
system, information about the operating voltage of each block 
must be accessible at runtime. This information can be 
obtained in two different ways: 

• Dynamic analysis of the behavior of the system at runtime 
requires real-time access to the working blocks on the PL 
side. This can be done with additional modules 
implemented in PL or PS. This method requires extra 
resources to gather information at run-time. 

• Static analysis of the system behavior using different test 
scenarios. The obtained test results can be used with the 
information provided by the manufacturer to make design 
decisions for frequency and voltage scaling. 

This study followed the second method to perform DVS and 
DFS at runtime. Let Vmin_x be the minimum voltage required 
for block x to operate in normal conditions and under which 
the system fails. These values are a characteristic of hardware 
blocks, fixed at the time of device manufacturing. Let Vop_x be 
the operating voltage of block x. The algorithm used to scale 
voltage is shown in Figure 6, where st is a float representing 
the step of incrementing and decrementing the voltage. 

 
Inputs : Vmin_x, , Vop_x, st; 

Begin 

Identify voltage bounds for the target block; 

Do 

     Vop = Vop - st ; 

     Test performance; 

     if test failed 

            Vop = Vop + st; 

            Break; 

      End if 

While (Vop > Vmin_x) 

End 

Fig. 6.  Voltage scaling algorithm. 

In the ZC702 board, power is supplied to the components 
through several independent rails using programmable power 
regulators (UCD9248) and a Power Management Bus 
(PMBus) compliant system controller from Texas 
Instruments. PMBus is an open standard protocol that defines 
communication with power converters and allows to write 
and read power, current, and voltage information. The 
processors can access the PMBus using a 1-to-8 I2C switch. 
Zynq-ZC7020 is divided into several power domains, as 
shown in Figure 7. These power domains are generated by 6 
regulators that generate different voltages required by the 
Zynq and the onboard components. The supplied voltage and 

currents are continuously measured and monitored by three 
UCD9248 power controllers available on the ZC702 board. 

In this work, scaling the voltage of hard blocks was 
performed using the PMBus protocol, which simplifies 
communication with power converters as it allows the 
device's SW or HW to access a manageable power supply 
[31, 32]. Optimal operating voltages were calculated using the 
algorithm shown in Figure 6. Then, the system was 
configured only one time with these values at every start. The 
configuration and implementation of the proposed algorithm 
were carried out by the processor through soft code.  

 

 

Fig. 7.  Zynq power domains [31]. 

VII. IMPLEMENTATION AND RESULTS 

The proposed architecture was prototyped on the Zynq 
ZC702 evaluation board, which provides a hardware 
environment for developing and evaluating designs targeting 
the Zynq XC7Z020 device. ZC702 includes 1GB DDR3 
component memory, 128MB Quad SPI flash memory, USB 
2.0, Secure Digital (SD) connector, HDMI codec, I2C bus, 2 
UART interfaces, and other features. This section provides 
experimental results and shows the benefits of the proposed 
design in power reduction. A performance comparison was 
also held to verify the performance of the whole system. 

A. Hardware and Software Architecture 

The target system was designed using the Vivado Design 
Suite. This design suite can accelerate design implementation 
with place and route tools that analytically optimize for 
multiple and concurrent design metrics, such as timing and 
power. Vivado gives the ability to analyze the design at each 
design stage, allowing for modifications in the design process. 
It also provides timing and power estimations after synthesis, 
placement, or routing. The following blocks were used to 
implement the hardware architecture: 

• The processing system was used to initialize blocks and 
master memory access. The frequency and voltage scaling 
modules were also implemented in the processing system. 

• The AXI interconnects were responsible for handling 
information to and from the processing system. 

• The AXI performance monitor was used for different 
statistics with the AXI protocol interfaces. It was used for 
transactions, external system events, and performance 
measurement for AXI4, AXI3, AXI4-Stream, and AXI4-
Lite interfaces and captured real-time performance metrics 
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for throughput and latency. The performance monitor IP 
was used to perform real-time profiling using the SDK. 

• The video pipeline contains Video Direct Memory Access 
(VDMA), which is a soft IP core that provides high 
bandwidth for direct access to the memory using AXI4-
Stream video peripherals. The AXI4-Lite slave interface 
was used to perform initialization, registers, and status.  

• The video-related blocks are standard blocks used in a 
video chain to transfer the video stream after the 
necessary conversions. The RGB to YCrCb module 
converts the design pixels from the RGB encoding used 
by the AXI4-Stream to the 16-bit YUV 4:4:4 signal 
format. The Chroma Resampler block had the output of 
the RGB to YCrCb as input. Its role was to convert the 
input signals to YUV 4:2:2 required by the HDMI output. 

The software part running on the PS was built using the 
Xilinx Software Development Kit (SDK). The software part 
running on the ARM processor with a standalone operating 
system had the role of hardware control.  

B. Partial Dynamic Reconfiguration Results 

Figure 8 shows the resource results without (a) and with 
PDR (b). Figure 9 shows the occupation of the resources on 
the target platform without (a) and with DPR (b). The figures 
show an improvement in the used resources, which lowered 
power consumption. 

 

 

Fig. 8.  Resource utilization. 

C. Voltage Scaling Results 

The voltage scaling method was implemented as software 
code running on the processor. Communication with the 
voltage rails was performed using the I2C bus. To avoid 
unnecessary additional resources, the optimal values were 
computed using excessive test scenarios. This analysis 
defined the optimal values that would be used by the system 
without the need to collect them at run-time using additional 

resources. The DVS method requires knowledge of the 
voltage limits of different blocks. Table II shows the 
maximum and minimum recommended operating voltage 
values for some blocks of the ZC702 device [30]. 

 

 

Fig. 9.  Resource occupation. 

TABLE I.  VOLTAGE RECOMMENDED VALUES FOR SOME BLOCKS 

OF THE TARGET ZYNQ ZC702 DEVICE 

Blocks Description 

Minimum 

operating 

voltage (V) 

Typical 

operating 

voltage (V) 

Maximum 

operating 

voltage 

(V) 

vccpint 
PS internal 

supply voltage 
0.95 1 1.05 

vccint 
PL internal 

supply voltage 
0.95 1 1.05 

vccpaux 
PS auxiliary 

supply voltage 
1.71 1.80 1.89 

vccaux 
PL auxiliary 

supply voltage 
1.71 1.80 1.89 

vccbram 

PL block 

RAM supply 

voltage 

0.95 1.00 1.05 

 
Although voltage can reach more inferior values than 

those indicated in the safety bounds, for example, Vccpint 
minimal value can reach 0.5V [30], the safe functioning of 
the device outside the indicated bounds is not tested. It is 
indicated that exposure to maximum values for extended 
periods could affect the device's reliability [30]. Figure 10 
shows the voltage scaling results of some Vcc rails. Every 
figure shows the power margin for every chosen value. For 
example, for the Vccint rail, when the minimum operating 
value is chosen (0.95), the power consumption of this block 
varies between 22 and 31mW. 
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Fig. 10.  Voltage scaling results on different rails. 

Figure 11 shows the time needed by the rail to reach the 
target voltage value. This figure shows the case of two rails 
with different typical voltage values. For both rails, the 
typical functioning voltage was attended after 5ms. 

 

 
Fig. 11.  Voltage configuration time. 

D. Frequency Scaling and Design Performance 

Frequency scaling is the concept of varying the operating 
frequencies of blocks at run-time according to the target 
architecture. There are two frequencies: the frequency of the 
PL blocks and the frequency of the PS. An analysis of the 
functioning of the system was performed to study the 
possibility of applying frequency scaling, using the System 
Performance Analysis (SPA) toolbox. This toolbox was used 
to explore the performance of HW and SW at an early stage 
in the target system. Observing system performance in critical 
stages helped make the right optimization decisions and refine 
system performance without degradation. The SPA software 
metrics included CPU utilization, instructions per cycle, L1 
data cache access, miss rate, write and read stall cycles per 
instruction, and other metrics. The hardware metrics were 
available using the AXI performance monitor core, designed 
to measure the real-time performance of the connected AXI 
interfaces, including AXI read and write transactions, 
throughput, bandwidth, and others. This work used CPU 
utilization and AXI read latency and throughput metrics. 

Figure 12 shows the CPU utilization rate of the proposed real-
time architecture. Only one core was used. The graph shows 
that the utilization ranged between 91% and 100%. These 
results show that applying DFS on one processor executing a 
real-time video system does not allow a noticeable 
optimization, as the CPU utilization is usually at its maximum 
level. 

 

 

Fig. 12.  CPU utilization. 

Figure 13 shows the read transactions and latency cycles 
of the ports HP0 (Slot 0) and GP0 (Slot 1). 

 

 

 

Fig. 13.  Performance metrics at runtime. 

E. Comparison with Other Works 

To the best of our knowledge, this is the first work to 
bring together DPR and voltage scaling. This section limits 
the discussion and comparison with works that used 
frequency and voltage scaling, as these two methods allow 
the reduction of the biggest part of power consumption 
(60%). Voltage and frequency scaling of commercial FPGAs 
was implemented in several studies using different methods. 
The proposed method was compared with two existing main 
methods that focused on the frequency and voltage of 
commercial 28nm FPGAs. The first study used voltage and 
frequency scaling [34], while in [35], voltage, frequency, and 
logic scaling were used to optimize power consumption. The 
voltage scaling unit was identical to the one used in [34]. The 
frequency-scaling unit used a ROM containing the 
configuration parameters used by the MMCM to generate the 
clock for the user logic. The frequency decreased continually 
at run-time and stopped when a value was detected that could 
cause timing violations. Compared to those studies, this study 
used voltage scaling in addition to the DPR. Authors in [34, 
35] collected information like frequency and voltage of 
functioning blocks at run-time and scaled them accordingly. 
Collecting information at run-time results in extra resources 
and additional complexity. These works applied the proposed 
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methods to Power Consuming and Speed Testing Modules 
(PCASTMs). These PCASTMs were proposed with different 
numbers of modules occupyινγ different percentages of the 
device. For voltage scaling, the voltage values were tested 
under the recommended values in the datasheet. Testing with 
values below the recommended minimum can give more 
power savings of up to 60% [36], but with doubtful safety for 
long-term function with real-time constraints.  

This study exploited the fact that since the different 
execution scenarios are known in advance, the collection of 
information was performed at the design level using tests and 

timing analysis to determine the optimal operating points. 
Implementing the proposed method requires only an I2C IP 
core and is of low complexity. Additionally, scaling the 
voltage many times at runtime is not useful as it results in 
power and heat dissipation while accessing the power rails. It 
is more efficient to configure the device blocks with the 
optimal voltage at the start. Table III shows a comparison 
between [34, 35] and this study. According to the results 
obtained, the proposed method presents up to 70% power 
savings with an improvement of 5% compared to the other 
studies. 

TABLE II.  COMPARISON WITH OTHER WORKS 

 Additional resources 
Frequency scaling 

method 

Voltage scaling 

method 
Test method Power achievements  

[34] 

Microblaze, Picoblaze, 

I2C, IP core, Dual-port 

RAM 

I2C communication 

with Si570 oscillator 

I2C communication 

with PMBus 

Random functions with 

different sizes 

Up to 64.98%, (using voltage 

and frequency scaling) 

[35] 
Microblaze, I2C, IP core 

Dual-port RAM ROM 

Configuration of 

MMCM, ROM 

I2C communication 

with PMBus 

Random functions with 

different sizes 

Up to 60% (using frequency, 

voltage, and logic scaling) 

This 

study 
I2C IP core none 

Soft configuration of 

PMBus 

Real-time video application 

with real-time constraints 

Up to 70% (voltage scaling and 

PDR) 

 

VIII. CONCLUSION 

The design of an optimized system is very challenging 
due to the complexity of a SOC design. Power consumption 
has become a struggle with the increasing consumers’ 
demands and the saturation due to Moore’s law. Designers 
have to find new solutions to reduce power consumption. 
This study proposed a design method that brings together 
partial reconfiguration and voltage scaling. These methods 
were used to design a real-time multi-video processing 
system, implemented on a Zynq ZC702 board with an ARM 9 
target processor. The proposed method ισ general and can be 
applied to other real-time systems. Compared to existing 
works, the proposed design allowed up to 70% power savings 
with minimal additional resources. Future work should 
examine the application of other methods like clock gating 
and their integration in the design of real-time video systems. 

REFERENCES 

[1] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, "Towards Real-Time 
Multi-Object Tracking," in Computer Vision – ECCV 2020, 2020, pp. 
107–122, https://doi.org/10.1007/978-3-030-58621-8_7. 

[2] A. N. Saeed, "A Machine Learning based Approach for Segmenting 
Retinal Nerve Images using Artificial Neural Networks," Engineering, 
Technology & Applied Science Research, vol. 10, no. 4, pp. 5986–
5991, Aug. 2020, https://doi.org/10.48084/etasr.3666. 

[3] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, "Towards Real-Time 
Multi-Object Tracking," in Computer Vision – ECCV 2020, 2020, pp. 
107–122, https://doi.org/10.1007/978-3-030-58621-8_7. 

[4] S. Banerjee, A. Bandyopadhyay, A. Mukherjee, A. Das, and R. Bag, 
"Random Valued Impulse Noise Removal Using Region Based 
Detection Approach," Engineering, Technology & Applied Science 

Research, vol. 7, no. 6, pp. 2288–2292, Dec. 2017, https://doi.org/ 
10.48084/etasr.1609. 

[5] I. Usman, "An Efficient Depth Estimation Technique Using 3-Trait 
Luminance Profiling," Engineering, Technology & Applied Science 

Research, vol. 9, no. 4, pp. 4428–4432, Aug. 2019, https://doi.org/ 
10.48084/etasr.2857. 

[6] J. Fowers, G. Brown, P. Cooke, and G. Stitt, "A performance and 
energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications," in Proceedings of the ACM/SIGDA 

international symposium on Field Programmable Gate Arrays, 
Monterey, CA, USA, Oct. 2012, pp. 47–56, https://doi.org/10.1145/ 
2145694.2145704. 

[7] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. M. Van Hulle, 
"A Comparison of FPGA and GPU for Real-Time Phase-Based 
Optical Flow, Stereo, and Local Image Features," IEEE Transactions 

on Computers, vol. 61, no. 7, pp. 999–1012, Jul. 2012, 
https://doi.org/10.1109/TC.2011.120. 

[8] G. Mingas and C.-S. Bouganis, "Population-Based MCMC on Multi-
Core CPUs, GPUs and FPGAs," IEEE Transactions on Computers, 
vol. 65, no. 4, pp. 1283–1296, Apr. 2016, https://doi.org/10.1109/ 
TC.2015.2439256. 

[9] M. Baklouti, Y. Aydi, Ph. Marquet, J. L. Dekeyser, and M. Abid, 
"Scalable mpNoC for massively parallel systems – Design and 
implementation on FPGA," Journal of Systems Architecture, vol. 56, 
no. 7, pp. 278–292, Jul. 2010, https://doi.org/10.1016/j.sysarc.2010. 
04.001. 

[10] I. Kuon and J. Rose, "Measuring the Gap Between FPGAs and 
ASICs," IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, vol. 26, no. 2, pp. 203–215, Oct. 2007, 
https://doi.org/10.1109/TCAD.2006.884574. 

[11] Altera Corporation, "40-nm FPGAs: Architecture and Performance 
Comparison," White Paper ver. 1.0, Dec. 2008. 

[12] A. Kumar and M. Anis, "An analytical state dependent leakage power 
model for FPGAs," in Proceedings of the Design Automation & Test in 

Europe Conference, Munich, Germany, Mar. 2006, https://doi.org/ 
10.1109/DATE.2006.243995. 

[13] T. Tuan and B. Lai, "Leakage power analysis of a 90nm FPGA," in 
Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 

2003., San Jose, CA, USA, Sep. 2003, pp. 57–60, https://doi.org/ 
10.1109/CICC.2003.1249359. 

[14] J. Hussein, M. Klein, and M. Hart, "Lowering Power at 28 nm with 
Xilinx 7 Series FPGAs," Xilinx, White Paper WP389 (v1.1), Jun. 
2011. 



Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 9004 

 

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic … 

 

[15] S. Ben Haj Hassine, M. Jemai, and B. Ouni, "Power and Execution 
Time Optimization through Hardware Software Partitioning Algorithm 
for Core Based Embedded System," Journal of Optimization, vol. 
2017, Feb. 2017, Art. no. e8624021, https://doi.org/10.1155/2017/ 
8624021. 

[16] H. Han, W. Liu, J. Wu, and G. Jiang, "Efficient Algorithm for 
Hardware/Software Partitioning and Scheduling on MPSoC," Journal 

of Computers, vol. 8, no. 1, pp. 61–68, Jan. 2013, https://doi.org/ 
10.4304/jcp.8.1.61-68. 

[17] L. Kechiche, L. Touil, and B. Ouni, "High-level optimised systems 
design using hardware-software partitioning," International Journal of 

Advanced Intelligence Paradigms, vol. 13, no. 3–4, pp. 346–367, Jan. 
2019, https://doi.org/10.1504/IJAIP.2019.101984. 

[18] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, "FAST: 
Frequency-aware static timing analysis," ACM Transactions on 

Embedded Computing Systems, vol. 5, no. 1, pp. 200–224, Oct. 2006, 
https://doi.org/10.1145/1132357.1132364. 

[19] P. Pillai and K. G. Shin, "Real-time dynamic voltage scaling for low-
power embedded operating systems," in Proceedings of the eighteenth 

ACM symposium on Operating systems principles, Alberta, Canada, 
Jul. 2001, pp. 89–102, https://doi.org/10.1145/502034.502044. 

[20] K. Choi, R. Soma, and M. Pedram, "Fine-grained dynamic voltage and 
frequency scaling for precise energy and performance tradeoff based 
on the ratio of off-chip access to on-chip computation times," IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, vol. 24, no. 1, pp. 18–28, Jan. 2005, https://doi.org/10.1109/ 
TCAD.2004.839485. 

[21] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, and S. J. E. 
Wilton, "Dynamic voltage scaling for commercial FPGAs," in 
Proceedings. 2005 IEEE International Conference on Field-

Programmable Technology, 2005., Singapore, Sep. 2005, pp. 173–180, 
https://doi.org/10.1109/FPT.2005.1568543. 

[22] J. L. Nunez-Yanez, "Adaptive Voltage Scaling with In-Situ Detectors 
in Commercial FPGAs," IEEE Transactions on Computers, vol. 64, 
no. 1, pp. 45–53, Jan. 2015, https://doi.org/10.1109/TC.2014.2365963. 

[23] R. Wilhelm et al., "The worst-case execution-time problem overview 
of methods and survey of tools," ACM Transactions on Embedded 

Computing Systems (TECS), vol. 7, no. 3, pp. 1–53, May 2008, Art. 
no. 56, https://doi.org/10.1145/1347375.1347389. 

[24] Xilinx, "AXI Reference Guide," Xilinx, UG761 (v14.3), Nov. 2012. 

[25] Xilinx, "ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC 
User Guide," Xilinx, UG850 (v1.7), 2019. 

[26] Xilinx, "Zynq-7000 SoC Technical Reference Manual," Xilinx, 
UG585 (v1.11), Sep. 2016. 

[27] J. Lucero and Y. Arbel, "Designing High-Performance Video Systems 
with the Zynq-7000 All Programmable SoC," Xilinx, XAPP792 
(v1.0.1), Oct. 2012. 

[28] W. Lie and W. Feng-yan, "Dynamic Partial Reconfiguration in 
FPGAs," in 2009 Third International Symposium on Intelligent 

Information Technology Application, Nanchang, China, Aug. 2009, 
vol. 2, pp. 445–448, https://doi.org/10.1109/IITA.2009.334. 

[29] F. Dehmelt, "Adaptive (Dynamic) Voltage (Frequency) Scaling—
Motivation and Implementation," Texas Instruments, Dallas, TX, 
USA, Application Report SLVA646, Mar. 2014. 

[30] Xilinx, "Zynq‐7000 SoC (Z‐7007S, Z‐7012S, Z‐7014S, Z‐7010, Z‐
7015, and Z‐7020): DC and AC Switching Characteristics," Xilinx, 
Product Specification DS187 (v1.21), Dec. 2020. 

[31] A. F. Beldachi and J. L. Nunez-Yanez, "Accurate power control and 
monitoring in ZYNQ boards," in 2014 24th International Conference 

on Field Programmable Logic and Applications (FPL), Munich, 
Germany, Sep. 2014, pp. 1–4, https://doi.org/10.1109/FPL.2014. 
6927415. 

[32] J. Nunez-Yanez, "Adaptive voltage scaling in a heterogeneous FPGA 
device with memory and logic in-situ detectors," Microprocessors and 

Microsystems, vol. 51, pp. 227–238, Jun. 2017, https://doi.org/ 
10.1016/j.micpro.2017.04.021. 

[33] Xilinx, "Zynq-7000 SoC PCB Design Guide," Xilinx, UG933 (v.1.12), 
2019. 

[34] A. F. Beldachi and J. L. Nunez-Yanez, "Run-time power and 
performance scaling in 28 nm FPGAs," IET Computers & Digital 

Techniques, vol. 8, no. 4, pp. 178–186, 2014, https://doi.org/10.1049/ 
iet-cdt.2013.0117. 

[35] J. Luis Nunez-Yanez, M. Hosseinabady, and A. Beldachi, "Energy 
Optimization in Commercial FPGAs with Voltage, Frequency and 
Logic Scaling," IEEE Transactions on Computers, vol. 65, no. 5, pp. 
1484–1493, Feb. 2016, https://doi.org/10.1109/TC.2015.2435771. 

[36] M. Hosseinabady and J. L. Nunez-Yanez, "Run-time power gating in 
hybrid ARM-FPGA devices," in 2014 24th International Conference 

on Field Programmable Logic and Applications (FPL), Munich, 
Germany, Sep. 2014, pp. 1–6, https://doi.org/10.1109/FPL.2014. 
6927503. 


