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Abstract—In practical engineering problems, uncertainty exists 

not only in external excitations but also in structural parameters. 

This study investigates the influence of structural geometry, 

elastic modulus, mass density, and section dimension uncertainty 

on the stochastic earthquake response of portal frames subjected 

to random ground motions. The North-South component of the 

El Centro earthquake in 1940 in California is selected as the 

ground excitation. Using the power spectral density function, the 

two-dimensional finite element model of the portal frame’s base 

motion is modified to account for random ground motions. A 

probabilistic study of the portal frame structure using stochastic 

finite elements utilizing Monte Carlo simulation is presented 

using the finite element program ABAQUS. The dynamic 

reliability and probability of failure of stochastic and 

deterministic structures based on the first-passage failure were 

examined and evaluated. The results revealed that the probability 

of failure increases due to the randomness of stiffness and mass of 

the structure. The influence of uncertain parameters on 

reliability analysis depends on the extent of variance in structural 

parameters. 

Keywords-reliability; Monte Carlo simulation; uncertain 
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I. INTRODUCTION 

In practical engineering problems, the external excitations, 
such as wind loading and seismic waves, and the parameters of 
a structure exhibit uncertainty. Structural parameter uncertainty 
may strongly influence structural response and reliability [1]. 
Earthquakes are the most disastrous natural phenomena. 
Therefore, the seismic response of many types of structures and 
buildings has been widely investigated. However, most 
modeling attempts of seismic random response analysis of 
structures belong to deterministic models in which all structural 
parameters were regarded as deterministic parameters. From 
another aspect, most engineering structures can be classified as 
random due to the variability in their geometric or material 
properties. Therefore, the problem of stochastic structures 
subject to stochastic seismic excitation is of great importance 
[2]. Considering that ground motion induced by an earthquake 
represents a type of random excitation, the theory and methods 
of random vibration should be applied to analyze the seismic 

response of structures. The random excitation is usually 
specified regarding its Power Spectral Density (PSD) [3]. The 
random vibration theoretical framework has been well 
established. The dynamic analysis of systems with 
deterministic structural parameters to random excitations is 
available. However, the dynamic analysis of systems with 
stochastic structural parameters under random excitations has 
not been developed to the same extent [4]. A natural frequency 
represents one of the most influencing parameters on system 
response. Uncertainty in the natural frequency can arise from 
uncertainties in the stiffness or inertia properties of the 
structure. In this case, probabilistic-based analysis methods 
should be utilized. Thus, the considered statistical parameters 
associated with the distribution of random variables should be 
determined. In general, the stochastic finite element-based 
method is a probabilistic analysis method and is well suited to 
deal with random parameter problems [5]. Given the random 
nature of loading, material specifications, and implementation 
issues, probabilistic-based analysiss should be utilized. Thus, 
considering the statistical parameters associated with the 
distribution of random variables should be determined. The 
reliability-based analysis is a new approach to structural 
analysis and design that takes uncertainty into account [6]. 

A survey of previous studies indicated that structural 
reliability methods have been mainly developed for rationally 
evaluating the safety of deterministic structures with excitation. 
However, the studies on nondeterministic structures to 
investigate statistical uncertainty characteristics are limited. 
The current study emphasizes on reliability analysis of a 
stochastic structure with uncertain parameters and excitation to 
assess the reliability and safety of this system. To achieve the 
goal of this study, a single degree of freedom system subject to 
seismic base excitation is examined using a probabilistic finite 
element ABAQUS code using Monte Carlo Simulation (MCS) 
and Python script to generate pseudo-random values for the 
considered random parameters. 

II. RANDOM EXCITATION  

The stochastic earthquake analysis in this study is based on 
the stationary assumption, in which the statistical parameters' 
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mean and variance do not vary with time. A stationary model 
makes them less sophisticated, simplifies computations, and 
gives satisfactory results [7]. As a single record is insufficient 
for producing general conclusions, an ergodicity assumption is 
applied. Moreover, only one earthquake record from the local 
area can be utilized. The PSD function of acceleration seismic 
motion is assumed to be in the form of a filtered Gaussian 
white noise ground motion. The model was suggested in [8, 9] 
and was later modified in [10]. This model can be expressed as: 

���� ����	 =
��
����� ��� ��

[���� ��� ��]��
����� ��� ��
�� ��� ��

[���� ��� ��]��
����� ��� �� ��    (1) 

where �� , ��  ,  �� , and ��  represent the damping ratio and 

natural frequency of the soil and high pass filter respectively, 
and �� is the intensity of the white noise of ground motion. To 
estimate the filter parameters, the method of the spectral 
moment [11] is the key statistical parameter of the PSD 
function [12]. The i

th
 spectral moment �� is defined as: 

�� = � ��  ������ 
�     (2) 

The variance of the excitation is the zero spectral moment: 

�� = !�" = � ������ 
�     (3) 

The central frequency, �# , and the shape factor, $ , of the 
random process can be directly evaluated from the first few 
spectral moments: 

�# = %�" ��⁄ ,    (4) 

$ = '1 − ���" �"��⁄ �    (5) 

As the central frequency and shape factor are functions of 
the spectral moments (��, ��, and �"), they are expressed in 
terms of the filter parameters, i.e. ��, ��, and ��. Hence, they 

can be computed by matching the variance of acceleration, the 
central frequency, and the shape factor of the actual and 
theoretical PSD. 

III. STATIONARY RANDOM VIBRATION ANALYSIS 

The equation of motion for a Single Degree of Freedom 
(SDOF) structure subjected to random ground acceleration is: 

*+��,� + .�+�,�/ + 0+�,� = −*+�� �,�    (6) 

where +�� , m, .� , and k are the ground acceleration process, 

structural mass, viscous damping, and elastic stiffness 
respectively. The PSD of the displacement response may be 

represented as in (7) if the ground motion acceleration (+�� ) is 

considered a stationary Gaussian random process [10]. 

�11��� = 2��� 2���∗���� ���    (7) 

where ���� ��� is the PSD function of the ( +�� ), 2��� is the 

frequency response function as in (8), and (*) stands for 
complex conjugate: 

2��� = �
�4�����" � �4�4 �    (8) 

where �5  and �5  are the j
th

 order inherence frequency and 

mode damping of structure respectively. The mean square and 
the root mean square of the relative displacement can be 
expressed as in (9) and (10) respectively [10]: 

!6" = � �11��� 
�     (9) 

!6 = '� �11��� 
�     (10) 

IV. MONTE CARLO SIMULATION 

Although being a highly time-consuming computational 
method, the MCS method is considered one of the most 
powerful and accurate simulation tools to estimate numerically 
the reliability and failure probability of uncertain structures 
[18]. This method is used to calculate the response uncertainty 
and the numerical estimate of failure probability. It uses 
random sampling from random variable distributions. The 
"crude" or "direct" MCS, which is a pseudo-random sampling, 
is the basic version [13]. In MCS, the failure probability is 
described as: 

7̂� = 9�
9     (11) 

where N is the total number of samples and :� is the number of 

samples in the failure domain. 

MCS is a most general approach for the Stochastic Finite 
Element Method (SFEM) [14]. The deterministic FEM and the 
MCS technique are merged in this methodology. SFEM can 
express randomness in one or more of the main components of 
the classic FEM, such as geometry, material properties, and 
external forces [15]. 

V. DYNAMIC RELIABILITY 

The reliability of a system is closely related to the concept 
of level crossing. This case is particularly true for first-passage 
failure, in which the system is considered to fail only when a 
particular stress process or displacement +�,� reaches a critical 
level b in the time interval [0, T]. When the structural response 
of a deterministic structural parameter is a stationary Gaussian 
process, the crossing time of the response ;�,�  and limit b 
submit to the Poisson process. The dynamic probability of 
failure of a SDOF structure can then be obtained from [16]: 

7��,� ≈ 1 − =;7 >−?�@ =;7 A− �
" B C

DEF"GH    (12) 

I�,� ≈ =;7 >−?�@ =;7 A− �
" B C

DEF"GH    (13) 

where T is the duration of the stationary process, !6is a root 
mean square of the response, and ?�  is zero mean cross rate 
expressed as follows:  

?� = �
"J 'K�

KL    (14) 

where ��  and �"  are zero and the second spectral moment 
respectively, defined as follows: 

�M = � �M�N������O
�      For   m = 0,1,2    (14) 
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When the structural parameters and the excitation are 
random, the system reliability may be evaluated by calculating 
the probability of an equivalent extreme-value event. Hence, 
the seismic excitation and structural response are assumed to 
have a zero mean. 1W and !6 are the extreme value and standard 
division of structural response 1�,�  respectively. The 
dimensionless parameters are explained below [16]. 

X = YZ
DE    (15) 

Assuming a Poisson process for the number of horizontal 
crossings, taking parameter uncertainty into account, the 
estimated mean of the extreme value is: 

[�X� = �%2 ln ?�@ + �._``"
%" ab cLd�    (16) 

and the variance of X is: 

!"�X� = J�
e

DE�
�" ab cd�    (17) 

The extreme value of the stochastic process 1�,�  is 
expressed as: 

1W = [�X� × !6    (18) 

The limit state function of the inter-story drift system is 
expressed as: 

��∆� = I�∆� − h�∆�    (19) 

where I�∆� is the structure drift limit equal to 0.01, 0.015, and 
0.02 from story height, and h�∆� represents the extreme value 
of the structural drift because of the loading, including the 
uncertainties of the structural parameters. Limit state function 
G(∆) ≤ 0 is the failure state, and G(∆) > 0 is a safe state. Table I 
shows the target reliability of the steel structure system. 

TABLE I TARGET RELIABILITY INDICES [17] 

Component 

type 
Loading condition 

D+(L or S) D+L+W D+L+E 

Members 3.0 2.5 1.75 

Connections 4.5 4.5 4.5 

 

VI. NUMERICAL EXAMPLE 

A numerical example is presented and analyzed to 
demonstrate the reliability analysis for a case study of a simple 
frame structure, as shown in Figure 1. The stochastic response 
due to the uncertainty in structure physical properties and 
seismic excitation force is taken into account. 

A. Proposed Structural System 

Uncertainty and reliability analysis have been executed for 
an interior frame of the shear building system, as shown in 
Figure 1. The floor system consists of a concrete slab 200mm 
thick supported by 3 steel girders with a W12×190 cross-
section and the girders are supported by steel columns with a 
W10×33 cross-section, as shown in Figure 2. In addition to the 
own weight, uniformly distributed pressures of 2 and 1kPa 
were adopted for the superimposed and live loads respectively. 

 

Fig. 1.  One-story two-bay frame. 

 
Fig. 2.  Interior frame. 

B. Random Ground Motion 

In this study, the North-South component of the 1940 El 
Centro earthquake was chosen as the ground motion. Using the 
spectral moment method, the acceleration spectral density 
function parameters of filtered white noise ground motion have 
been estimated, as shown in Figure 3. The calculated values of 
natural frequency and the damping ratio for the first and second 
filters were ��= 18.5rad/s, � � = 0.43, and �� =1.5rad/s, and 

�� = 0.6 respectively. The intensity factor of the earthquake 

was �� = 0.00282m
2
/s

3
. 

 

 
Fig. 3.  Actual and theoretical PSD of the El-Centro earthquake. 

C. Stochastic Earthquake Analysis with Deterministic 

Structural Parameters 

The dynamic characteristics of the deterministic portal 
frame structures have been analyzed with ABAQUS finite 
element software [18]. The two-dimension portal frame has 
been modeled with wire part B21, as shown in Figure 4. The 
inertia mass has been selected based on the effective weight of 
the concrete slab, superimposed, and a quarter of the live load 
according to ASCE7-16. The girder and columns were 
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discretized using a mesh size of 100mm. A rigid body 
constraint has been adopted for the girder. In addition, the 
density of the column has been reduced to achieve the 
assumption of a shear frame of the rigid girder supported by 
weightless columns with fixed supports. The structure’s natural 
frequency was obtained by modal analysis, and two values 
were extracted, as shown in Figure 5 and Table II. 

 

 

Fig. 4.  3D portal frame view. 

  

Fig. 5.  First two mode shapes. 

TABLE II NATURAL FREQUENCY AND MASS PARTICIPATION 

FACTOR 

Mode 
Frequency 

(Hz) 

Frequency 

(rad∕sec) 

Mass 

precipitation 

factor 

Direction 

1 1.98 12.46 99% Along x-direction 

2 22.10 138.85 99% Along y-direction 
 

Random vibration analysis was conducted with a base 
motion of the portal frame in the x-direction. The frequency 
range of interest and the response have been set. Hence, the 
PSD of the relative displacement was obtained as shown in 
Figure 6. One peak detected in the vibration responses refers to 
the resonance occurrence at the first natural frequency of the 
investigated system. 

 

 

Fig. 6.  Response PSD of relative displacement. 

By integrating the response PSD, the mean square and Root 
Mean Square (RMS), of relative displacement were 
7.48×10

−5
m

2
 and 8.65×10

−3
m respectively. The displacement 

resistance limit of the structure has been taken from ASCE 7–
16 structural design codes, where the allowable story drift is 
related to the risk categories and the structural system. Thus, 
this research intends to investigate the different allowable 
limits, i.e. 1.0%, 1.5%, and 2%, of story height. The probability 
of failure of the system has been estimated for 3 response 
intervals of 10, 15, and 20s, as shown in Figure 7. Based on 
this estimate, the reliability index was obtained and is presented 
in Table II. The results showed that the probability of failure 
slightly increased when the response time increased. Therefore, 
the reliability index of the system was not significantly 
affected. From another aspect, comparing the reliability index 
with the target reliability shown in Table I reveals that the 
structure meets the specified safety level. 

TABLE III FAILURE PROBABILITY AND RELIABILITY INDEX FOR A 

DETERMINISTIC SYSTEM 

Threshold 
10s 15s 20s 

lm n lm n lm n 

0.01H 1.11×10-3 3.06 1.66×10-3 2.94 2.21×10-3 2.85 

0.015H 5.32×10-9 5.72 7.98×10-9 5.65 1.06×10-8 5.60 

0.02H ≈ 0 − ≈ 0 − ≈ 0 − 
 

 

 

Fig. 7.  First-passage failure for the three-time response interval. 

D. Stochastic Earthquake Analysis with Nondeterministic 

Structural Parameters 

To illustrate the effect of the randomness of structural 
parameters, including stiffness k and mass m on the natural 
frequency and random seismic response, MCS was performed 
to update the random variables of interest for each Finite 
Element Analysis (FEA) trial. Python programming was used 
to develop the deterministic FE model, and then, the random 
input variables of interest were updated based on the idea of 
parameter updating functionality. In this study, the cross-
section dimensions, modulus of elasticity, column length, and 
the applied load were considered as random variables. Table IV 
shows the statistical characteristics of these parameters. 

Probabilistic modal analyses of random structural 
parameters of the interior portal frame were estimated using 
SFEM with python script coding. Matlab function was used to 
generate 5000 pseudo-random samples of cross-section 
dimensions, modulus of elasticity, column length, and 
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structural effective mass. Figure 8 depicts the natural frequency 
result obtained from the sample data. Mean value, standard 
deviation, and coefficient of variance were 12.34rad/sec, 
1.3576, and 0.109 respectively. Notably, the mean value for the 
natural frequency is very close to that shown in Table II for the 
deterministic analysis, indicating the validity of the dynamic 
analysis with random properties and excitation. Due to the 
randomness in the natural frequency, the system response was 
affected. 

Figure 9 shows the RMS of relative displacement. Mean, 
standard deviation, and Cov were 0.0105m, 0.0016, and 0.1483 
respectively. The results for the coefficient of variance indicate 
the effectiveness of randomness in the stochastic structure 
properties and excitation on the response properties. 

TABLE IV STATISTICAL CHARACTERISTICS OF VARIABLES 

Random variables 
Mean/ 

nominal 
COV 

Distribution 

type 
Ref. 

Cross 

section 

dimension 

Depth of the web 1.0009 0.004 Normal 

[20] 
Width of the flange 1.0139 0.009 Normal 

Thickness of the flange 0.9927 0.044 Normal 

Thickness of the web 1.054 0.037 Normal 

Modulus of elasticity 0.993 0.034 Normal [21] 

Column length 1 0.07 Lognormal [22] 

Load 

Weight of a girder 1.03 0.1 Normal 

[23] Weight of a slab 1.05 0.1 Normal 

Superimposed load 1.03 0.1 Normal 

Live load 1 0.1 Gumbel [24] 

 

 

Fig. 8.  Histogram of the first natural frequency. 

 

Fig. 9.  Histogram of the RMS of the relative displacement. 

Figures 8 and 9 show the failure probability estimates for 
the threshold level of 1%, and Table IV presents the summary. 
Notably, the Monte Carlo estimate for 1.5% and 2% levels is 
not shown in the Figure because the sample size is not large 
enough to provide sufficiently accurate estimates for the 
probability of failure corresponding to this threshold level. The 
results revealed that randomness in the system’s stiffness and 
mass influences the system’s reliability. Moreover, generally, 
the probability of failure increased due to the randomness in the 
stiffness and mass of the structure. This conclusion is 
confirmed by comparing the results presented in Tables III and 
V for deterministic and stochastic systems. The Probability 
Density Function (PDF) in Figure 10 shows that the 
distribution ranges of the equivalent extreme value have a trend 
of moving toward the right-hand side with increasing response 
time intervals. This case accords to the trends of increasing the 
probability of failure. The cumulative density function in 
Figure 11 shows the boundary between the safe and failure 
domains, which is described by the limit of 0.04m on the x-
axis. 

TABLE V FAILURE PROBABILITY AND RELIABILITY INDEX FOR A 

STOCHASTIC SYSTEM 

Threshold
10s 15s 20s 

lm n lm n lm n 

0.01H 2.8×10-3 2.77 9.4×10-3 2.34 21.4×10-3 2.02 

 

 

Fig. 10.  Probability density function for the extreme value of drift. 

 
Fig. 11.  Cumulative density function for the extreme value of drift. 
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VII. CONCLUSIONS 

In this study, a reliability analysis of portal frames excited 
by random ground motion with deterministic and stochastic 
structural parameters was performed. The following 
conclusions can be drawn: 

• The probability of failure and the reliability index of the 
deterministic structure were affected slightly by the 
excitation time interval. The probability of failure increased 
and the reliability index decreased with increasing time 
interval. 

• The reliability index of the deterministic structure was 
greater than the target reliability index for members subject 
to seismic base motion. 

• The results for the mean values of the dynamic response for 
the SDOF system with random properties and excitation 
correlate well with the deterministic analysis results. 

• Randomness in the system’s stiffness and mass influences 
the system’s reliability and probability of failure. Generally, 
the probability of failure increased due to the randomness in 
stiffness and mass of the structure. 
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