
Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 8996

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

A Power-Aware Real-Time System for Multi-Video

Treatment on FPGA with Dynamic Partial

Reconfiguration and Voltage Scaling

Lilia Kechiche

Department of Science and Technology

Taif University

Saudi Arabia

l.kechiche@gmail.com

Mehdi Jemai

Laboratory of Electronics and Microelectronics

University of Monastir

Monastir, Tunisia

jmehdie@gmail.com

Lamjed Touil

Laboratory of Electronics and Microelectronics

University of Monastir

Monastir, Tunisia

lamjedtl@yahoo.fr

Bouraoui Ouni

Networked Objects Control and Communications

Systems Lab, University of Sousse

Sousse, Tunisia

ouni_bouraoui@yahoo.fr

Received: 21 May 2022 | Revised: 10 June 2022 | Accepted: 13 June 2022

Abstract-As the energy consumption is an evaluating factor for

System-On-Chip (SOC) design, this paper presents a power-

aware architecture for a real-time multi-video system on FPGA.

This architecture aims to optimize power consumption for a

multi-video system on ARM-based architectures. The proposed

architecture uses dynamic reconfiguration and voltage scaling

to create a power-aware system for real-time multi-video

processing with minimal power dissipation. Dynamic partial

reconfiguration was used to optimize the utilization of resources

and reduce dynamic power consumption. Voltage scaling was

also used to optimize dynamic power consumption, by

configuring the blocks to use the minimum necessary voltage

for normal operating conditions. The proposed architecture

focused on the Zynq platform. The results showed power

savings of up to 70% concerning performance and real-time

constraints.

Keywords-power consumption; Zynq; ARM A9; dynamic

partial reconfiguration; voltage scaling

I. INTRODUCTION

Embedded real-time video applications are widely spread
in many systems and have important applications in various
domains such as segmentation [1, 2], object tracking [3],
visual detection and matching [4], motion estimation [5], etc.
These systems are generally executed in an embedded
environment and are subjected to many constraints such as
power consumption, time, and resources. As the market
requires these systems to have high performance at a low
cost, designers have to propose new architectures to meet
different requirements. Many dedicated technologies and
methods have been proposed to develop and implement high-
quality real-time applications and optimized systems. The

proposed technologies range from specific processors like
General Purpose Processors (GPPs), Graphics Processing
Units (GPUs), and Digital Signal Processors (DSPs) to
parallel architectures like Application-Specific Integrated
Circuits (ASICs) or even programmable logic devices
(FPGAs). Today, FPGAs are being increasingly used to build
complex video processing applications. They provide real-
time performance that is difficult to achieve with GPP or DSP
[6-8] while limiting the extensive design work required for
ASICs. Furthermore, FPGAs provide the ability to implement
highly parallel architectures due to the huge number of
programmable logic available on the chip [9].

One of the major problems with FPGA implementations
compared to ASIC solutions is power consumption, which is
a limiting factor [10]. Therefore, more efforts are spent to
propose a design with low-power dissipation. Since FPGAs
are CMOS-transistors, power consumption can be divided
into two main types: static power and dynamic power. Static
power is dissipated when the circuit is in a quiescent state
caused by leakage currents of the CMOS transistor. These
currents are the sub-threshold leakage current, the gate
leakage current, and the junction leakage current [11].
Dynamic power consumption is given by:

�� = α. C. V
�

. f (1)

where C is the capacitance, α is the charging rate depending
on clock frequency, V is voltage supply, and f is the clock
frequency. This power is highly related to technology and has
become a concern with modern FPGAs implemented in 24nm
[12-14]. To reduce power consumption, the principal causes
of power dissipation have to be investigated during all steps
of the design process, from the algorithmic level down to the

Corresponding author: Lilia Kechiche

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 8997

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

transistor level, considering the latest low-power technology
methods at all the design levels.

This paper proposes a power-aware hardware architecture
for real-time multi-video processing, using dynamic
reconfiguration and voltage scaling to optimize the power
consumption of a multi-video system. This method was
applied to a high-performance video system of 1920×1080
pixels at 60fps.

II. FPGA POWER REDUCTION

Most modern FPGA boards are computing platforms that
include programmable hardware elements, memory resources,
configurable I/O, embedded processors, and even embedded
operating systems. Hardware (HW) and software (SW)
functionalities allow the combination of hardware's
performance and software's flexibility. This combination of
performance and flexibility comes at the cost of high power
consumption, which is the main limit of FPGA platforms. To
overcome this limit, new methods to optimize power
consumption are investigated. The proposed methods explore
all abstraction levels of the design process, from the system
level to the circuit level and the technological level. Some
works used HW/SW partitioning to propose optimal systems
with low power consumption as power-aware decisions at a
very early stage of the design process [15-17]. HW/SW
partitioning is the problem of assigning application tasks to
the existing computational cores under defined constraints
such as area and power. It is formalized as an optimization
problem aiming to minimize an objective function under
defined constraints. In [15], an algorithm was proposed for
HW/SW partitioning to find the best tradeoff between power
and latency, modeling the application as a data flow graph
and computing the latency and power consumption for every
proposed partitioning. This algorithm performed a heuristic
search for the best solution that respected the defined
constraints. In [17], a data flow graph based on the Bee
Colony Algorithm was proposed to solve the optimization
problem of HW/SW partitioning under time and power
constraints. The heuristic algorithm treated the optimization
problem as NP-Hard, and the exact resolution may take a
much longer time. To adjust the constraints according to the
user's requirements, weighting coefficients were added to the
constraints to specify which of the two conflicting terms is
more important for the final partitioning result.

Other studies examined methods at the architecture level,
like Dynamic Voltage Scaling (DVS) and Dynamic
Frequency Scaling (DFS). DVS, DFS, or even Dynamic
Voltage and Frequency Scaling (DVFS) were first proposed
to reduce the power consumption of microprocessors [18-20]
and, as they were successful, they were generalized and used
on FPGAs [21-22]. In [18], a method for static timing
analysis in dynamic scheduling schemes was proposed. A
safe timing analysis was proposed for systems with off-chip
memories where memory latency did not scale with processor
frequency. This method, called 'frequency-aware', replaced
the Worst-Case Execution Time (WCET) [23] obtained by
static-timing analysis. It expressed WCET bounds with
frequency-sensitive parameters, where cycles were interpreted
in terms of processor frequency and memory accesses were

expressed in terms of the memory latency overhead. The new
proposed WCET was determined on-the-fly for a given
frequency.

The problem of real-time systems with time-critical
applications was addressed in [19]. A new algorithm was
proposed for DFS, applied directly to the scheduler to modify
task management. At first, a static frequency was assigned to
every task, which was the lowest possible frequency that
allowed the scheduler to meet the deadlines for a given task
set. If a task was completed before the worst-case
specification, the frequency was re-computed using the latest
information. The new value was used until the release of the
task for a future invocation. Therefore, the utilization was
recomputed at every new scheduling time using the real
computed time for accomplished tasks and the specified
worst-case for the others. This method allowed a 20-40%
power reduction. A DVFS technique for non-real-time
applications was proposed in [20], where the main idea was to
lower the CPU frequency when accessing off-chip
peripherals. The temporal distribution of on- and off-chip
workloads was computed with different scenarios to
determine the CPU frequency during idle periods. The energy
savings were up to 70%, with a variable performance penalty
depending on the saving value.

Two methods for DVS on commercial FPGAs were
presented in [21, 22]. In [21], a circuit was used to measure
the logic delay, which would be used by the voltage controller
block to dynamically adjust the supply voltage using a closed
loop. The voltage controller was an external module
implemented on a PC. Experimental results using a Xilinx
Virtex XCV300E FPGA were presented, and power savings
were 4-54%. Although the study noted that implementing the
voltage controller as an internal module is a way for better
resource utilization, giving results and statistics based on an
external module is disputable since it may lack precision and
can cause delay violations or more resource consumption.

III. REAL-TIME VIDEO PROCESSING AND ARCHITECTURE

A. Real-Time Video Processing

Real-time video processing plays a key role in industrial
systems and is expanded to many fields. Real-time video
processing systems process large amounts of image data in a
short time. The purpose varies from a simple display to the
extraction of useful information for intelligent scene analysis.
Digital videos are data-intensive and resource-demanding
multidimensional signals, as they need an important amount
of resources for computations and memory operations. A
typical video system consists of a video source, internal
processing, and destination, as shown in Figure 1. The video
processing module is traditionally classified into three levels:
low, intermediate, and high. Each level differs from the others
in input/output format and processing type. For example, the
low-level takes an image and produces an output image,
while the high-level takes image attributes as input and makes
high-level interpretation to produce a knowledge-based
control as output.

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 8998

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

Fig. 1. Video processing system.

A common concern in real-time video processing systems
is how to deal with large amounts of data. This pushes
designers to search for a suitable architecture that
guarantees the required performance with the worst-case
latency to ensure no frame drops. This remains a challenging
task, especially for embedded systems that have limited
resources and power supply. The architecture has to allow
parallel treatments, as it is hard to perform such a large data
treatment serially. The best solution often comes with a
combination of hardware and software approaches. The
hardware offers high performance using parallelism, and the
software guarantees flexibility. Fortunately, modern FPGA
devices are characterized by sufficient logic resources and
high operating frequencies for video processing.

B. Hardware and Software Architecture for Real-Time

Multi-Video Processing

The design of a real-time system for multi-video
processing is a demanding task. In addition to the constraints
discussed above, constraints such as available resources and
memory access management are added to the problem. The
design of multi-video architecture needs to answer the
following demands:

• Achieve the performance required by different parallel
and communicating blocks. Blocks concerning video
processing systems are subjected to timing constraints for
high-bandwidth and data-intensive operations with the
need to access the memory at the video rate.

• Extend it when needed. The extension is the ability to add
new video processing chains or blocks or the limit of
available resources.

• Obtain an optimal use of available resources. System
partitioning between hard and soft resources allows
getting the high performance of HW and the flexibility of
SW.

In addition to the previous requirements, which are in
direct relation to the system and platform, power consumption
is another constraint that has to be considered, as battery life
has become the main factor in the evaluation of embedded
systems. The choice of the appropriate target platform is very
essential for real-time systems. Of the existing FPGA
platforms, many are appropriate for video processing with
real-time constraints, as they can work at a frequency that can
exceed 150MHz, and as a result, can support HD resolutions.
In addition, FPGA vendors have incorporated various
hardware and software IP cores that can be used for different
functions needed in video processing, like timing generation
and RGB conversions.

Fig. 2. General architecture for multi-video processing on FPGA.

Figure 2 shows the general architecture for multi-video
processing using HW and SW available in the FPGA. The
HW or Programmable Logic (PL) is used to implement video-
related blocks like video-in, video processing sub-systems,
and video-out. The SW or Processing System (PS) contains
the Application Processing Unit (APU), which is responsible
for system-level control registers, DMA controllers, and the
Accelerator Coherency Port (ACP). The memory interface
allows the PS and PL blocks to access the memory. The
utilization of PS and PL to implement video processing
modules is performed according to the available resources,
performance constraints, power constraints, and other issues
like flexibility and time to market.

This study used a Zynq ZC 702 based Xilinx evaluation
kit as a target platform. This kit includes SW, HW, and IP
components that facilitate the development of custom video
applications. The APU contains two ARM Cortex-A9
processors sharing a 512KB L2 cache, which can be used for
dual-core or single-core devices. Each processor is a low-
power, high-performance core with a 32KB L1 cache for
instruction and data. The AXI protocol [24] defines 3 types of
interfaces: AXI4 for high-performance memory-mapped
requirements, AXI4-Lite for low-throughput memory-mapped
communications, and AXI4-Stream for high-speed streaming
data. These application domains make the protocol
indispensable for every real-time video system. The AXI
interconnect, AXI3, and AXI Video DMA IP cores can form
the basis of video systems capable of handling video frame
buffers and giving access to a shared DDR3 SDRAM. This
design utilized the AXI4, AXI3, AXI4-Lite, and AXI4-
Stream interfaces. The Accelerator Coherency Port (ACP) is
used to communicate the PL with the APU, as it is an AXI
interface that allows the PL to implement an AXI master to
access the L2 [25-27]. The AXI Video Direct Memory
Access (VDMA) core implements a video-optimized direct
memory access engine with a frame buffer. The AXI VDMA
core transfers video data to and from memory under dynamic
software control. Figure 3 shows the block diagram of the
implemented design with the interface connection. The
processor can access the PL using the AXI3 master General-
Purpose (GP) 32-bit interfaces. The Zynq ZC702 has 4
AXI_HP interfaces, which allow PL to access DDR memory
through high-bandwidth data path bus masters.

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 8999

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

IV. DYNAMIC PARTIAL RECONFIGURATION FOR POWER

REDUCTION

The Dynamic Partial Reconfiguration (DPR) offers a way
to optimize the dynamic power consumption by enabling the
usage of temporarily shared resources on the FPGA among
different processing functions in a time-multiplexed manner.
Hence, DPR enables better resource utilization and efficiency.
The DPR results in a partial bitstream loaded onto the FPGA,
targeting a fixed part of its area. Figure 3 shows the general
architecture of multi-video processing. Fixed areas are
predefined during HW design and are called the
Reconfiguration Partition (RP).

Fig. 3. General DPR architecture for multi-video processing.

V. DYNAMIC PARTIAL RECONFIGURATION FOR REAL-TIME

MULTI-VIDEO PROCESSING

Real-time multi-video processing is a demanding task in
terms of performance, resource utilization, and power
consumption. The target architecture was composed of the PS
part, which allows communication with the DR, and the PL
parts where the video-related blocks are implemented. A
multi-video architecture is defined as a system with n video
inputs, where n is limited by the resource constraints of the
target platform. In this case, n=4 since the target Zynq
platform has 4 HP ports that allow high performance
communication with DDR, as shown in Figure 4.

A DPR-based architecture was proposed to optimize
resources and power. DPR, also known as active partial
reconfiguration, allows changing a part of the device while
other blocks are running. While the FPGA is executing
different blocks, the partial data will be sent to be configured.
There are two ways for DPR [28], known as Difference Based
Partial Reconfiguration (DBPR) and Module Based Partial
Reconfiguration (MBPR). DBPR is used when a small
change is made to the design. It is especially useful when
changing Look-Up Table (LUT) equations or dedicated
memory block content. MBPR uses modular design concepts
to reconfigure large logic blocks. MBPR was used to
implement the DPR on the target platform, defining two
different parts: static modules and dynamic or Reconfigurable
Modules (RMs). The static module is the part of the design
that remains in operation during the PR process. The dynamic
modules are the parts of the design that can be swapped in
and out of the device on the fly, where multiple RMs can be
defined for a specific region.

Fig. 4. Real-time multi-video processing.

Figure 5 shows the proposed architecture with both static
and dynamic parts. PS and the multi-display present the static
part while the dynamic part contains the PL.

Fig. 5. The proposed architecture with RDP.

VI. VOLTAGE SCALING

DVS is the process of varying the voltage of a target block
at run-time. As voltage is directly related to power
consumption [1], reducing it allows for a quadric reduction of
power consumption. The following definitions must be
considered to use DVS in a target FPGA [29]:

• The processing strength of a device is the ability and
degree of variation in the attributes of the integrated
transistors. There are three classes: weak, nominal, and
strong. A weak device can operate with the lowest
acceptable frequency at nominal voltages. Strong devices
can run at faster frequencies than required at nominal
voltages and can function at voltages lower than nominal
at the minimum specified frequency.

• The voltage domain is defined as the group of modules
sharing the same power supply voltage for the core logic
of each device.

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 9000

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

• The operating performance point is the voltage required
for every device to operate at the desired processor
clocking frequency. For example, for the processing
system DDR I/O supply voltage, the minimum value is
1.14V and the maximum is 1.89V [30].

• The critical path of a system is defined as the longest path
to achieve the execution of a program from the source to
the sink of a data flow graph. This information is used to
track the critical tasks when scaling voltage and frequency
to ensure the performance of the system.

To implement DVS on a specific platform for a defined
system, information about the operating voltage of each block
must be accessible at runtime. This information can be
obtained in two different ways:

• Dynamic analysis of the behavior of the system at runtime
requires real-time access to the working blocks on the PL
side. This can be done with additional modules
implemented in PL or PS. This method requires extra
resources to gather information at run-time.

• Static analysis of the system behavior using different test
scenarios. The obtained test results can be used with the
information provided by the manufacturer to make design
decisions for frequency and voltage scaling.

This study followed the second method to perform DVS and
DFS at runtime. Let Vmin_x be the minimum voltage required
for block x to operate in normal conditions and under which
the system fails. These values are a characteristic of hardware
blocks, fixed at the time of device manufacturing. Let Vop_x be
the operating voltage of block x. The algorithm used to scale
voltage is shown in Figure 6, where st is a float representing
the step of incrementing and decrementing the voltage.

Inputs : Vmin_x, , Vop_x, st;

Begin

Identify voltage bounds for the target block;

Do

 Vop = Vop - st ;

 Test performance;

 if test failed

 Vop = Vop + st;

 Break;

 End if

While (Vop > Vmin_x)

End

Fig. 6. Voltage scaling algorithm.

In the ZC702 board, power is supplied to the components
through several independent rails using programmable power
regulators (UCD9248) and a Power Management Bus
(PMBus) compliant system controller from Texas
Instruments. PMBus is an open standard protocol that defines
communication with power converters and allows to write
and read power, current, and voltage information. The
processors can access the PMBus using a 1-to-8 I2C switch.
Zynq-ZC7020 is divided into several power domains, as
shown in Figure 7. These power domains are generated by 6
regulators that generate different voltages required by the
Zynq and the onboard components. The supplied voltage and

currents are continuously measured and monitored by three
UCD9248 power controllers available on the ZC702 board.

In this work, scaling the voltage of hard blocks was
performed using the PMBus protocol, which simplifies
communication with power converters as it allows the
device's SW or HW to access a manageable power supply
[31, 32]. Optimal operating voltages were calculated using the
algorithm shown in Figure 6. Then, the system was
configured only one time with these values at every start. The
configuration and implementation of the proposed algorithm
were carried out by the processor through soft code.

Fig. 7. Zynq power domains [31].

VII. IMPLEMENTATION AND RESULTS

The proposed architecture was prototyped on the Zynq
ZC702 evaluation board, which provides a hardware
environment for developing and evaluating designs targeting
the Zynq XC7Z020 device. ZC702 includes 1GB DDR3
component memory, 128MB Quad SPI flash memory, USB
2.0, Secure Digital (SD) connector, HDMI codec, I2C bus, 2
UART interfaces, and other features. This section provides
experimental results and shows the benefits of the proposed
design in power reduction. A performance comparison was
also held to verify the performance of the whole system.

A. Hardware and Software Architecture

The target system was designed using the Vivado Design
Suite. This design suite can accelerate design implementation
with place and route tools that analytically optimize for
multiple and concurrent design metrics, such as timing and
power. Vivado gives the ability to analyze the design at each
design stage, allowing for modifications in the design process.
It also provides timing and power estimations after synthesis,
placement, or routing. The following blocks were used to
implement the hardware architecture:

• The processing system was used to initialize blocks and
master memory access. The frequency and voltage scaling
modules were also implemented in the processing system.

• The AXI interconnects were responsible for handling
information to and from the processing system.

• The AXI performance monitor was used for different
statistics with the AXI protocol interfaces. It was used for
transactions, external system events, and performance
measurement for AXI4, AXI3, AXI4-Stream, and AXI4-
Lite interfaces and captured real-time performance metrics

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 9001

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

for throughput and latency. The performance monitor IP
was used to perform real-time profiling using the SDK.

• The video pipeline contains Video Direct Memory Access
(VDMA), which is a soft IP core that provides high
bandwidth for direct access to the memory using AXI4-
Stream video peripherals. The AXI4-Lite slave interface
was used to perform initialization, registers, and status.

• The video-related blocks are standard blocks used in a
video chain to transfer the video stream after the
necessary conversions. The RGB to YCrCb module
converts the design pixels from the RGB encoding used
by the AXI4-Stream to the 16-bit YUV 4:4:4 signal
format. The Chroma Resampler block had the output of
the RGB to YCrCb as input. Its role was to convert the
input signals to YUV 4:2:2 required by the HDMI output.

The software part running on the PS was built using the
Xilinx Software Development Kit (SDK). The software part
running on the ARM processor with a standalone operating
system had the role of hardware control.

B. Partial Dynamic Reconfiguration Results

Figure 8 shows the resource results without (a) and with
PDR (b). Figure 9 shows the occupation of the resources on
the target platform without (a) and with DPR (b). The figures
show an improvement in the used resources, which lowered
power consumption.

Fig. 8. Resource utilization.

C. Voltage Scaling Results

The voltage scaling method was implemented as software
code running on the processor. Communication with the
voltage rails was performed using the I2C bus. To avoid
unnecessary additional resources, the optimal values were
computed using excessive test scenarios. This analysis
defined the optimal values that would be used by the system
without the need to collect them at run-time using additional

resources. The DVS method requires knowledge of the
voltage limits of different blocks. Table II shows the
maximum and minimum recommended operating voltage
values for some blocks of the ZC702 device [30].

Fig. 9. Resource occupation.

TABLE I. VOLTAGE RECOMMENDED VALUES FOR SOME BLOCKS

OF THE TARGET ZYNQ ZC702 DEVICE

Blocks Description

Minimum

operating

voltage (V)

Typical

operating

voltage (V)

Maximum

operating

voltage

(V)

vccpint
PS internal

supply voltage
0.95 1 1.05

vccint
PL internal

supply voltage
0.95 1 1.05

vccpaux
PS auxiliary

supply voltage
1.71 1.80 1.89

vccaux
PL auxiliary

supply voltage
1.71 1.80 1.89

vccbram

PL block

RAM supply

voltage

0.95 1.00 1.05

Although voltage can reach more inferior values than

those indicated in the safety bounds, for example, Vccpint
minimal value can reach 0.5V [30], the safe functioning of
the device outside the indicated bounds is not tested. It is
indicated that exposure to maximum values for extended
periods could affect the device's reliability [30]. Figure 10
shows the voltage scaling results of some Vcc rails. Every
figure shows the power margin for every chosen value. For
example, for the Vccint rail, when the minimum operating
value is chosen (0.95), the power consumption of this block
varies between 22 and 31mW.

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 9002

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

Fig. 10. Voltage scaling results on different rails.

Figure 11 shows the time needed by the rail to reach the
target voltage value. This figure shows the case of two rails
with different typical voltage values. For both rails, the
typical functioning voltage was attended after 5ms.

Fig. 11. Voltage configuration time.

D. Frequency Scaling and Design Performance

Frequency scaling is the concept of varying the operating
frequencies of blocks at run-time according to the target
architecture. There are two frequencies: the frequency of the
PL blocks and the frequency of the PS. An analysis of the
functioning of the system was performed to study the
possibility of applying frequency scaling, using the System
Performance Analysis (SPA) toolbox. This toolbox was used
to explore the performance of HW and SW at an early stage
in the target system. Observing system performance in critical
stages helped make the right optimization decisions and refine
system performance without degradation. The SPA software
metrics included CPU utilization, instructions per cycle, L1
data cache access, miss rate, write and read stall cycles per
instruction, and other metrics. The hardware metrics were
available using the AXI performance monitor core, designed
to measure the real-time performance of the connected AXI
interfaces, including AXI read and write transactions,
throughput, bandwidth, and others. This work used CPU
utilization and AXI read latency and throughput metrics.

Figure 12 shows the CPU utilization rate of the proposed real-
time architecture. Only one core was used. The graph shows
that the utilization ranged between 91% and 100%. These
results show that applying DFS on one processor executing a
real-time video system does not allow a noticeable
optimization, as the CPU utilization is usually at its maximum
level.

Fig. 12. CPU utilization.

Figure 13 shows the read transactions and latency cycles
of the ports HP0 (Slot 0) and GP0 (Slot 1).

Fig. 13. Performance metrics at runtime.

E. Comparison with Other Works

To the best of our knowledge, this is the first work to
bring together DPR and voltage scaling. This section limits
the discussion and comparison with works that used
frequency and voltage scaling, as these two methods allow
the reduction of the biggest part of power consumption
(60%). Voltage and frequency scaling of commercial FPGAs
was implemented in several studies using different methods.
The proposed method was compared with two existing main
methods that focused on the frequency and voltage of
commercial 28nm FPGAs. The first study used voltage and
frequency scaling [34], while in [35], voltage, frequency, and
logic scaling were used to optimize power consumption. The
voltage scaling unit was identical to the one used in [34]. The
frequency-scaling unit used a ROM containing the
configuration parameters used by the MMCM to generate the
clock for the user logic. The frequency decreased continually
at run-time and stopped when a value was detected that could
cause timing violations. Compared to those studies, this study
used voltage scaling in addition to the DPR. Authors in [34,
35] collected information like frequency and voltage of
functioning blocks at run-time and scaled them accordingly.
Collecting information at run-time results in extra resources
and additional complexity. These works applied the proposed

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 9003

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

methods to Power Consuming and Speed Testing Modules
(PCASTMs). These PCASTMs were proposed with different
numbers of modules occupyινγ different percentages of the
device. For voltage scaling, the voltage values were tested
under the recommended values in the datasheet. Testing with
values below the recommended minimum can give more
power savings of up to 60% [36], but with doubtful safety for
long-term function with real-time constraints.

This study exploited the fact that since the different
execution scenarios are known in advance, the collection of
information was performed at the design level using tests and

timing analysis to determine the optimal operating points.
Implementing the proposed method requires only an I2C IP
core and is of low complexity. Additionally, scaling the
voltage many times at runtime is not useful as it results in
power and heat dissipation while accessing the power rails. It
is more efficient to configure the device blocks with the
optimal voltage at the start. Table III shows a comparison
between [34, 35] and this study. According to the results
obtained, the proposed method presents up to 70% power
savings with an improvement of 5% compared to the other
studies.

TABLE II. COMPARISON WITH OTHER WORKS

 Additional resources
Frequency scaling

method

Voltage scaling

method
Test method Power achievements

[34]

Microblaze, Picoblaze,

I2C, IP core, Dual-port

RAM

I2C communication

with Si570 oscillator

I2C communication

with PMBus

Random functions with

different sizes

Up to 64.98%, (using voltage

and frequency scaling)

[35]
Microblaze, I2C, IP core

Dual-port RAM ROM

Configuration of

MMCM, ROM

I2C communication

with PMBus

Random functions with

different sizes

Up to 60% (using frequency,

voltage, and logic scaling)

This

study
I2C IP core none

Soft configuration of

PMBus

Real-time video application

with real-time constraints

Up to 70% (voltage scaling and

PDR)

VIII. CONCLUSION

The design of an optimized system is very challenging
due to the complexity of a SOC design. Power consumption
has become a struggle with the increasing consumers’
demands and the saturation due to Moore’s law. Designers
have to find new solutions to reduce power consumption.
This study proposed a design method that brings together
partial reconfiguration and voltage scaling. These methods
were used to design a real-time multi-video processing
system, implemented on a Zynq ZC702 board with an ARM 9
target processor. The proposed method ισ general and can be
applied to other real-time systems. Compared to existing
works, the proposed design allowed up to 70% power savings
with minimal additional resources. Future work should
examine the application of other methods like clock gating
and their integration in the design of real-time video systems.

REFERENCES

[1] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, "Towards Real-Time
Multi-Object Tracking," in Computer Vision – ECCV 2020, 2020, pp.
107–122, https://doi.org/10.1007/978-3-030-58621-8_7.

[2] A. N. Saeed, "A Machine Learning based Approach for Segmenting
Retinal Nerve Images using Artificial Neural Networks," Engineering,
Technology & Applied Science Research, vol. 10, no. 4, pp. 5986–
5991, Aug. 2020, https://doi.org/10.48084/etasr.3666.

[3] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, "Towards Real-Time
Multi-Object Tracking," in Computer Vision – ECCV 2020, 2020, pp.
107–122, https://doi.org/10.1007/978-3-030-58621-8_7.

[4] S. Banerjee, A. Bandyopadhyay, A. Mukherjee, A. Das, and R. Bag,
"Random Valued Impulse Noise Removal Using Region Based
Detection Approach," Engineering, Technology & Applied Science

Research, vol. 7, no. 6, pp. 2288–2292, Dec. 2017, https://doi.org/
10.48084/etasr.1609.

[5] I. Usman, "An Efficient Depth Estimation Technique Using 3-Trait
Luminance Profiling," Engineering, Technology & Applied Science

Research, vol. 9, no. 4, pp. 4428–4432, Aug. 2019, https://doi.org/
10.48084/etasr.2857.

[6] J. Fowers, G. Brown, P. Cooke, and G. Stitt, "A performance and
energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications," in Proceedings of the ACM/SIGDA

international symposium on Field Programmable Gate Arrays,
Monterey, CA, USA, Oct. 2012, pp. 47–56, https://doi.org/10.1145/
2145694.2145704.

[7] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. M. Van Hulle,
"A Comparison of FPGA and GPU for Real-Time Phase-Based
Optical Flow, Stereo, and Local Image Features," IEEE Transactions

on Computers, vol. 61, no. 7, pp. 999–1012, Jul. 2012,
https://doi.org/10.1109/TC.2011.120.

[8] G. Mingas and C.-S. Bouganis, "Population-Based MCMC on Multi-
Core CPUs, GPUs and FPGAs," IEEE Transactions on Computers,
vol. 65, no. 4, pp. 1283–1296, Apr. 2016, https://doi.org/10.1109/
TC.2015.2439256.

[9] M. Baklouti, Y. Aydi, Ph. Marquet, J. L. Dekeyser, and M. Abid,
"Scalable mpNoC for massively parallel systems – Design and
implementation on FPGA," Journal of Systems Architecture, vol. 56,
no. 7, pp. 278–292, Jul. 2010, https://doi.org/10.1016/j.sysarc.2010.
04.001.

[10] I. Kuon and J. Rose, "Measuring the Gap Between FPGAs and
ASICs," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 26, no. 2, pp. 203–215, Oct. 2007,
https://doi.org/10.1109/TCAD.2006.884574.

[11] Altera Corporation, "40-nm FPGAs: Architecture and Performance
Comparison," White Paper ver. 1.0, Dec. 2008.

[12] A. Kumar and M. Anis, "An analytical state dependent leakage power
model for FPGAs," in Proceedings of the Design Automation & Test in

Europe Conference, Munich, Germany, Mar. 2006, https://doi.org/
10.1109/DATE.2006.243995.

[13] T. Tuan and B. Lai, "Leakage power analysis of a 90nm FPGA," in
Proceedings of the IEEE 2003 Custom Integrated Circuits Conference,

2003., San Jose, CA, USA, Sep. 2003, pp. 57–60, https://doi.org/
10.1109/CICC.2003.1249359.

[14] J. Hussein, M. Klein, and M. Hart, "Lowering Power at 28 nm with
Xilinx 7 Series FPGAs," Xilinx, White Paper WP389 (v1.1), Jun.
2011.

Engineering, Technology & Applied Science Research Vol. 12, No. 4, 2022, 8996-9004 9004

www.etasr.com Kechiche et al.: A Power-Aware Real-Time System for Multi-Video Treatment on FPGA with Dynamic …

[15] S. Ben Haj Hassine, M. Jemai, and B. Ouni, "Power and Execution
Time Optimization through Hardware Software Partitioning Algorithm
for Core Based Embedded System," Journal of Optimization, vol.
2017, Feb. 2017, Art. no. e8624021, https://doi.org/10.1155/2017/
8624021.

[16] H. Han, W. Liu, J. Wu, and G. Jiang, "Efficient Algorithm for
Hardware/Software Partitioning and Scheduling on MPSoC," Journal

of Computers, vol. 8, no. 1, pp. 61–68, Jan. 2013, https://doi.org/
10.4304/jcp.8.1.61-68.

[17] L. Kechiche, L. Touil, and B. Ouni, "High-level optimised systems
design using hardware-software partitioning," International Journal of

Advanced Intelligence Paradigms, vol. 13, no. 3–4, pp. 346–367, Jan.
2019, https://doi.org/10.1504/IJAIP.2019.101984.

[18] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, "FAST:
Frequency-aware static timing analysis," ACM Transactions on

Embedded Computing Systems, vol. 5, no. 1, pp. 200–224, Oct. 2006,
https://doi.org/10.1145/1132357.1132364.

[19] P. Pillai and K. G. Shin, "Real-time dynamic voltage scaling for low-
power embedded operating systems," in Proceedings of the eighteenth

ACM symposium on Operating systems principles, Alberta, Canada,
Jul. 2001, pp. 89–102, https://doi.org/10.1145/502034.502044.

[20] K. Choi, R. Soma, and M. Pedram, "Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based
on the ratio of off-chip access to on-chip computation times," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 24, no. 1, pp. 18–28, Jan. 2005, https://doi.org/10.1109/
TCAD.2004.839485.

[21] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, and S. J. E.
Wilton, "Dynamic voltage scaling for commercial FPGAs," in
Proceedings. 2005 IEEE International Conference on Field-

Programmable Technology, 2005., Singapore, Sep. 2005, pp. 173–180,
https://doi.org/10.1109/FPT.2005.1568543.

[22] J. L. Nunez-Yanez, "Adaptive Voltage Scaling with In-Situ Detectors
in Commercial FPGAs," IEEE Transactions on Computers, vol. 64,
no. 1, pp. 45–53, Jan. 2015, https://doi.org/10.1109/TC.2014.2365963.

[23] R. Wilhelm et al., "The worst-case execution-time problem overview
of methods and survey of tools," ACM Transactions on Embedded

Computing Systems (TECS), vol. 7, no. 3, pp. 1–53, May 2008, Art.
no. 56, https://doi.org/10.1145/1347375.1347389.

[24] Xilinx, "AXI Reference Guide," Xilinx, UG761 (v14.3), Nov. 2012.

[25] Xilinx, "ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC
User Guide," Xilinx, UG850 (v1.7), 2019.

[26] Xilinx, "Zynq-7000 SoC Technical Reference Manual," Xilinx,
UG585 (v1.11), Sep. 2016.

[27] J. Lucero and Y. Arbel, "Designing High-Performance Video Systems
with the Zynq-7000 All Programmable SoC," Xilinx, XAPP792
(v1.0.1), Oct. 2012.

[28] W. Lie and W. Feng-yan, "Dynamic Partial Reconfiguration in
FPGAs," in 2009 Third International Symposium on Intelligent

Information Technology Application, Nanchang, China, Aug. 2009,
vol. 2, pp. 445–448, https://doi.org/10.1109/IITA.2009.334.

[29] F. Dehmelt, "Adaptive (Dynamic) Voltage (Frequency) Scaling—
Motivation and Implementation," Texas Instruments, Dallas, TX,
USA, Application Report SLVA646, Mar. 2014.

[30] Xilinx, "Zynq‐7000 SoC (Z‐7007S, Z‐7012S, Z‐7014S, Z‐7010, Z‐
7015, and Z‐7020): DC and AC Switching Characteristics," Xilinx,
Product Specification DS187 (v1.21), Dec. 2020.

[31] A. F. Beldachi and J. L. Nunez-Yanez, "Accurate power control and
monitoring in ZYNQ boards," in 2014 24th International Conference

on Field Programmable Logic and Applications (FPL), Munich,
Germany, Sep. 2014, pp. 1–4, https://doi.org/10.1109/FPL.2014.
6927415.

[32] J. Nunez-Yanez, "Adaptive voltage scaling in a heterogeneous FPGA
device with memory and logic in-situ detectors," Microprocessors and

Microsystems, vol. 51, pp. 227–238, Jun. 2017, https://doi.org/
10.1016/j.micpro.2017.04.021.

[33] Xilinx, "Zynq-7000 SoC PCB Design Guide," Xilinx, UG933 (v.1.12),
2019.

[34] A. F. Beldachi and J. L. Nunez-Yanez, "Run-time power and
performance scaling in 28 nm FPGAs," IET Computers & Digital

Techniques, vol. 8, no. 4, pp. 178–186, 2014, https://doi.org/10.1049/
iet-cdt.2013.0117.

[35] J. Luis Nunez-Yanez, M. Hosseinabady, and A. Beldachi, "Energy
Optimization in Commercial FPGAs with Voltage, Frequency and
Logic Scaling," IEEE Transactions on Computers, vol. 65, no. 5, pp.
1484–1493, Feb. 2016, https://doi.org/10.1109/TC.2015.2435771.

[36] M. Hosseinabady and J. L. Nunez-Yanez, "Run-time power gating in
hybrid ARM-FPGA devices," in 2014 24th International Conference

on Field Programmable Logic and Applications (FPL), Munich,
Germany, Sep. 2014, pp. 1–6, https://doi.org/10.1109/FPL.2014.
6927503.

