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Abstract-This paper describes the development of a simple 

quadrilateral strain-based element for plane stress and strain 

problems. This element has five nodes, four located at its corners 

and one at the center. Each of the four corner nodes had two 

essential external degrees of freedom (u, v), while the center node 

had three degrees of freedom (u, v, ɵ); the static condensation 

method was used for the internal node. This element was used for 

both linear and dynamic analysis. Its performance was assessed 

using a variety of membrane and axisymmetric analysis 

problems. The obtained results demonstrated the good 

performance and accuracy of the proposed element. 

Keywords-strain approach; drilling rotation; quadrilateral 

element; linear analysis; dynamic analysis; axisymmetric  

I. INTRODUCTION 

Numerical methods, such as finite elements, finite volumes, 
finite differences, and discrete element methods are powerful 
and efficient computational tools for solving engineering 
problems. However, the finite element method is the most 
popular because of its robust mathematical basis and 
applicability, which is reflected in its extensive use in various 
applications [1-3]. In [4], the linear (constant-strain) triangle 
and the bilinear rectangle were formulated, based on the 
displacement approach in standard elements, whereas in [5] the 
standard bilinear quadrilateral was produced. They have been 
extensively used as plane-stress, plane-strain, and 
axisymmetric-solid models for two-dimensional structures. 
However, computational experience soon showed that these 
elements are excessively stiff for problems where linear strain 
gradients dominate the response. Furthermore, over-rigidity 
grows rapidly as the rate of aspect degrades. These behaviors 
are referred to as mesh distortions and bending problems. 

Much effort has been put into improving these or creating 
new simple elements. Some studies showed that other 
strategies, such as hybrid stress elements [6-8], assumed strain 
or enhanced assumed strain elements [9-11], quasi-conforming 
elements [12, 13], and generalized conforming elements [14-
16] provide special advantages compared to classic finite 

elements. The development of efficient and straightforward 
finite elements to analyze structures is a primary motivation for 
scientific research in solid mechanics. A class of elements was 
developed using the strain-based approach. This approach 
produces displacement fields enriched by higher-order terms, 
without the necessity of introducing non-essential degrees of 
freedom, hence obtaining elements with more accurate results 
on displacements. The resulting elements from this approach 
are free from shear locking and parasitic shear. The state of 
strains for this approach is composed of rigid body motions, 
constant strains, and higher-order strains. This approach was 
used in [17] for curved structures, and it was extended for plan 
elasticity [11, 18-21]. A summary of this early work was 
presented in [22, 23], with three-dimensional elasticity 
problems [24-26], plate bending [9, 27-30], and shell structures 
[31-34]. Other studies presented the treatment of non-linear 
problems [31, 35-36], composite materials [37], functionally 
graded plates [29, 38], and fracture mechanics [39]. These 
elements are stable and have good efficiency, and the strain 
approach is very practical for the development of robust finite 
elements which are insensitive to common problems such as 
mesh sensitivity and different locking problems. 

This paper presents a quadrilateral element based on strain 
formulation. The proposed element has two degrees of freedom 
(u, v) at each of the corner nodes. Moreover, to enrich the strain 
field (εx, εy, and γxy) of the element, an internal node was 
introduced with three degrees of freedom (u, v, θ) to improve 
accuracy and reduce computational effort for the analysis of the 
plane structure, which will be subsequently eliminated by static 
condensation [11, 18]. After condensation, the element 
becomes a simple four-node quadrilateral element. Each node 
contains the two essential translational degrees of freedom, and 
hence the element is free of any parasitic and shear problems 
and is insensitive to mesh distortion. Various numerical 
problems (plane elasticity, axisymmetric, and dynamics) 
verified the high accuracy and efficiency of the proposed 
element compared to other existing plane elements. 
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II. FORMULATION OF THE DEVELOPED ELEMENT 

The proposed Strain Based Five Node (SBFN) element is 
quadrilateral with two degrees of freedom at each of the corner 
nodes, corresponding to two translations (u, v), and additional 
in-plane translations (u, v) associated with the rotation degree 
of freedom �� at the internal node, as shown in Figure 1. 

A. Case of Plane Elasticity  

The strain components relations and compatibility equation 
for plan elasticity are respectively given as: 

⎩⎪⎨
⎪⎧εx	 ∂u∂xεy	 ∂v∂xγxy	 ∂u∂y � ∂v∂x

    (1) 

∂2εx∂y2 � ∂2εy∂x2 - ∂2γxy∂x⋅∂y 	0    (2) 

where u and v are the displacements in the x and y axes 
respectively, εx and εy are the normal strains, and γxy is the shear 
strain. The rigid body modes displacement field is determined 
by setting the three deformations in (1) to zero, followed by 
integration: 

�u	a1-a3yv	a2�a3xθ	a3     (3) 

The following equation is used for the element's drilling 
degree of freedom: θ 	 12 �∂v∂x - ∂u∂y�    (4) 

Figure 1 shows the geometry of the proposed SBFN 
element and the corresponding nodal displacements: 

 

 
Fig. 1.  The strain based five node element. 

The SBFN element has eleven independent degrees of 
freedom, and therefore the displacement field should contain 
eleven independent constants. Since the three constants a1, a2, 
and a3 represent the displacement field of the rigid body 
modes, as shown in (3), the remaining eight constants a4, 
a5,…,a11 denote the imposed strains of the elements that are 
expressed as: 

⎩⎨
⎧ εx=a4+a5y+a8x+

a10

2
�x2+y2�

εy=a6+a7x-a9y+
a10

2
�x2+y2�

γ
xy

=2a11+2a10�x2-y2+y-x+xy�    (5) 

The strain functions for the present element, given above, 
satisfy the compatibility equation (2). These can be written in 
matrix form:  ε!	"Q$ a!    (6) 

where [Q] presents the matrix relating the strain fields to the 
unknown constants, given by: 

"Q$	
⎝
⎜⎛0 0 0 1 y 0 0 x 0 x22 � y22 00 0 0 0 0 1 x 0 -y x22 � y22 00 0 0 0 0 0 0 0 0 2x2�2xy-2x-2y2�2y 2⎠

⎟⎞    (7) 

Integrating (5) and substituting (3), the final displacement 
functions can be obtained: 

⎩⎪⎨
⎪⎧ u	a1-a3y�a4x�a5xy- y22 a7� y22 a8� �x36 � xy22 - 2y33 �y2�  a10�a11y    

v	a2�a3x- x2
2 a5�a6y�a7xy- y2

2 a9� �2x3
3 � yx2

2 -x2� y3
6 � a10�a11x      θ	a3-a5x�a7y�a10� x2�y2-y-x�                                                                 

    (8) 

These can be written in matrix form as:  u!	"T$ a!    (9) 

where [T] is expressed as: 

"T$	 2"P$"R$5    (10) 

and: 

"P$	 61 0 -y x xy 0 - y2
2 x2

2 0 x3
6 � xy2

2 - 2y3
3 �y2 y

0 1 x 0 - x2
2 y xy 0 - y2

2 y3
6 � yx2

2 � 2x3
3 -x2 x7    (11) 

"R$	�0 0 1 0 -x 0 y 0 0 x2-x � y2-y 0�    (12) 

The nodal displacements and the vector coefficients {a} are 
related as:  qe!	"C$ a!    (13) 

where: ;q
e
<= u1,v1,u2,v2,u3,v4,u4,v5,u5,θ5!T    (14)  a!	 a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11!T    (15) 

where [C] (11×11) is the matrix that relates nodal 
displacements to the constants (a1 to a11) as follows: 

"C$	
⎝
⎜⎜⎜
⎛"P�x1,y1�$"P�x2,y2�$"P�x3,y3�$"P�x4,y4�$"P�x5,y5�$"R�x5,y5�$⎠

⎟⎟⎟
⎞

    (16) 

From (13), the following can be obtained:   a!	"C$-1 qe!    (17) 
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By substituting (17) into (6) and (9): 

{U}=[P][C]-1{qe}=[N]{qe}    (18) 

and: 

{ε}=[Q][C]-1{qe}=[B]{qe}    (19) 

where: 

[N]=[P][C]-1;  [B]=[Q][C]-1    (20) 

The stress-strain relationship is given by:  

{σ}=[D]{ε}    (21) 

where [D] is the elasticity matrix given in Appendix A for 
plane stress and plane strain, respectively. The procedures to 
obtain the element stiffness matrix, are: 

The standard weak form for static can be expressed as:  

D  Ve δ{ε}T{σ}dV= D  Ve δ{U}T{fv}dV    (22) 

By substituting (18), (19), and (21) into (22) we get: 

δ{qe}T�D  Ve [B]T[D][B]dV�{qe}=δ{qe}T�D  Ve [N]T{fv}dV�  (23) 

where: 

[Ke]=�D  Ve [B]T[D][B]dV�    (24) 

[Ke]=t.[C]-T�DD [Q]T⋅[D]⋅[Q]dxdy�[C]-1    (25) 

where t is the thickness: 

[Ke]=t.[C]-T[K0][C]-1    (26) 

[K0]=DD [Q]T⋅[D]⋅[Q]dxdy     (27) 

Using numerical integration: 

[K0]= D  1
-1 D  1

-1 [Q]T[D][Q]det|J|dξdη    (28) 

where J presents the Jacobean. The element nodal body forces 
vector is:  

{Fb}= D  Ve [N]T{fv}dV=[C]-T�D  Ve [P]T{fv}dV�    (29) 
After assembly over all elements, the global stiffness [K] is 

used in global equations for static, given as: 

[K]{q}=[F]    (30) 

B. Case of Axisymmetric Formulation 

The strain components in the case of axisymmetric 
formulation are given as: 

⎩⎪
⎨
⎪⎧

εr= ∂u
∂r

εz= ∂v
∂z

γrz= ∂u
∂z + ∂v

∂rεθ= u
r

    (31) 

and the element stiffness matrix in the axisymmetric case is:  

[KU] = �D  VW [B]X[D][B]r. dV�    (32) 

where r is the radial coordinate, and [D] is the axisymmetric 
elasticity matrix given in the Appendix. It is worth noting here 
that the integrals calculations in the used programs use the 
Gauss numerical integration. In the case of forced vibration, the 
complex response method is used [48]. 

III. NUMERICAL VALIDATION 

Several tests were selected to evaluate the accuracy of the 
element with different analyses such as plane strain, plane 
stress, axisymmetric, and dynamic. A comparative study was 
conducted between the proposed and the following elements: 

TABLE I.  ELEMENTS USED IN THE COMPARATIVE STUDY 

SBQM [19] 
5-node quadrilateral element with in-plane rotation 

based on the strain approach. 
Q4 Standard four-node quadrilateral element. 
Q8 Standard eight-node quadrilateral element. 

Q6 [20] Quadrilateral element with six nodes. 

FRQ [10] 
4-node quadrilateral element based on the "Plane Fiber 

Rotation" concept. 

Q4WT [21] 
Quadrilateral element with four nodes with 

incompatible modes. 
Q4PS [21] 4-node quadrilateral hybrid element. 

CPS8 [19] 
Classic 8-node quadrilateral element in-plane stress 

with exact integration (Abaqus). 

SBRIEIR [40] 
Element with strain field at four nodes with in-plane 

rotation. 
Q4CST [20] The constant strain quadrilateral. 

QM5 [20] 
Plane stress element and Verbeke plate element 

boundary element formulation. 
SBQ5 [41] Strain-based quadrilateral element with five nodes. 
SBE [42] Strain Based Element. 

CQUAD4 [43] MSC/NASTRAN 

 

A. Linear Elasticity Tests 

1) Macneal’s Beam 

The sensitivity of the proposed element to mesh distortion 
was evaluated using the Macneal beam. Three distinct meshes 
(rectangular, parallelogram, and trapezoidal) were adopted. The 
Macneal and Harder test [44] is well-known as the standard for 
testing the mesh distortion sensitivity. There were two loading 
cases under consideration: pure bending and transverse linear 
bending. Figure 2 shows the appropriate mechanical and 
geometrical data, while Tables II and III show the results 
obtained by the proposed versus the other elements. 

TABLE II.  NORMALIZED DEFLECTION FOR MACNEAL’S ELONGATED 
BEAM SUBJECTED TO END SHEAR 

Element 

Force shearing at the free end P=1 

Mesh Type 

Rectangular 

(a) 

Parallelogram 

(b) 
Trapezoidal (c) 

SBQM [19] 0.993 0.964 0.972 
Q4 0.093 0.035 0.003 
Q8 0.951 0.919 0.854 

SBE [42] 1 0.976 0.978 
SBFN 0.993 0.993 0.994 

Reference 

solution [44] 
- 0.1081 
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TABLE III.  NORMALIZED DEFLECTION FOR MACNEAL’S ELONGATED 
BEAM SUBJECTED TO END PURE BENDING 

Element Pure bending moment M=0.2 

Mesh Type 

Rectangular 

(a) 

Parallelogram 

(b) 

Trapezoidal 

(c) 

SBQM [19] 1 1 1 
Q4 0.093 0.031 0.022 
Q8 1 0.994 0.939 

SBE [42] 1 0.989 0.989 
SBFN 1 1 1 

Reference 

solution [44] 
− 0.0054 

 

 
Fig. 2.  McNeal's cantilever beam: (a) rectangular (b) trapezoidal (c) 
parallelogram. 

Low sensitivity to mesh distortion was observed for the 
strain-based elements SBQM, SBE, and for the standard eight-
node quadrilateral element Q8 for both loading cases in 
trapezoidal and parallelogram mesh. A neglected sensitivity in 
all mesh types was registered for the SBFN element, and more 
accuracy was observed in cases (b) and (c) compared to the 
other elements. However, the transverse shears locking 
resulting from over rigidity of the standard four-node 
quadrilateral element Q4 affected its results. 

 

 

2) Beam In-Plane Bending 

The proposed element was validated in the console beam 
problem subjected to a uniform vertical load using [21] and 
[10]. The vertical displacement at the beam's free end was 
computed using five meshes, as shown in Figure 3. 
Timoshenko's beam theory was implemented for a reference 
solution: 

YZ[\] = ^_
`ab + cde^

fgh     (33) 

Table IV shows the results obtained from the SBFN 
element for several meshes (M1, M2, M3, M4, and M5). The 
obtained results were compared to some other membrane 
element outcomes, allowing to note the following: 

• SBFN gave more accurate results than the Q4, FRQ, and 
SBRIEIR elements. 

• Similar results were noticed for Q4WT, Q4PS, and Q8 
elements for regular meshes M1, M2, and M3. 

• The SBFN element was more insensitive to distorted 
meshes than other membrane elements for M4 and M5 
meshes. 

 

 

Fig. 3.  Beam in-plane bending (data and meshes). 

TABLE IV.  VERTICAL DISPLACEMENT OF A BEAM IN PLANE BENDING 

Mesh Type FRQ [10] Q4 [21] Q4WT [21] Q4PS [21] Q8 [21] SBRIEIR [19] SBQM [19] SBFN 

M1 2.76 0.10 3.03 3.03 3.03 2.86 3.02 3.03 

M2 3.44 0.38 3.78 3.78 3.7 3.57 3.77 3.78 

M3 3.56 0.75 3.92 3.92 3.84 3.71 3.91 3.91 

M4 1.09 0.12 0.30 0.49 0.64 2.92 3.04 4.53 

M5 1.61 0.22 1.79 1.94 1.76 3.04 3.14 4.27 

Reference solution [21] 4.03 
 

3) Cook's Skew Beam 

The non-prismatic beam is a popular benchmark problem 
for evaluating planar elements. Several studies [45-57] have 
treated this problem. Due to the lack of an analytical solution, 
the reference solution was obtained using the CPS8 element of 
ABAQUS with a 64×64 mesh. The mechanical properties, the 
geometrical, and the loading data used in the treated structure 
are presented in Figure 4. The results of the vertical deflection 
at point C are shown in Table V. The SBFN element provided a 
good agreement with the reference solution, although the mesh 
was coarse compared to the Q4, SSQUAD [14], CQUAD4 
[43], SBQM [19], and CPS8 [19] elements. 

TABLE V.  TIP VERTICAL DEFLECTION OF THE COOK'S SKEW BEAM 

 Mesh -Vertical displacement at point C 

Element 2×2 4×4 8×8 16×16 

Q4 11.80 18.29 22.08 23.43 

SSQUAD [14] 25.65 24.27 24.01 23.96 

CQUAD4 [43] 21.05 23.02 23.69 23.94 

SBQM [19] 23.2173 23.4350 23.7376 23.9817 

CPS8 [19] 23.35 24.54 23.8793 23.8596 

SBFN 23.9298 23.9282 23.9267 23.9411 

Reference solution [48] 23.9652 
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Fig. 4.  Cook's skew beam. 

B. Axisymmetric Elasticity Test 

1) Simply Supported Circular Plate Uniformly Loaded  

A simply supported circular plate under uniform load 
having a thickness t=1 was considered. Two distinguishable 
meshes were used for the discretization of the plate. At first, a 
rectangular mesh with a distortion e=0 followed by a 
trapezoidal mesh with a distortion e=0.025 was applied, as 
shown in Figure 5. The exact solution was taken from [49] as: 

w�r�=
p⋅r04

64⋅D�1+υ� i2⋅�3υ�⋅ 21- � r

r0
�25 -�1+υ�⋅ 21- � r

r0
�45j    (34) 

kwmax=w�0�      
wmax=

p⋅r04�5+υ�
64⋅D⋅�1+υ�    (35) 

where p and r0 are respectively the uniform load and radius of 
the plate, and D is the flexural rigidity expressed as:  

D	 Eh312�1-2ν�    (36) 

 

 
Fig. 5.  Simply supported uniformly loaded circular plate. 

TABLE VI.  NORMALIZED VERTICAL DISPLACEMENT AT THE CENTER 
'A' FOR THE UNIFORMLY LOADED CIRCULAR PLATE 

 Mesh type - uzA 

Element Rectangular Trapezoidal 

Q4 0.696 0.694 
Q8 1.0079 1.0183 

SBFN 0.9889 0.989 
Reference solution [49] −738.280 

 

Table VI shows the obtained results of displacement. It can 
be noted that the SBFN element gave excellent results close to 
the exact solution, similar to those provided by the Q8 element, 

whereas the Q4 element gave poor results. The SBFN element 
gave the best results for the cases where bending was 
dominant. 

1) Axisymmetric Cylindrical Shell 

A thin cylindrical shell R/e = 168 was subjected to a 
moment in the end [20], as shown in Figure 6. This is a 
problem of a thin shell with axisymmetric loading where the 
exact solution can be found using the theory of shells in the 
infinite length case. A quadrilateral element through the 
thickness was used. The result of the theoretical solution of the 
shells [49] was used to compare with the numerical radial 
displacement for the formulated and various types of elements. 
The obtained results are shown in Table VII and Figure 7. The 
formulated element provided excellent results, which will be 
more pronounced in bending cases. 

 

 
Fig. 6.  Cylindrical shell analysis. 

 

TABLE VII.  RADIAL DISPLACEMENTS (U) FOR THE AXISYMMETRIC 
CYLINDRICAL SHELL 

 Radial displacements u 

Z 
Q4CST 

[19] 

QM5 

[19] 

Q4 

[19] 
Q6 [19] SBFN 

Analytical 

solution 

[19] 

0 39.97 98.56 46.47 100.01 100.08 100.00 

3 26.04 47.87 29.17 48.98 49.01 48.88 

6 14.98 13.49 15.69 14.19 14.40 14.31 

9 6.56 -7.29 5.69 -6.54 -6.54 -6.57 

12 0.47 -17.77 -1.31 -17.15 -17.17 -17.16 

15 -3.65 -21.17 -5.82 -20.70 -20.72 -20.68 

18 -6.16 -20.21 -8.35 -19.88 -19.90 -19.85 

21 -7.40 -16.97 -9.39 -16.83 -16.80 -16.75 

24 -7.68 -12.92 -9.33 -12.85 -12.86 -12.82 

27 -7.27 -8.98 -8.55 -9.00 -9.01 -8.95 

30 -6.40 -5.65 -7.32 -5.72 -5.73 -5.63 

33 -5.27 -3.12 -5.87 -3.23 -3.24 -3.06 

 
The obtained results clearly show that the Q4 and Q4CST 

elements gave very erroneous values. These elements have 
difficulty representing the bending phenomena. SBFN, QM5, 
and Q6 showed very good levels of accuracy with the 
theoretical solution. The excellent results are remarkable for 
the formulated element in the case where bending is 
predominant. 
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Fig. 7.  Radial displacements (u) for the axisymmetric cylindrical shell. 

C. Dynamic Numerical Validation 

1) Forced Vibration of a Rectangular Solid in-Plane Strain 

This benchmark tested the proposed element in a 
rectangular beam in-plane strain case to analyze forced 
vibrations using the complex response method. The modeled 
results were compared with those obtained by Q8 [50] and Q4, 
SBQ5, and SBRIE [41]. Fig. 9. Figure 8 shows the geometric 
components of the evaluated beam and its mechanical 
properties. The beam was subjected to a vertical harmonic 
force F=cos(ωt), where force-frequency was 0.3, time step was 
1/20, the period was 2π/ω, and the ratio of depreciation was 
5%. Figure 9 shows the displacements for step time results. It is 
noticed that the proposed SBFN agreed well with the Q8 
element. 

 

 
Fig. 8.  Geometrical and mesh presentation of the console beam subjected 
to forced vibration. 

 

Fig. 9.  Displacement as a function of time for a console beam. 

IV. CONCLUSION 

This study proposed a new quadrilateral plane element 
using an assumed strain approach. Rigid body motions, 
constant strain, and application of compatibility conditions to 
the assumed strain field guaranteed and optimized monotonic 
convergence to the solution. The formulated element had five 
nodes with eleven degrees of freedom, whereas the fifth node 
of the element was located in the center having three degrees of 
freedom (u, v, θ). This central node was eliminated using the 
static condensation method. Therefore, the proposed became a 
simple four-node element with two essential degrees of 
freedom (u, v) in each of the four corner nodes. The SBFN 
linear quadrilateral element showed acceptable performance, 
was insensitive to mesh distortion, and had an excellent 
convergence characteristic in all numerical examples. The 
proposed membrane element's precision was often close to that 
of the second-order quadrilateral plane element Q8, in static 
and dynamic analysis for plane and axisymmetric structures. 
Furthermore, the obtained numerical results of the proposed 
element were consistent and give better results when bending 
dominated. 

APPENDIX 

For the case of plane stress problem, the elasticity matrix 
[D] is: 

"D$ 	 o�pqrs� t1 v 0v 1 00 0 pqru
v    (A.1) 

For the case of plane strain problem, the elasticity matrix 
[D] is: 

"D$ 	 o�pwr��pqur� x�1 y v� v 0v �1 y v� 00 0 �pqur�u
z    (A.2) 

For the case of axisymmetric problem, the elasticity matrix 
[D] is: 

"D$ 	 o�pqr��pwr��pqur�
⎣⎢⎢
⎢⎢
⎡ 1 rpqr rpqr 0rpqr 1 rpqr 0rpqr rpqr 1 00 0 0 pquru�pqr�⎦⎥

⎥⎥⎥
⎤
    (A.3) 
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