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Abstract-A feature selection technique is proposed in this paper, 

which combines the computational ease of filters and the 

performance superiority of wrappers. The technique sequentially 

combines Fisher-score-based ranking and logistic regression-

based wrapping. On synthetically generated data, the 5-fold 

cross-validation performances of the proposed technique were 

compatible with the performances achieved through Least 

Absolute Shrinkage and Selection Operator (LASSO). The 

binary classification performances in terms of F1 score and 

Geometric Mean (GM) were evaluated over a varying imbalance 

ratio of 0.1:0.9 – 0.5:0.5, a number of informative features of 1 – 

30, and a fixed sample size of 5000. 

Keywords-feature selection; regularization; dimensionality 
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I. INTRODUCTION  

With the advent of low-cost electronics, the dimensions and 
complexity of datasets, e.g. the Internet of Things (IoT), text 
classification, and medical imaging, are constantly increasing. 
High dimensional datasets, compared to their low dimensional 
counterparts, require more processing time and more space 
complexity, which is known as the curse of dimensionality. 
Besides, the presence of irrelevant and/or redundant features 
leads to less-interpretable and over-fitted learning models. The 
issue becomes more severe when the number of features is 
more than the number of instances/samples like gene selection 
in microarray data, where typically the data examples are fewer 
than 100 and the number of raw features ranges from 6,000 to 
60,000 [1]. In such a situation, a trained model may become 
useless as it would result in infinitely high variance [2]. 
Furthermore, the covariance/correlation-based methods like 
Principal Component Analysis (PCA), Fisher Discriminant 
Analysis (FDA), and linear regression become ill-posed 
problems. A common way to address the issue is to select the 
informative and non-redundant features from a known feature 
set, which results in lower dimension datasets. The use of such 
datasets improves the generalized accuracy of a trained model, 
reduces computational time, and improves model 
interpretability.  

Three categories of feature selection, i.e. filter, wrapper, 
and embedded methods, are widely been used. The filters 

measure the relevance (e.g., Fisher score, mutual information, 
correlation [3-5]) of a feature with the target. Filters are 
computationally fast, simple, easy to scale, and generally don’t 
require a learning model [6]. A filter, however, generally 
ignores feature dependencies and does not consider combined 
discriminatory power, and consequently, can result in 
suboptimal feature selection [7]. Wrappers evaluate the 
usefulness of features’ subsets by training and testing a model 
on them, and generally use a cross-validation method. Forward 
feature selection, backward elimination, and Recursive Feature 
Elimination (RFE) are the most common used wrapper 
methods. The optimal feature combination that maximizes the 
overall performance is determined by adding and/or removing 
features. Wrapper methods are, however, computationally 
expensive. Greedy (best subset) selection requires 2�, whereas, 
both forward and backward feature selection techniques require 

at least  
������

�  models/iterations [2]. Embedded (also known as 

shrinkage) methods intrinsically maximize the overall 
performance during the training/learning of a model, like a 
Least Absolute Shrinkage and Selection Operator (LASSO) or 
l1 regularization [4]. However, not all the models such as k-
Nearest Neighbors (kNN), and decision tree incorporate l1 
regularization during their training.  

Contrary to feature selection techniques, dimensionality 
reduction techniques project the original input data into a 
lower-dimensional feature space and don’t require 
learning/training. PCA is a classical data analysis and 
dimensionality reduction technique, which captures the 
maximum variability in data. PCA transforms the feature space 
into a new (meta) orthogonal feature space of the same 
dimension. Its effectiveness is, however, limited to 
unsupervised problems. FDA on the other hand is a traditional 
supervised dimensionality reduction technique, which 
respectively maximizes and minimizes the between-class 
distance and within-class mean distance. Contrary to PCA, the 
dimension of the FDA-transformed data is one less than the 
number of classes (i.e. � − 1) [8, 9].  

Authors in [4] ranked the features per the sum of absolute 
values of the coefficients of the first two principal components. 
The ranked features were then evaluated with a wrapper. They 
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compared the results with the ones from analysis of variance 
(ANOVA), absolute correlation, and classifier-based ranking, 
and achieved higher performance. Since PCA is unsupervised, 
their method may underperform in real datasets when the 
classification-related information is different from the direction 
of the maximum variance. Several feature selection techniques 
have been published and implemented in well-known machine 
learning libraries like Python’s sklearn, and Matlab. These 
techniques, however, uniquely behave with varying datasets, 
like different models select different features in standard 
wrapper feature selection techniques. For class imbalanced 
datasets, most of the classification models [10] and, 
subsequently, the wrapper and embedded feature selection 
techniques, perform poorly, i.e. may not accurately determine 
all informative features. The identification of the most suitable 
features with varying class imbalance ratios is therefore of 
much importance and requires a solid solution.   

In this paper, a feature selection technique is proposed, that 
combines the computational ease of filters and the performance 
superiority of wrappers. The technique sequentially combines 
Fisher-score-based ranking and logistic regression-based 
wrapping. In doing so, the proposed technique requires the 
training of a maximum of � models. On synthetically generated 
data, the proposed technique gave a very compatible mean of 
5-fold cross-validation F1-scores and Geometric Means (GM) 
to LASSO. The binary classification performances were 
evaluated over a variable imbalance ratio of 0.1:0.9 – 0.5:0.5.  

II. METHODS AND EXPERIMENTAL DESIGN 

A simulation study was conducted to examine the effect of 
informative and non-informative features on feature selection 
techniques. Like [4], synthetic data of 30 features with varying 
imbalance rates and noise (i.e. non-informative features), were 
generated using the "make classification" library in python’s 
scikit-learn.datasets. Each of the binary classes was a single 
cluster. The information features were drawn independently 
from the normal �0,1�  distribution for each class and then 
combined as random linear combinations within each cluster to 
add covariance [11]. The non-informative features were 
represented by random noise. The datasets were generated with 
varying number of information features from 1 – 30, and with a 
step of 2. The imbalance rates were changed from 0.1:90 – 
0.5:0.5, and the sample size was fixed to 5000 samples. The 
model was validated using 5-fold cross-validation. 

A. Feature Ranking 

Feature ranking is to place the features in an order per their 
importance in order to identify the most important features. For 
this purpose, FDA was used. For binary classification, FDA 
results in one component. The features were ranked according 
to the absolute values of their respective coefficients in the 
FDA component. Eigenvalues and eigenvectors respectively 
indicate the explained variance of an FDA component and the 
linear combination of the original features, i.e. �� = ���� +
���� + ⋯ + ���� , where ��  is ���  feature and ��  is 

corresponding weight of ���  feature. Eigenvalues and 

eigenvectors are computed from ��
����, where �� and ��  are 

respectively the within-class and between-class scatter matrix, 
defined as: 

�� = ∑ ����� − � !
�"� ��� − � #

    (1) 

�� = ∑ �$ − �� !
$∈&' �$ − �� #

    (2) 

where �� , �� , and (  are the mean vector, the number of 

instances (observations) for class � , and the total number of 
classes respectively. 

B. Feature Selection 

The ranked features were further sequentially evaluated 
using the logistic regression-based wrapper, shown in Figure 1. 
The top-ranked feature was first fed to the classifier and the 
classification performance due to class imbalance rate was 
recorded in terms of F1 score. Then iteratively, the next 
consecutively ranked feature was added. At each iteration, a 
feature was added to the subset if its combined mean 5-fold 
cross-validation classification performance was higher than the 
previous iteration. The feature was otherwise discarded. The 
value of C was kept high (i.e. 1 × 10* ) to avoid inherent 
LASSO or ridge regularization by the classifier.  

C. LASSO  

LASOO, defined as ‖,‖� = - ∑ .,�.�
�"� , is a practical 

strategy to perform feature selection and classification 
simultaneously. ‖. ‖� and - > 0  are the l1-norm and 
regularization parameter respectively. LASSO selects the 
features by generating a sparse weight vector (few non-zero 
coefficients). Consequently, LASSO reduces the variance and 
the intricacy of the model, and therefore, is an alternative 
feature selection technique [12]. Non-zero coefficients indicate 
the importance of the respective features, whereas, zero 
coefficients indicate irrelevant and redundant features. The 
number of non-zero coefficients are roughly controlled via -. 
Larger the -, sparser is the weight vector and vice versa. The 

optimal value of � = �
1  was therefore selected from a range 

10�2- 102 with a step of 10, using 5-fold cross-validation via 
grid search method.  

 

 

Fig. 1.  The proposed feature selection technique. 345�  is the training 

feature set, where n is the number of examples/instances and p is the number 

of features. 645�  shows n binary training labels. ��  represents p 

coefficients/weights of the Fisher component. 

Training data 

Ranking 

Logistic regression

Add feature 

Delete feature  
No

Yes
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D. Classification 

A commonly used logistic regression classifier [13] was 
used to validate the efficacy of the proposed feature selection 
technique under varying imbalance rates and number of 
irrelevant features. Let a feature vector $ ∈ ℝ45� with n rows, 
and an associate class labels/target 8 ∈ 90, 1: be the training 
data for logistic regression classifier defined as: 

��8/<� = =>?�@A�@$�
��=>?�@A�@$�     (3) 

where ��8/$� is the conditional probability of a target given a 
feature $, and , shows the classifier’s parameters.  

Class imbalance is generally handled by sampling the data 
or modifying the classifier. Standard classification algorithms 
generally use a default threshold of 0.5 to assign class 
membership. Any adjustments to such threshold change the 
class membership referred to as cost-sensitive learning. 
Simulation studies have shown that cost-sensitive learning can 
increase the sensitivity and decrease the specificity and vice 
versa. However, the accuracy more or less remains the same. 
The synthetically generated datasets were skewed or class-
imbalanced. The cost-sensitive learning was therefore 
employed by assigning equal prior probabilities (0.5) to both 
classes to account for the class imbalance ratio in the training 
datasets. A generalized classification system was attained using 
stratified 5-fold cross-validation. 

E. Evaluation of the Feature Selection Techniques 

As the datasets were synthetically generated, we have the 
prior knowledge of informative and non-informative features. 
Each row of the matrix shown in Table I was used to describe 
the performances of the proposed and LASSO feature selection 
methods. Both feature selection techniques were evaluated 

using true positive rate, i.e. CDE =  FG
HI, false positive rate, i.e. 

�DE =  HG
HI, and true selected positive rate, i.e. CJDE =  FG

#G. CS, 

IS, and TS are the number of correctly, incorrectly, and total 
selected features respectively. IF is the number of informative 
features used in the datasets. The performances of the proposed 
method and LASSO at selecting features were the average of 5-
fold cross-validation with balanced datasets and varying 
number of informative features.  

F. Evaluation of the Overall Classification Performance  

For a binary-class problem, multiple confusion matrix-
based performance metrics like sensitivity, specificity, and 
precision are commonly used. These metrics, however, by 
themselves are incomplete. Practically, combinations of these 
metrics are used to summarize the entire performance. For class 

imbalance datasets, F1 score K���@L MN4MOPOQOPR×�SN!OMOT4
@L×MN4MOPOQOPR��SN!OMOT4 U  and 

geometric mean (GM) �VWX�WYZY[YZ8 × W�X(Y\Y(YZ8  have 

been the widely used measures of performance. The overall 
performances of the system under varying class imbalance 
ratios were therefore measured in F1 score and GM. The 
coefficient ,  shows the relative preference of sensitivity 
against precision [14]. In this study, both sensitivity and 
precision were given the same weight, and therefore, , = 1.  

III. SIMULATION RESULTS AND DISCUSSION 

Table I shows the mean 5-fold cross-validation feature 
selection performances of LASSO and the proposed method 
with varying number of informative features out of a total of 30 
features. With balanced datasets, and irrespective of the 
number of informative features, LASSO compared to the 
proposed method had higher TPR but at the cost of higher FPR. 
This indicates that LASSO correctly selected more features 
than the total number of informative features, and can therefore 
result in an over-complex model. Besides computational 
requirements, such models are hard to interpret. Conversely, 
the proposed method, compared to LASSO, gave lower FPR 
and selected fewer features, and subsequently, can result in a 
simpler model. 

TABLE I.  MEAN 5-FOLD FEATURE SELECTION PERFORMANCES OF 

THE PROPOSED AND LASSO FEATURE SELECTION METHODS 

IF 

(out of 30) 

LASSO Proposed 

CS IS TS CS IS TS 

10 8 17 25 5 7 12 

15 11 11 22 8 6 14 

20 17 9 26 12 7 19 

25 24 5 29 16 3 19 

 

Figure 2 indicates the mean 5-fold performances of the 
proposed method and LASSO with logistic regression classifier 
and with the balanced datasets. The number of informative 
features out of the total 30 features varied from 1 to 30 features 
with a step of 2 features. The remaining features (i.e. total 
features – informative features) were the irrelevant features 
consisting of noise. On average, both LASSO and the proposed 
method gave similar results. Irrespective of the number of 
informative features and the feature selection technique, both 
GM and F1 score exhibited similar trends, indicating a 
balanced dataset. The fluctuations in both the performance 
measures are due to the number of informative features. Higher 
performances indicate that both feature selection techniques 
have correctly selected the informative features, whereas, lower 
performances indicate that some of the irrelevant features have 
also been selected, and informative features have been rejected 
by both methods as shown in Table I.  

Figure 3 shows the mean 5-fold cross-validation 

performance of the proposed method and LASSO on the 

datasets with 20 informative and 10 irrelevant features. The 

class imbalance ratio varied from 0.1:0.9 to 0.5:0.5. Both 

LASSO and the proposed method gave similar results. 

However, the F1 score linearly increased with the decrease in 

the imbalance rates, and subsequently, the maximum values 

were achieved with the balanced datasets, whereas, the 

imbalance rate did not demonstrate much of its effect on the 

GM because it involves specificity and sensitivity, and does not 

tell about the number of false positives. 

The proposed method, compared to LASSO, resulted in 

simpler models with comparable classification performance 

(see Table I, Figures 2-3).  
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Fig. 2.  Effect of number of informative features on classification performances on synthetically generated class-balanced dataset.  

 
Fig. 3.  Effect of imbalance ratio 0.1:0.9 – 0.5:0.5 on the classification performance using 20 informative and 10 irrelevant features. 

IV. CONCLUSION 

In this paper, an alternative feature selection technique is 

presented that uses the simplicity of a filter and the 

performance superiority of a wrapper. The proposed technique 

requires fewer models than its counterparts, i.e. forward and 

backward feature selection methods. Unlike regularization, the 

proposed method can easily be used with any classifier. 

Furthermore, the overall classification performance of the 

proposed method was comparable to the one of LASSO (a 

regularization technique), in terms of F1 score and GM. 
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