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Abstract-This study considered a mathematical model to describe 

the process of a quasi-static contact between a piezoelectric body 

and an electrically conductive foundation. The behavior of the 

material was modeled with a nonlinear electro-viscoelastic 

constitutive law, the contact was frictionless, and the result was 

described with the Signorini condition. A variational formulation 

was derived for the problem, proving the existence and 

uniqueness of a weak solution of the model. The proof was based 

on arguments for nonlinear equations with maximal monotone 

operators.  

Keywords-elecro-viscoelastic materials; frictionless contact; 

Signorini conditions; maximal monotone operators; weak solution  

I. INTRODUCTION  

Considerable progress has been achieved recently in 
modeling, mathematical analysis, and numerical simulations of 
various contact processes and, as a result, a general 
mathematical theory of contact mechanics is currently 
emerging. Mathematical structures underlie general contact 
problems with different constitutive laws for materials, varied 
geometries, and different contact conditions, [1, 2]. The 
piezoelectric effect is characterized by the coupling between 
the mechanical and electrical properties of materials. The 
appearance of electric charges on some crystals submitted to 
the action of body forces and surface tractions was observed 
and their dependence on the deformation process was 
examined. Conversely, it was proved experimentally that the 
action of an electric field on the crystals may generate strain 
and stress. A deformable material having such behavior is 
called a piezoelectric material. Piezoelectric materials are used 
extensively as switches in many engineering systems such as 
radio electronics, electro acoustics, and measuring equipment. 
Some general models for electro-elastic materials can be found 

in [3, 4]. A static frictional contact problem for electro-elastic 
materials was considered in [5, 6]. 

II. NOTATIONS AND PRELIMINARIES 

This study considered a body made of a piezoelectric 
material that occupies the domain with a smooth boundary 

��=� and a unit normal �. A body force of �0 density acts on 

the body and has volume-free electric charges of �0  density, 

constrained mechanically and electrically on the boundary. To 
describe these conditions, a partition of � was considered into 

three open disjoint parts �1, �2, and �3. Α partition of �1 ∪ �2 

was in two open parts �  and �� . It was assumed that 
����� >0 and ����� > 0. The spatial and time variables 
were denoted as � ∈ � ∪ �  and � ∈ [0, �]  respectively. The 

body was clamped on �1 and the displacement field vanished 

there. Surface tractions of density ��  act on �2 . It was also 

assumed that the electrical potential vanishes on �  and a 

surface-free electrical charge of density �2 is prescribed on ��. 

The notation
 ��  was used for the space of second-order 

symmetric tensors on ℝ� , while · and ∥·∥ represent the inner 

product and the Euclidean norm on ��  and ℝ�  respectively, 
where: 

            ". $ = "&$&     ,    ‖$‖ = ($. $)*
+,   ∀", $ ∈ ℝ�

           -. . = -&/.&/   , ‖-‖ = (-. -)*
+,   ∀-, . ∈ ��     (1) 

where i, j=1,…,d. The summation over repeated indices is used 
and the index which follows a comma indicates a partial 

derivative. Let � ⊂ ℝ� be a bounded domain, x = (xi) a point 
in � ∪ �, while � = �&  denotes the outward unit normal at Γ. 

Also, the inner products on the Hilbert spaces 1�(�)�  and 

1�(�)� are given by: 
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(", $)2+(3)4 = 5 ". $6�  3 ;  (", $)2+(8)4 = 5 ". $6 8     (2) 

The associated norms will be denoted by ‖. ‖2+(3)4 and 

‖. ‖2+(8)4  respectively. The closed subspace of 9�(�)�  is 

defined by: 

: = ;$ ∈ 9�(�)� ∶ $ = 0 => ��?    (3) 

@ = A. = B.&/C  /  .&/ ∈ 1�(�)�: .&/ = ./&F    (4) 

which are Hilbert spaces with the following scalar products: 

(", $)G = 5 H("). H($)6�,3 (-, .)I = 5 -. .6� 8     (5) 

The associated norms are ‖. ‖Gand ‖. ‖I, respectively. The 

deformation tensor H ∶  9�(�)� → @ is given by: 

H($) = KH&/($)L ,  H&/($) = �
� B$&/ + $&/C; ∀$ ∈ 9�(�)�    (6) 

Therefore (:, |. |G) is a real Hilbert space. Moreover, by 
Sobolev's trace theorem, a constant OP  exists which depends 
only on Ω,  ��, and �Q such that: 

‖$‖2+(8R)4 ≤ OP‖$‖G , ∀$ ∈ :    (7) 

given a Hilbert space T, for a function U ∶ T → ]−∞, +∞]: 
X=�(U) = ;" ∈ T ∶  U(") ≠ ∞?, 

�U" = ;� ∈ T ∶  U($) − U(") ≥ (�, $ − "), ∀", $ ∈ T ?. 
so, the following existence and uniqueness result can be 
concluded: 

Lemma: Let T be a real Hilbert space and let U ∶ T →
[−∞, +∞] be a convex proper lower semicontinuous function. 
Then for every � ∈ 1�(0, �, T)  and "P ∈ X=�(U) , a unique 
function " ∈ [�,�(0, �, T) exists which satisfies: 

 "\ (�) + �U"(�) ∋ �(�) , . �. � ∈ (0, �),
"(0) = "P.     (8) 

More details can be found in [7].  

III. PROBLEM STATEMENT 

This section describes the process model and clarifies the 
assumptions about the data. The process starts from the 
physical framework, and the law of behavior and the conditions 
of contact should be specified. It was supposed that the body 
was electro-viscoelastic, rested on a rigid foundation by the 
part �Q of its border, this contact was affected without friction, 
and the tangential movements were completely free. 
Additionally, as the quasistatic case was studied, the body Ω 
had a behavior law of the form of (9), see [8-10]. Under these 
considerations, the studied mechanical problem can be 
formulated as follows: 

Problem 1. Find the displacement field " ∶ � × ℝ_ → ℝ�, 

the stress field - ∶ � × ℝ_ → ��, the electric potential 
` ∶  � × [0, �] → ℝ , and the electrical displacements field 

X ∶ � × [0, �] → ℝ�, such that: 

- = aH(") + ℱH(") − H∗d(`)   e>  � × (0, �)    (9) 

X =  ℰ(") + gd(`)   e>  � × (0, �)    (10) 

Xe$- + �P = 0    e>  � × (0, �)    (11) 

6e$ X = �P  e>  � × (0, �)    (12) 

" = 0    =>  �� × (0, �)    (13) 

-h = ��      =>  �� × (0, �)    (14) 

i "h ≤ 0,   -h ≤ 0
"h-h = 0, -j = 0   =>  �Q × (0, �)    (15) 

` = 0       =>  �� × (0, �)    (16) 

X. � = ��    =>  �k × (0, �)    (17) 

" = "P        e>  �    (18) 

Equations (9) and (10) represent the constitutive electro-
viscoelastic law, (11) and (12) represent the equilibrium 
equations, (13) and (14) are the boundary conditions in 
displacement and traction respectively. The boundary condition 
(15) represents the conditions of contact without Signorini 
friction, (16) and (17) are the electrical boundary conditions, 
and (18) represents the initial condition. It should be noted that 

- = B-&/C is the stress tensor, H(") denotes the linearized strain 

tensor, a and ℰ = (�&/l) represent the third-order piezoelectric 

tensor, ℰ∗ is its transpose, g = B�&/C  denote the electric 

permittivity tensor, and X = (X₁, . . . , X�)  is the electric 
displacement vector. The tensors ℰ and ℰ∗ satisfy: 

ℰ-. $ = -. ℰ∗$; ∀B-&/C ∈ ��, $ ∈ ℝ� 

and Xe$ and 6e$ denote the divergence operator for tensor and 
vector-valued function. For the electric displacement field, two 
Hilbert spaces were used. 

n = 1�(�)�;  n� = ;X ∈ n: 6e$X ∈ 1�(�)? 
endowed with the inner products: 

(X, d)n = o X&3
d&6� 

(X, d)n* = (X, d)n + (6e$X, 6e$d)2²(3) 
The electric potential field was defined by: 

[ = ;q ∈ 9�(�): q = 0  => ��? 

Since ����� > 0  the Friedrichs-Poincaré inequality 
holds, thus: 

‖rq‖n ≥ st‖q‖u¹(3);   ∀q ∈ [. 
The assumptions on the problem data were listed for the 

study of problem w . Then, the viscosity a , the operator of 
elasticity ℱ , the piezoelectric tensor ℰ , and the electric 
permittivity tensor g satisfy the following properties: 

⎩⎪⎨
⎪⎧ ().  a = B&/l|C ∶  � × �� → ��

(�).  &/l| = |&/l ∈ 1�(�)(s).  �ℎ�~� ��e�� �� > 0  �"sℎ �ℎ� &/l�.&/l� ≥ ��‖.‖�;  ∀. ∈ ��, . �. � ∈ �
    (19) 



Engineering, Technology & Applied Science Research Vol. 12, No. 5, 2022, 9224-9228 9226 

 

www.etasr.com Boulaouad et al.: Analysis of a Frictionless Electro Viscoelastic Contact Problem with Signorini … 

 

⎩⎪
⎪⎨
⎪⎪
⎧ ().  ℱ ∶  � × �� → ��.(�). �ℎ�~� ��e�� 1ℱ > 0  �"sℎ �ℎ�  ‖ℱ(�, H�) − ℱ(�, H�)‖ ≤ 1ℱ‖H� − H�‖,∀H�, H� ∈ ��, . �. � ∈ �.(s). �ℎ� ���e>� � → ℱ(�, H) e� ���"~��� => �, ∀H ∈ ��,(6).  �ℎ� ���e>�  � → ℱ(�, 0) ∈ ℋ.

    (20) 

�(). ℰ = B�&/lC ∶  � × �� → ℝ�
�&/l = �&l/ ∈ 1�(�)     (21) 

⎩⎪
⎨
⎪⎧(�).

(). g = Bg&/C ∶ � × ℝ� → ℝ�. g&/ = g/& ∈ 1�(�).�ℎ�~� ��e�� �� > 0  �"sℎ �ℎ�g&/d&d/ ≥ ��‖d‖�
∀d ∈ ℝ� , �. �. � ∈  �

    (22) 

The densities of body forces and surface tractions have 
regularity: 

�P ∈ [�,�(0, �; 1�(�)�),   �� ∈ [�,�(0, �; 1�(��)�)    (23) 

and surface free charge densities satisfy: 

�P ∈ [�,�B0, �; 1�(�)C, �� ∈∈ [�,�B0, �; 1�(��)C    (24) 

��(�) = 0 => �Q ;  ∀� ∈ �0, ��    (25) 

Condition (19) allows providing the space : with the scalar 
product and the associated norm defined by: 

(", $)G = BaH("), aH($)Cℋ ;  ‖"‖G = �(", ")G    (26) 

This norm on : is equivalent to that of 9¹(�)�. Convex � 
which will be the space of admissible displacements, i.e. 
compatible with the connections (boundary conditions and 
unilateral conditions): 

� = {$ ∈ :;    $� ≤ 0  => �Q}    (27) 

Finally, the following assumption was made: 

"₀ ∈ �     (28) 

For the rest, the following functional space was considered: 

[ = {q ∈ 9¹(�) | q = 0 => ��} 

The operator � was said to be maximal monotone if it is 
monotone and if for all � and � in space T: 

< � − ��, � − � >≥ 0  �=~ �� � ∈ 6=�(�) ⇒ � ∈ �� 

Now all the necessary ingredients are available to provide a 
weak formulation of problem w and present the main result of 
the existence and uniqueness of the weak solution. 

IV. VARIATIONAL FORMULATION 

This section starts by giving a variational formulation in 
terms of displacement and electric potential. Once this weak 
formulation is established, a result of the existence and 
uniqueness of the weak solution emerges: 

Let � ∶ �0, �� → : �� � ∶ �0, �� → [ be the functional 

(�(�), $)G = 5 �P(�). $6� + 5 ��(�). $68+3     (29) 

(�(�), q)� = 5 �P(�). q6� − 5 ��(�). q68+3     (30) 

for all $ ∈ :, q ∈ [, � ∈ �0, ��. The conditions (23) and (24) 
imply: 

� ∈ [�,�(0, �; :) , � ∈ [�,�(0, �; [)     (31) 

Using Green's formula and assuming that (", -, U, X) are 
regular functions satisfying (11) and (17): 

"(�) ∈ �, ( -(�), H($) −  H("(�)))u ≥ (�(�), "(�) − $)G   (32) 

(X(�), ∇q)2+(3)4 + (�(�), q)� = 0    (33) 

for all $ ∈ �, q ∈ [ and � ∈ �0, ��. Now, putting (9) in (32), 
(10) in (33), and keeping in mind that d(U) = −rU as well as 
the initial condition (18), the variational formulation of the 
mechanical problem  w  can be obtained in terms of 
displacement and electric potential following: 

Problem 2: Find the displacement field ": �0, �� → :  and 
electric potential U ∶  �0, �� → [ such that: 

⎩⎪⎪
⎨
⎪⎪⎧

"(�) ∈ �, KaHB"\ (�)C, H($) − HB"(�)CLℋ +
KℱHB"(�)C, H($) − HB"(�)CLℋ +

Kd∗∇ϕ(�), H($) − HB"(�)CLℋ ≥ B�(�), $ − "(�)CG∀$ ∈ �, �. �. � ∈ �0, ��,
   (34) 

�(g∇ϕ(�), ∇q)2+(3)4 − BℰHB"(�)C − ∇qC2+(3)4 =
(�(�), q)�;  ∀q ∈ [, ∀� ∈ �0, ��,     (35) 

"(0) = "P    (36) 

The well-posedness of the above wG  problem is examined 
in the next section. 

V. EXISTENCE RESULT 

This section states and proves the existence and the 
uniqueness of the result. 

Theorem 1: Assume that (19), (25), and (28) are verified. 
Then the variational problem wG  has a unique solution (", U), 
having the regularity: 

" ∈ [�,�(0, �; :) , U ∈ [�,�(0, �; [)    (37) 

A quadruplet (", -, U, X)  satisfying the (9) and (10) is 
called a weak solution to the mechanical problem w. It can be 
concluded from Theorem 1 that problem w  admits a unique 
solution. Regarding the regularity of the weak solution, it 
follows to refer to the regularity of the element (", U) ∈[�,�(0, �; :)  × [�,�(0, �; [), to the constitutive laws (9) 
and (10), and also to the hypotheses (19) and (22). Then:  

- ∈ 1�(0, �; 9), X ∈ 1�(0, �; 1²(�)�) 

Now, taking $ = "(�) ± �, where � ∈ OP�(
Ω

)� in (32) and q ∈ OP�(
Ω

) in (33), and using the notations (29) and (30) we 
get: 
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Xe$-(�) + �₀(�) = 0 , 6e$X(�) = �₀(�) 

for all � ∈ �0, ��. From (23) and (18), it follows that Xe$- ∈1�(0, �; 1�(�)�) and 6e$X ∈ 1�(0, �; 1�(�)), and therefore: 

- ∈ 1�(0, �; ℋ�), X ∈ 1�(0, �; [)    (38) 

So, it is concluded that the solution (", -, U, X) of problem w will have regularity (37) and (38). 

Proof: The abstract result will be used to obtain the 
existence and the uniqueness of the solution. For that, let's 
suppose in the continuation that the hypotheses (19), (25), and 
(28) are verified. Using the Riesz representation theorem, the 
operators ℬ: [ → [ and O: : → [ are defined as follows: 

(ℬ`, q)� = (grU, rq)2+(�)4    (39) 

(O$, `)� = (ℰH($), r`)2²(3)4    (40) 

for all `, q ∈ [, $ ∈ :. From (22), it is deduced that ẞ is a 
linear, symmetric, and positive operator. Consequently, ẞ is a 
revertible and continuous operator on [. Now, using (26) and 
(21), it follows that O is a linear and continuous operator on :. 
Let O∗: [ → : be the adjoint of O. So: 

(O∗`, $)G = (d∗rU, H($))u; ∀$ ∈ :, ` ∈ [    (41) 

Let � ∈ �0, ��. By putting (39) and (40) in (35) we have: 

(`(�), q)� = (O"(�), q)� + (�(�), q)� , ∀q ∈ [  
Consequently, 

 `(�) = O"(�) + �(�)  
On the other hand, �: [ → [  is invertible. The previous 

equation then becomes: 

U(�) = ℬ⁻¹O"(�) + ℬ⁻¹�(�)    (42) 

Using (42) in (34) and the definitions of operators ẞ, O, O∗ 
given by (39-41) we get: 

"(�) ∈ �, KaHB"\ (�)C, H($) − HB"(�)CLℋ +
KℱHB"(�)C, H($) − HB"(�)CLℋ +

BO∗ℬ⁻¹O"(�), $ − "(�)CG ≥ B�(�) − ℬ⁻¹�(�), $ − "(�)CG∀$ ∈ :, �. �. � ∈ �0, ��
(43) 

Let the operator 1: : → : be defined by: 

1($) = O∗ℬ��O($); ∀$ ∈ :    (44) 

and keeping in mind the properties of the operators ẞ, O, and O∗, it is deduced that 1 is a linear operator, continuous on :. 

‖1"₁ − 1"₂‖G ≤ ‖1‖‖"₁ − "₂‖G; ∀"₁, "₂ ∈ :    (45) 

�: : → : denotes the operator based on the representation of 
Riesz given by: 

(�", $)G = (ℱH("), H($))ℋ + (1", $)G: ∀", $ ∈ :    (46) 

Now, taking into account (19), (20), (26), and (46) we have: 

‖�"� − �"�‖G ≤ K 2ℱ�a + ‖1‖L ‖"� − "�‖G , ∀"₁, "₂ ∈ :  (47) 

This relation proves that the � is a Lipshitz operator. Now, 
let the function �: �0, �� → : given by: 

�(�) = �(�) − O∗ℬ���(�);  ∀� ∈ �0, ��    (48) 

Using (39) and the fact that O∗ℬ�� is linear and continuous, 
it comes by observing (48) that: 

� ∈ [�,�(0, �; :)    (49) 

On the other hand, the operator:  

� + K 2ℱ�a + ‖1‖L �: : → :    (50) 

is a Lipshitz operator on :. 
Now, the indicator function ql: : → �−∞, +∞� of the set � is introduced as well as its sub-differential �ql. Being the 

set � non-empty, closed, and convex, the sub-differential �ql 
is a strongly monotone operator on the space :. The domain of 
this sub-differential is thus: X(�ql) = �. It can be said that 
the sum: 

�ql +  � +   1ℱ�a + ‖1‖¡ �: � ⊂ : → 2G  

is a strongly monotone operator. Being the hypotheses (49) and 
(28) satisfied, (8) can be applied with: 

T = : ; � = �ql + �:   X(�) = � ⊂ : → 2G  

and: 

¢ = 1ℱ�a + ‖1‖ 

This result deduces that there is a unique element  " ∈[�,�(0, �; :) which verifies: 

"\ (�) + �q£("(�)) + �"(�) ∋ �(�) �. �. � ∈ (0, �)     (51) 

and: 

"(0) = "₀     (52) 

In addition, for all � ∈ : there is the equivalence: 

� ∈ �q£(") ⇔ " ∈ � , (�, $ − ")G  ;  ∀$ ∈ �  
The differential inclusion (51) is equivalent to the 

variational inequality: 

"(�) ∈ �, ("\ (�), $ − "(�))G + (�"(�), $ − "(�))G≥ (�(�), $ − "(�))G∀$ ∈ �, �. �. � ∈ (0, �).     (53) 
From (53), (46), and (26) comes that "  satisfies the 

inequality: 

"(�) ∈ �, (aH("\ (�)), H($) − H("(�)))ℋ+Bℱ"(�), $ − "(�)CG + (1"(�), $ − "(�))G≥ B�(�), $ − "(�)CG;  ∀$ ∈ �, �. �. � ∈ (0, �).    (54) 

From (53), (46), (44), and (48), it is concluded that " 
satisfies (43). Let ` be the function given by (42). Using (43), 
(52), and (42), it follows that (", `)  is the solution to the 

variational problem w: . Regarding the regularity of the 

function `, it follows to refer to the regularity of the element 
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" ∈ [�,�(0, �; :) and to the hypotheses (42) and (31). Then it 
is obtained that function ` has the regularity ` ∈ [�,�(0, �; [). 

A solution (", `)  of regularity " ∈ [�,�(0, �; :), ` ∈[�,�(0, �; [)  was just shown. The uniqueness part of the 
function `  is deduced from the uniqueness of the function " ∈ [�,�(0, �; :) solution of (51) and (53) given by Lemma 
1, thus taking into account (42). 

VI. CONCLUSION 

This paper investigated a mathematical model to describe 
the quasistatic contact between a piezoelectric body and a 
deformable foundation. The contact was frictionless and 
described with Signorini conditions. The proof of the existence 
and the uniqueness of the weak solution was presented using a 
classical result of elliptic variational inequalities and a maximal 
monotone operator. 
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