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Abstract-The ticket booking control mechanism is a part of the 
Revenue Management (RM), commonly used in the airline 
industry. This study aims to optimize seat allocation in the 
railway industry and compare the performance of three booking 
control techniques by considering customer behavior. The 
preferences of customers who cannot find their desired ticket are 
considered as a customer diversion matrix, which also includes 
waiting and no-purchase probability. Α Ticket Booking System 
(TBS) with buckets, which assigns seats to buckets, was adapted 
and implemented on the Turkish railway for the first time. A 
genetic algorithm that is specifically written to apply the TBS, 
including customer diversion, is used in simulations to obtain 
approximate solutions. It is seen that TBS gave successful results 
with a revenue increase of around 5.8%. We can also suggest, 
considering customer behavior, that the revenue can be raised by 
sales in periods. 

Keywords-revenue management; railway transportation; 

customer behavior; genetic algorithm; seat inventory control 

I. INTRODUCTION  

Revenue Management (RM) can improve the profitability 
of firms in the service industry. RM has been used for pricing, 
forecasting, seat inventory control, and overbooking in airlines 
[1]. As a part of RM, seat inventory control or seat allocation 
deals with the decision to allocate a finite seat capacity optimal 
to demands [2]. Authors in [5] compared a deterministic linear 
and a probabilistic nonlinear programming model for the 
network problem with non-nested seat allocation. Authors in 
[6] suggested a multi-train seat inventory control model to 
control the seat inventory capacity among different trains. 
Authors in [7] proposed a stochastic dynamic model with some 
properties related to the profit-to-go functions. Authors in [8] 

used three seat inventory control methods and modelled them 
under a single-fare class. With the spread of High-Speed 
Railway (HSR), RM's applicability in the railway industry has 
also increased [5, 10]. In the railway industry, RM is utilized as 
a management technique that aims to maximize the total 
revenue by finding an optimal strategy controlling the 
availability and/or the price of train tickets without any changes 
in the resources (e.g. adding trains or carriages) [11]. Articles 
regarding capacity allocation and prices in railway transport are 
mostly originated from countries where HSR is widely used [6, 
8, 12–22]. While train tickets were sold formerly in railway 
stations or by authorized agents, online ticket reservation has 
become preferable nowadays. According to the classification in 
[23], there are different types of ticket booking mechanisms, 
such as Virtual Nesting (VN) and Partitioned Booking Limit 
Control (PBLC). VN, widely used in the airline industry, uses 
single-source nested controls to allocate each resource in the 
network. In practice, both the indexing process of VN and the 
control logic of mapping products to virtual classes is complex 
[23]. PBLC is a booking mechanism that allocates a fixed 
amount of capacity on each resource for every product offered, 
i.e. the seats are assigned to the tickets at the beginning of the 
booking horizon. Studies in which PBLC is used mainly aimed 
to find the optimal allocation of seats [5, 24, 25]. However, 
because of the fixed use of seats in PBLC, it is considered 
inefficient when the demand is stochastic and is seldom used in 
practice [23]. 

Customer behavior has been acknowledged as an important 
element for increasing revenue and has been included in 
modeling RM problems in some previous studies [26, 27]. 
Authors in [11] proposed a seat-based control mechanism and 
considered customers' purchase preferences as customer 
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behavior while optimizing seat allocation in China railway. 
Authors in [28, 29] proved that customer behavior is an 
essential factor affecting the ticket sale profit: the railway 
companies can collect more information with online 
reservation systems, such as the ticket booking time and 
purchase preferences of customers. 

This research concentrates on evaluating the seat allocation 
performance of booking control mechanisms under diverse 
customer conditions. Unlike the previous studies, the diverted 
customer has more than two options: buying another ticket, 
waiting for an available seat, or leaving without buying. The 
customer diversion is utilized as a percentage matrix in this 
study. The ticket reservation process is utilized by the 
simulation method and a Genetic Algorithm (GA) is designed 
to cope with the complexity of the process. The methods were 
evaluated and compared through an experimental case and a 
real-world case using data from the Turkish railway. One 
contribution of this study is the application of customer 
diversion as customer behavior while optimizing seat allocation 
in the railway industry. Another contribution is the application 
of a ticket booking mechanism with buckets to the Turkish 
railway for the first time. 

II. TICKET BOOKING MODELING WITH BUCKETS 

Figure 1 shows an example of a railway line with three 
stops. In RM, resources are the seats in a train, and Resources 1 
and 2 (Res1, Res2) consist of three seats. Products 1, 2 and 3 
(Pr1, Pr2, Pr3) use the same seats but different resources. If a 
customer books a ticket for Pr3, for example Seat 1 (S1) will be 
occupied in Res1 and Res2. Then Res1 and Res2 have only two 
empty seats for booking, S2 and S3. But if the customer books 
a ticket for Pr1, then S1 will be removed only from Res1. 

 

 

Fig. 1.  A representative railway line with three stops. 

A product is referred to the used resources, i.e. occupied 
seats in a train, between an Origin-Destination (O-D) pair. In 
the reservation process, customers send requests for products. 
After an accepted request, the seats related to that product will 
be assigned and occupied. Then different ticketing policies are 
involved: in PBLC a ticket will be printed immediately, but a 
ticket is generated before printing in the proposed ticket 
booking system with buckets (TBS). Modeling of the ticket 
booking process starts by allocating products and resources to 
the buckets. A bucket is a combination of tickets, and it 
contains a seat set and an offered product set. The bucket 
describes which products can be sold from the available 
resources [11]. The ticket pool is designed to collect the tickets 
generated for reusing. Some resources can remain unused after 
selling a ticket from a bucket. The remaining seats are assigned 
to appropriate products, which are collected in the ticket pool 
to sell additional tickets. Here, the exception is the ticket for 
travel from the first station to the last station. 

 

Fig. 2.  The working mechanism of TBS. 

 
Fig. 3.  The working mechanism of TBS. 

Figures 2 and 3 show the different working mechanisms of 
PBLC and the proposed TBS. As seen in Figure 2, in PBLC all 
seats are assigned to some partitions and all tickets are 
generated and await their owner. However, in TBS, most seats 
are assigned to the buckets, and the remaining seats are sold by 
creating tickets according to the arriving passengers (Figure 3). 
The general assumptions of seat allocation problems are that 
the demand for cheap tickets is higher than for the expensive 
ones, and price-sensitive customers and long-distance travelers 
arrive earlier than the time-sensitive customers and short-
distance travelers. The rules and assumptions made for TBS 
modeling are [11]: (1) The number of buckets is fixed during 
the ticket booking period, (2) a seat can be put in only a single 
bucket, (3) a product can relate to at most one bucket, (4) at the 
beginning of the reservation period, all the seats must be 
assigned to a bucket, (5) the ticket pool should be set to be 
empty before the ticket booking process starts, (6) the ticket 
pool has priority over the buckets for selling tickets, (7) 
demand for each product is assumed to be stochastic and 
representable by a probability distribution (mostly normal), (8) 
the number of seats is assumed to be fixed during the ticket 
booking period, and (9) no overbooking is considered. Tickets 
with lower prices to occupy the seats instead of more expensive 
ones are undesirable because airline or railway companies 
always prefer to sell seats at a higher price. Therefore, the 
allocation of products and seats in the buckets is the most 
critical factor affecting the profit. 

III. FORMULATION AND SIMULATION STEPS 

Two parameters must be set at the beginning of the booking 
horizon to start the ticket booking process: The number of seats 
reserved for each bucket ���  and the product set for each 
bucket, which can be represented by the bucket-product 
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relationship ���. The value of ��� is assumed to be equal to 1 if 
product k is in bucket b, and 0 otherwise. All necessary 
notations are given in Table I. 

TABLE I.  NOTATIONS 

C Total capacity of the train 

nBuc Total number of buckets 

nProd Total number of products 

b Bucket number (b=1, 2, ..., nBuc) 

k Product number (k=1, 2, ..., nProd) 

cb Seat capacity for bucket b 

δ Bucket-product relation vector (δ ∈ {0,1}) 

Pr Product vector 

Buc Bucket vector 

Rev Total revenue or sale income 

t A small time interval of the ticket booking time horizon T 

Rt Revenue of a time interval t 

decij Diversion matrix for products 

divk Number of the diverted customers of product k 

rcb Remaining capacity of bucket b 

p Price vector for products/tickets 

u Product/ticket availability vector (u ∈ {0,1}) 

dmnd Demand vector for products/tickets 

m Mean demand vector for products/tickets 

s Standard deviation vector of demand for products/tickets 

restk Number of customers who did not buy a ticket for product k yet 

rs Random number representing customer requests a ticket for prod rs 

sale Income/revenue vector from sales of each product 

TK Ticket pool that contains the unoccupied seats or tickets 

qtkk Quantity of seats in ticket pool for product k 

sold Vector indicating the number of tickets sold from each product 

 

The objective of the seat allocation problem is to find an 
optimal combination of parameters (��, �) that maximizes total 
revenue �	
(��, �) . It can be written as a mathematical 
formulation as follows: max��,� �	
(��, �)    (1) ∑ ��� = ������     (2) ∑ ��� ≤ 1������       ∀"    (3) 

where ��� ∈ #$, ��� = %0,1', " = 1, … , )*+�.  The first 
constraint in (2) is for the capacity to ensure that each seat is 
placed in only one bucket. The second constraint (3) states that 
a product can be found in at most one bucket. 

The ticket booking process begins when customers arrive to 
purchase tickets. In an appropriate sampling time, the customer 
arrival sequence can be approximated as a Bernoulli process. 
The ticket booking horizon is divided into t time intervals in 
the simulation process. If we assume that at most one customer 
can book a ticket in each time interval t, all the customers will 
arrive in the total ticket booking period -. Thus, . = 1,2, … , - 
and - are equal to the total number of customers. 

If �0 denotes the revenue from ticket sale in time interval ., 
then the total revenue �	
(��, �) is expected to be the sum of 
each revenue in all time intervals. �	
(��, �) can be written as: �	
(��, �) = 123%∑ �0|���,5 = ��6075 , 8.9�,5 = 0'    (4) 

At the beginning of the booking process, the initial number 
of seats is determined and fixed, and the ticket pool is empty 

( 8.9�,5 = 0  and ���,5 = ��  with " = 1, … , )*+�  and  9 = 1, … , ):�;<). �� represents the seat capacity of each bucket, ���,0 denotes the number of remaining seats in bucket b in time 

interval t and 8.9�,0 denotes the remaining number of product k in the ticket pool in time interval t. 
Revenue in time interval t can be represented as: 

,

,

,  if product  is sold in period 

0,  if no product is sold in t or 0

k k t

t

k t

p u k t
R

rest

⋅
= 

=
    (5) 

Revenue �0  depends on the ticket price (p) and the 
available product (u). The price of product k ( 3� ) is fixed 
during the ticket booking process, and B�,0  denotes the 
availability of product k for booking in time interval t. The 
value of B�,0  is 1 if the product k is available for booking in 

time interval t, and 0 otherwise (8). �	C.�,0  represents the 
remaining demand, that has not been processed yet, from 
product k in time interval t and its value can be determined as: 

�	C.�,0 = D�	C.�,0 − 1 , if product 9 Ls sold in time period .�	C.�,0 + 1 , if RL
�,0 ≥ 1                                           �	C.�,0          , otherwise                                                   (6) 

RL
�,0 denotes the number of diverted customers who could 

not find tickets for product k in time interval t. RL
�,0  may 

increase by the customer diversion matrix R	�VW  (will be 

discussed below) depending on the availability of product k in 
time interval t or decrease by 1 if the diverted customers find 
the ticket they want. Thus, the value of RL
�,0 can be calculated 
by: 

, Pr ,

,

,

| 1,...., ,  if 0 and

                 no product is sold in time period 

1,  if product  is sold in time period 

k t kj od k t

k t

k t

div dec j n u

div t

div k t

+ = =


= 


−

    (7) 

The availability of a product for booking depends on 
whether it is offered by any bucket (∑ ���,0 . ���,0 > 0) or if it is 

in the ticket pool (8.9�,0 > 0). 

B�,0 = Y1   , LZ ∑ ���,0 . ���,0 > 0 or 8.9�,0 > 00   , otherwise                                                (8) 

The remaining seat capacities ( ��� ) and the remaining 
products in the ticket pool (8.9�) in time interval t+1 depend on 
the sold product in time interval t. ���,0$[  and 8.9�,0$[  are 
determined as: 

���,0$[ = D���,0 − 1 , if product k sold in time period tand 8.9�,0 = 0 and ���,0 = 1���,0 , otherwise                                                  (9) 

8.9�,0$[ =
⎩⎪⎨
⎪⎧ 8.9�,0 − 1 , if product 9 is sold in timeperiod . and 8.9�,0 > 0  

8.9�,0 + `�,0  |∀9 , if product 2 is sold in time period . and 8.9a,0 = 08.9�,0 , otherwise                           
  (10) 

`�,0 ∈ %0,1' (for 9 = 1, … , ):�;< ) shows whether there are 
any available products left for booking when product x is sold. 
After product x is sold, more than one products can be 
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transferred to the ticket pool. In each time interval t, the 
maximum number of products to be transferred to the ticket 
pool is one less than the total number of products. 

There are some restrictions in rail transport that are 
different from those in airlines. There can be as many 
passengers as the train capacity simultaneously during the 
whole trip, including the passengers who keep sitting, get on 
and off the train. These restrictions make the problem very 
difficult, especially as the number of stops and trains increases. 
So, revenues cannot be evaluated by simply calculating the 
difference between demand and capacity. Calculating the 
objective function by the booking process model can be 
difficult due to the curse of dimensionality. In addition, the fact 
that the number of products to be sold can be huge and it is 
challenging to express the parameter `�,0 analytically makes it 
very hard to find an absolute solution to the problem. 
Therefore, a GA was applied to solve the problem 
approximately, its steps will be described below. 

A. Customer Diversion Matrix (CDM) 

The author in [30] considered the buy-up possibility of 
customers, i.e. diversion. He defined diversion as the 
willingness of customers to purchase tickets in a different price 
class than they initially requested. Other studies with diversion 
are [31-33]. There are very few studies with customer 
diversion, and they are all related to the airline industry [34-
37]. This study uses a CDM based on the customers' decisions. 
Table II shows an example of a CDM, which contains the 
diversion percentage of customers who decide to make a buy-
up, wait, or buy nothing. CDM has as many rows as the 
number of products but has two more columns than the number 
of products. One of these two extra columns is for customers 
who prefer to wait and the other for customers who do not want 
to buy anything. It is not easy to create the R	�VW  matrix. 

Whereas it was challenging to create an exact profile in the 
past, as most sales were made at the box offices in stations, 
nowadays, a lot of data about the booking process can be 
obtained thanks to online sales. R	�VW  is the percentage of 

customers who want to buy a ticket from Product j because 
they could not buy a ticket from Product i. For instance, R	�bc = 0.4 means that 40% of the customers who could not 
find any ticket from Product 2 decide to buy a ticket from 
Product 3. The total percentage of customers who decide to 
wait, buy-up, or buy nothing should always be 100%. In other 
words, the summation of each row in the diversion matrix 
never exceeds 100%. It is important to note here that in PBLC 
and First-Come First-Served (FCFS), no waiting list is used, as 
all tickets are generated before the reservation period begins. 

TABLE II.  EXAMPLE MATRIX FOR DEChi 
 1 2 3 4 5 6 7(w) 8(nb) 

1 0 0 0 0 0 0 0 1 

2 0.4 0 0 0 0 0 0 0.6 

3 0 0.2 0 0 0 0 0.3 0.5 

4 0.1 0.2* 0 0 0 0.2* 0 0.7 

5 0 0.2 0 0.2 0 0 0.3 0.3 

6 0 0 0 0.3 0 0 0.4 0.3 

* Customers who cannot find Product (Ticket) 4 can maketheir trip by purchasing Ticket 2 

and Ticket 6 together 

B. Genetic Algorithm (GA) 

The GA is an optimization method and one of the adaptive 
heuristic search algorithms. At first, the solution parameters are 
encoded in chromosomes. Each chromosome consists of a 
certain number of gene blocks representing the buckets, and is 
a solution candidate. The sum of the generated chromosomes 
constitutes the starting population. If we have a railway line 
with n stations and seat capacity C on a train, there will be n-1 
resources and ):�;< = )() − 1)/2  products. If the example 
from Section II is considered, Table III illustrates the way the 
products and buckets are encoded. There are 3 products and 2 
buckets. Pr1 uses Res1 and Res2 and it is placed alone in 
Bucket 1 (Buc1). Zero stands for the absence of any candidates. 

TABLE III.  ENCODED BUCKETS AND PRODUCTS FOR A THREE-STOP 

LINE EXAMPLE 

n=3 
Stations 

Encoded products Encoded buckets 
from..to.. 

Pr1 1->3 Pr1=[1 2] Buc1=[Pr1 0] 

Pr2 1->2 Pr2=[1 0] 
Buc2=[Pr2 Pr3] 

Pr3 2->3 Pr3=[0 2] 
 

Buckets have a predetermined number of cells, symbolized 
as l*+�. The number of seats, i.e. capacities of related buckets ��, allocated for each bucket is placed in the last cell of a gene, 
so that the size of a gene should be l*+� + 1. As seen in Table 
IV, a chromosome is encoded as an integer array with the 
genes arranged in a row. Therefore, the chromosome size 
depends on both the number of buckets used ()*+�) and the size 
of a gene. 

TABLE IV.  ENCODED GENES AND CHROMOSOMES FOR A THREE-
STOP LINE EXAMPLE 

Parameters: lBuc=2, nBuc=2, C=100 

Encoded 
buckets 

Buc1=[Pr1     0] Buc1=[Pr1     0] Buc1=[0   Pr1] 

Buc2=[Pr2  Pr3] Buc2=[Pr2  Pr3] Buc2=[Pr2   0] 

Encoded 
genes 

Gene1=[Buc1  50] Gene1=[Buc1  60] Gene1=[Buc1  60] 

Gene2=[Buc2  50] Gene2=[Buc2  40] Gene2=[Buc2  40] 

Encoded 
chromosomes 

Cr1= 
[Gene1 Gene2] 

Cr2= 
[Gene1 Gene2] 

Cr3= 
[Gene1 Gene2] 

 

Fitness: The performance of a chromosome is evaluated by 
fitness, which can be calculated using the objective function. 
Genetic operators expand the solution space by producing 
generations with better characteristics. Three basic genetic 
operators are selection, crossover, and mutation. 

Selection: The selection process copies the existing 
chromosome to the next generation without making any 
changes in its genetic structure. We used the roulette method 
for selection in this research. 

Crossover: Crossover is the formation of new individuals 
by randomly combining the structures of two individuals, 
namely chromosomes. We use the point-to-point uniform 
crossover rule, in which a coin is flipped for each gene to 
decide whether or not it will be included in the offspring. Since 
the chromosomes consist of the bucket and the number of seats 
allocated to it, the crossover was also performed in two steps 
according to the crossover rate. 

Mutation: A mutation is performed by replacing one or 
more of the genes of an existing individual with entirely new 
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genes. We adopt the uniform mutation rule. The mutation also 
takes place in two steps. First step: The products in the genes of 
the randomly selected chromosome are replaced according to 
the mutation rate with new products that were never selected. 
Buckets with empty cells are filled and the filled ones can be 
empty. Second step: The number of seats in the randomly 
selected gene of the randomly selected chromosome is 
increased by 5 or decreased by 5. While performing this, it is 
essential to check that the number of seats does not fall below 
zero and does not exceed the capacity. 

C. Simulations 

In this research, ticket booking is treated as a time-
dependent process. Only one customer arrives in a time interval 
t, which is a small part of the time horizon. So, the time horizon 
is divided into T time periods. The arrival of customers is 
simulated according to Poison distribution. A random demand 
vector is generated with the average demand and standard 
deviation of demand provided. The customer behavior is 
simulated by using the CDM. The sales from any product 
depend on the sales from all other products. Therefore, in our 
model, the demand for a product consists of partially the 
customers who initially request that product and partially the 
customers diverting from other products. Several algorithms 
have been written in Matlab to simulate the booking process 
with the procedure shown in Table V. Various random 
demands are generated as over, under, and close or equal to the 
average demand to analyze the different scenarios. 

In the beginning, the buckets used in the simulation have 
random initial values that come from the GA. After many 
simulation rounds, buckets with higher revenue can be 
achieved in GA via feedback of the simulation results. The 
values of the GA parameters, i.e. population size, mutation rate 
and crossover rate, were decided using the experimental design 
technique proposed by Taguchi [38]. Ticket requests are 
primarily responded to by sales from TK, i.e. ticket pool. If 
there is no appropriate ticket in TK, all the buckets are scanned 
for the product. It is not enough to find the product in a bucket, 
it is also necessary to have an empty seat for that bucket. After 
the sale from buckets, some seats can remain unoccupied. So 
these are added to TK for reuse next time. If there is no 
available seat for a product, customers who request a ticket for 
that product can either choose another product, wait for a seat 
for that ticket, or leave without purchasing (see Figure 4). The 
simulation algorithm runs until there is no demand and all 
ticket requests, positive or negative, are met. Evaluation and 
comparison of the techniques are made over a fictional railway 
line and a real-life example with different demand scenarios. 
We aim through simulations to observe how TBS differs from 
the other two ticket booking mechanisms and the effects of 
customer behavior on the booking process. 

Apart from different random demand scenarios and random 
arrival sequences, special demand situations were also 
examined. We specifically set low, high, and equal-to-mean 
demand scenarios with appropriate random demands. Low and 
high demand represent the demand that is lower and higher 
than the capacity respectively. Equal-to-mean demand is equal 
or random but too close to the average historical demand. Each 
simulation has been run 100 times with various scenarios. The 

exhibited results are the average values obtained at the end of 
the simulation trials.  

TABLE V.  SIMULATION STEPS 

 
Start 

1. Set initial parameters: C, Buc, dmnd, decij, TK 

2. If there is no request for Pr(rs) → Go to end 

3. Else 

4. 
If TK contains available resource(s) for Pr(rs) → Sale from TK, go to 
line 2 

5. Else 

6. If Buc contains available resource(s) for Pr(rs) 

7. Sale from Buc 

8. 
If there is remaining resource(s)/seat(s) → Add the remaining 
resource(s)/seat(s) to TK, go to line 2 

9. Else 

10. 
If customer wants to buy nothing (with decij) → Add Pr(rs) to no-buy 
list, go to line 2 

11. 
Else if customer wants to wait (only in TBS !!!) → Add Pr(rs) to 
wait list, go to line 2 

12. 
Else if the customer wants to buy another ticket → Distribute  
demand to re-buy list by decij, go to line 2 

13. Else 

14. Add wait list and rebuy list to dmnd, go to line 2 

 
End 

 

 
Fig. 4.  Flowchart of the booking process steps with customer diversion. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Fictive Railway Line Example 

In this test example, there is a 5-stop railway line with a 
single train, whose seat capacity is 100. For the stations from A 
to E, the ticket price in US$ and the demand information of the 
products is given in Table VI. 

TABLE VI.  TICKET FARES AND DEMAND INFORMATION 

Products 1 2 3 4 5 6 7 8 9 10 

 A-E A-D A-C A-B B-E B-D B-C C-E C-D D-E 

Price ($) 80 50 30 20 70 40 20 60 30 40 

Mean 
demand 

75 50 13 5 38 25 5 37 12 63 

St. dev. of 
demand 

11.3 6.7 3.1 2.9 4.2 1.7 2.6 4.7 2.8 7.1 
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The diversion matrix of this example is generated from 
random values. As described above, the values in columns 11 
and 12 of the 10×12-matrix are the waiting and non-purchase 
rates respectively. The results for different demand scenarios 
(under, over, and equal to the mean of the fictional demand) 
can be seen in Figures 5 and 6. The Figures show the expected 
revenue and the number of rejected requests for each scenario. 
In the Figures, TBS_axb stands for TBS with a buckets, each b 
cells long. The algorithm suggests 3 buckets with a length of 4 
cells in this example, but we put some alternative bucket 
solutions in the Figures. As seen in Figure 5, in all demand 
levels, TBS gives a better performance than PBLC and FCFS. 
At every demand level, even if the arrival sequence of 
customers changes, the performance ranking by revenue is TBS 
> FCFS > PBLC. The way the integration of the customer's 
behavior into the booking process affects the income can be 
seen in Figure 5. While the effects of customer behavior are 
minimal on TBS, it appears to have the most significant impact 
on PBLC. Especially at low demand level, sales revenue is 
significantly increased in PBLC compared to the case without 
customer behavior. Figure 6 shows that considering customer 
behavior has not only resulted in improvement in revenue. The 
number of rejected customers decreased at all demand levels 
and for all techniques. The amount and rate of change vary 
according to the customers' demand and arrival sequence. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 5.  Comparison of expected income with/without customer diversion: 
(a) Low demand, (b) mean-equal demand, and (c) high demand. 

B. Real-life Railway Example 

As a real-life example, the railway line between Ankara and 
Istanbul in Turkey was examined. The data were obtained from 
the statistical and annual reports published on the Turkish 

national railway company website. The incompatible and 
irrelevant data were extracted or neglected. The company has 7 
trains, each with 419 seats, daily departing from Ankara to 
Istanbul. There are 9 stations on the line, the first station is in 
Ankara and the last station is in Halkali in Istanbul. There are 
36 products (see Table VII) and 8 resources in this example. 
Price and product numbers (in square brackets) of each O-D 
pair are listed in Table VII. Average demand and standard 
deviations of demand (shown in parentheses) of each product 
can be seen in Table VIII. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 6.  Comparison graphs showing the number of rejected customers 
with/without customer diversion: (a) Low demand, (b) mean-equal demand, 
and (c) high demand. 

TABLE VII.  TICKET PRICE INFORMATION AND PRODUCT NUMBERS 

(IN SQUARE BRACKETS) FOR THE REAL-LIFE EXAMPLE 

Price 
(TL) P

o
la

tl
i 

E
sk

is
eh

ir
 

B
o
zu

y
u

k
 

B
il

ec
ik

 

A
ri

fi
y

e 

Iz
m

it
 

Is
ta

n
b

u
l 

(S
.c

es
m

e)
 

Is
ta

n
b

u
l 

(H
a

lk
a

li
) 

Ankara 
19.5 
[8] 

37.5 
[7] 

49.5 
[6] 

61.5 
[5] 

73.5 
[4] 

79.5 
[3] 

85.5 
[2] 

96 
[1] 

Polatli 
 

28 
[15] 

43.5 
[14] 

55.5 
[13] 

61.5 
[12] 

67.5 
[11] 

79.5 
[10] 

90 
[9] 

Eskisehir 
  

19.5 
[21] 

31.5 
[20] 

52.5 
[19] 

52.5 
[18] 

55.5 
[17] 

64 
[16] 

Bozuyuk 
   

19.5 
[26] 

37.5 
[25] 

52.5 
[24] 

55.5 
[23] 

64 
[22] 

Bilecik 
    

31.5 
[30] 

49.5 
[29] 

55.5 
[28] 

64 
[27] 

Arifiye 
     

19.5 
[33] 

31.5 
[32] 

38.5 
[31] 

Izmit 
      

19.5 
[35] 

26.5 
[34] 

Istanbul 
(S.cesme)        

24 
[36] 
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TABLE VIII.  MEAN DEMAND AND STANDARD DEVIATION OF THE 

DEMAND (IN PARATHESIS) FOR GIVEN O-D PAIRS 

Demand 
(Std.Dev.) P

o
la

tl
i 

E
sk
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ir
 

B
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y
u

k
 

B
il
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ik

 

A
ri

fi
y

e 
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Is
ta

n
b

u
l 

(S
.c
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m

e)
 

Is
ta

n
b

u
l 

(H
a

lk
a

li
) 

Ankara 
8 

(4.1) 
121 
(6.5) 

4 
(1.7) 

6 
(2.4) 

7 
(7.4) 

15 
(5.0) 

219 
(9.1) 

32 
(4.9) 

Polatli 
 

4 
(4.0) 

1 
(1.4) 

1 
(2.8) 

1 
(1.7) 

2 
(2.2) 

7 
(6,6) 

1 
(7.0) 

Eskisehir 
  

1 
(1.1) 

2 
(1.7) 

7 
(3.2) 

17 
(5.4) 

112 
(8.4) 

13 
(3.2) 

Bozuyuk 
   

1 
(2.8) 

1 
(1.3) 

1 
(1.6) 

3 
(6.5) 

3 
(1.7) 

Bilecik 
    

2 
(2.9) 

2 
(2.6) 

6 
(4.5) 

4 
(3.6) 

Arifiye 
     

1 
(2.4) 

6 
(5.7) 

4 
(5.2) 

Izmit 
      

23 
(7.4) 

20 
(10.9) 

Istanbul 
(S.cesme)        

1 
(3.8) 

 

The diversion matrix, for this example was created based 
on the opinions of expert. As mentioned above, the diversion 
data can be obtained online using new technologies and can be 
replaced easily in TBS. The matrix has a size of 36×38 and 
contains zero values for some products. Column 37 represents 
the rate of customers who desire to wait. Similarly, column 38 
is the rate of customers who prefer to leave without purchasing. 
The simulation results are summarized in the tables according 
to the demand levels and whether customer behavior is 
considered. The obtained results are shown in Table IX and 
Figure 7 comparatively. 

TABLE IX.  CALCULATED EXPECTED REVENUES (IN TL), SOLD 

TICKETS AND REJECTED CUSTOMERS ACCORDING TO DEMAND 

SCENARIOS 

Revenue (TL) 

Demand Diversion TBS_7x7 PBLC FCFS 

Low 
No 36976 36976 36976 

Yes 36976 36976 36976 

Mean-equal 
No 39079 38084 37787 

Yes 39154 38159 37811 

High 
No 42567 40793 38663 

Yes 42634 41020 38742 

 

Sold Tickets (pcs) 

Demand Diversion TBS_7x7 PBLC FCFS 

Low 
No 589 589 589 

Yes 589 589 589 

Mean-equal 
No 624 618 617 

Yes 629 621 618 

High 
No 709 659 642 

Yes 719 664 644 

 

Rejected customers (persons) 
Demand Diversion TBS_7x7 PBLC FCFS 

Low 
No 0 0 0 

Yes 0 0 0 

Mean-equal 
No 35 41 42 

Yes 30 38 41 

High 
No 95 145 162 

Yes 85 140 160 

 

The algorithm for TBS suggests 7 buckets with a length of 
7 cells after trials of many bucket combinations. In low 
demand, the expected revenues of all booking techniques are 
the same or very close to each other. One reason for this may 
be that all customers can get the tickets they want due to the 
low demand and sufficient capacity. In high and mean-equal 
demand scenarios, the differences between the booking 
mechanisms are evident (Figure 7(b)-(c)). TBS shows clearly 
better performance than PBLC and FCFS. If we take the 
customer behavior into account in simulations, the changes in 
revenue can be seen in Figure 8. Again, there are no differences 
in revenue with or without customer diversion in low-demand 
scenarios and the reason explained above also applies here. In 
other demand levels, customer behavior shows its effect. Its 
most significant impact is on TBS, then on PBLC, and FCFS. 
In the simulation, experiments were carried out by diversifying 
customer arrivals. It has been observed that the effect of the 
changes in the customers' arrival is shallow, and there is no 
change in the performance order even though there are minor 
changes in the revenues. Figures 8 and 9 show that 
incorporating customer behavior into the system increased the 
expected revenues and decreased the number of rejected 
customers. In particular, the decrease in the number of rejected 
customers is quite evident, except for the low demand level 
(Figure 9(a)). 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 7.  Expected income with/without customer diversion according to the 
demand scenarios for the real-life example: (a) Low demand, (b) mean-equal 
demand, and (c) high demand. 

C. Impact of Customer Behavior 

Simulations were performed with different valued matrices 
of R	�VW  to evaluate the customer behavior impact. The tests 

were carried out in two stages. First, simulations were run with 
different demand levels while keeping CDM constant. Changes 
were made in CDM in the second stage while keeping the 
demand constant. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 8.  Comparison of expected revenues with/without customer diversion 
according to the demand scenarios for the real-life example: (a) Low demand, 
(b) mean-equal demand, and (c) high demand. 

(a) 

 

(b) 

 

(c) 

 

Fig. 9.  Changes in the number of rejected customers with/without 
considering customer diversion according to the demand scenarios: (a) Low 
demand, (b) mean-equal demand, and (c) high demand. 

As can be seen in Figure 10, in low demand, the revenue 
and the number of tickets sold are not affected by the customer 
behavior. As the demand increases, the change in income 
becomes more pronounced and is most significant in TBS. The 
impact of customer behavior on revenue and ticket sales was 
primarily monitored in above- and near-average demands. In 
the tests conducted with high demand, it has been observed that 
the effect of customer behavior decreases gradually due to the 
exhaustion of capacity if the demand is too high. In the second 
phase, changes were made in R	�VW  by keeping the demand 

high above average and keeping it constant. It is important to 
note that the waiting behavior in the PBLC and FCFS methods 
does not affect revenue and ticket sales, because in these 
methods, after the capacity of a product is reached, the same 
product does not open for sale again. In TBS, the re-opening 
possibility is always present according to the order of the 
customer's arrival. Except for the waiting or no-buy columns, 
the changes are limited to cells with zero value. It would be 
easier to reduce the no-buy percentage by encouraging those 
who leave without buying anything to buy any product. The 
changes made in columns 1-36 (columns 37 and 38 are 
adjusted accordingly) had a more significant impact on revenue 
and ticket sales in PBLC and FCFS than in TBS. 

 

 
Fig. 10.  Changes in the expected revenue with considering customer 
diversion according to the demand scenarios: (a) Low demand, (b) mean-equal 
demand, and (c) high demand. 

The effect of changes made in the waiting and no-buy 
columns on revenue and sales can be analyzed by assigning a 
value of zero to the other columns. So, in Figures 11 and 12, 
W0/NB0 refers the results without CDM. In the expression 
W01/NB09, W01 represents that all cells in the waiting column 
get the value 0.1 and NB09 means that all cells in the no-buy 
column have the value 0.9. Similarly, numbers in other 
expressions (W0x/NB0y) represent ratios for columns 37 and 
38. It should be noted that since the ratios in the cells represent 
a probability, their sum should not exceed 1, so the sum of each 
row cannot exceed 1. It has been observed that changes in the 
waiting column significantly impact the revenue and sales with 
TBS. This impact increases positively as the waiting rate 
increases (see Figures 11-12). In the tests with PBLC and 
FCFS, the slight changes in revenue and sales seen in the 
Figures can be interpreted as a result of the change in the no-
buy percentage. The modification of CDM has a remarkable 
impact on revenue and ticket sales in TBS (up to 3.49% and 
2.12% respectively) when the waiting rate (column 37) is 
changed. This will be instrumental for the development of a 
different sales strategy or policy to be based on the examination 
of the effects of customer behavior. 
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Fig. 11.  Changes in expected revenue with various values of the decij 
matrix (in percentage). 

 
Fig. 12.  Changes in the number of sold tickets with various values of the 
decij matrix (in percentage). 

V. CONCLUSION 

The Turkish railway company sells 593 tickets and has an 
income of 36.866 TL on average in a day per train (2019). 
With the proposed algorithm (TBS), approximately 630 tickets 
can be sold in the case of average demand. An income raise of 
around 2100 TL per train can be expected with revenue up to 
39000 TL, which is a good result compared to the current level. 
TBS gave the best results among the three examined methods. 
An annual revenue increase of 5.3M TL can be expected if our 
proposed model is implemented. Unlike previous research in 
which only the customers' choice of a train before departure 
has been taken into account, this study regards customers' 
preferences when they cannot find the ticket they want. This 
research concentrates on evaluating the performance of TBS 
under customer diversion conditions, which is utilized in our 
research as a percentage matrix. According to the experts' 
opinion, customers have 3 possibilities: Buying another 
product, waiting for a seat of the same product or not purchase 
anything when the desired ticket is unavailable. Adding 
customer behavior to the simulation process helps us find a 
better revenue-generating bucket. 

This study is the first application of an alternative booking 
system for Turkish railways and implements a booking system 
with buckets in Turkish railways. This paper also contributes in 
terms of considering customer behavior in a booking system 
with buckets. To the best of our knowledge, customer diversion 
has never been applied before in the railway industry. The 
proposed TBS performs better than the PBLC and the FCFS. 
When the demand is high, all methods have yielded their best 
results, i.e. the highest revenue. At low demand, the success of 
all techniques is very close to each other. The positive aspects 
of the TBS are the more profitable use of the empty seats with 
the ticket pool and the effective distribution of the capacity to 

the products through the buckets. On the negative side, finding 
the optimum buckets takes time and processing power. 

If we ignore the misleading results due to the missing data, 
we can say that the gain will improve with TBS with the 
available data, even in its pure form. If capacity cannot be 
increased, it may be wise to encourage customers to wait. Thus, 
empty seats can be sold to customers who prefer to wait for a 
second sale-period. Considering the effects of customer 
behavior, we can argue that selling tickets in two or more 
periods will increase revenue. In addition to the increase in 
revenue, the decrease in the number of rejected customers is 
obviously important in terms of customer satisfaction. 

The seat allocation and ticketing processes of high-speed 
trains are similar to those on airplanes. For this reason, it would 
be appropriate for railway transportation companies to use 
technological advances in software to capture customer 
behavior more precisely. In the railway sector, hybrid 
algorithms can be tried with artificial intelligence on seat 
allocation and booking optimization.  
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