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Abstract-The classification of amino acids and their sequence 

analysis plays a vital role in life sciences and is a challenging task. 

Deep learning models have well-established frameworks for 

solving a broad spectrum of complex learning problems 

compared to traditional machine learning techniques. This article 

uses and compares state-of-the-art deep learning models like 

Convolution Neural Networks (CNNs), Long Short-Term 

Memory (LSTM), and Gated Recurrent Units (GRU) to solve 

macromolecule classification problems using amino acid 

sequences. The CNN extracts features from amino acid 

sequences, which are treated as vectors with the use of word 

embedding. These vectors are fed to the above-mentioned models 

to train robust classifiers. The results show that word2vec as 

embedding combined with VGG-16 performs better than LSTM 

and GRU. The proposed approach gets an error rate of 1.5%.  
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I. INTRODUCTION 

The last decade has witnessed the great success of deep 
learning as it has brought revolutionary advances in many 
application domains including computer vision, natural 
language processing, and signal processing. The key idea 
behind deep learning is the consideration of feature learning 
and classification in the same network architecture, using back-
propagation to update model parameters and learn 
discriminative feature representations. Notably, many novel 
deep learning methods have been proposed, which improve 
classification performance significantly [1-3]. Studying 
deoxyribonucleic acid (DNA) in life sciences is essential for 
understanding organisms. Current sequencing technologies 
make it possible to read DNA sequences at a lower cost. DNA 
databases are increasing daily, and the power of modern 
computing is required. Classifying DNA sequences is a critical 
and essential task. Four major classes of organic 
macromolecules are always found in all life forms on Earth: 

carbohydrates, lipids (or fats), proteins, and nucleic acids. The 
significant macromolecule classes are similar in that they are 
large polymers assembled from small repeating monomer 
subunits. Proteins are large, complex molecules that play many 
critical roles in the body. They are made up of hundreds or 
thousands of smaller units called amino acids, which are 
attached in long chains. Twenty different types of amino acids 
can be combined to make a protein. The sequence of amino 
acids determines each protein's unique 3-dimensional structure 
and specific function. The interaction of protein with protein 
and protein with DNA/RNA (ribonucleic acid) plays a pivotal 
role in protein function. Experimental detection of residues in 
protein-protein interaction surfaces must come from 
determining the structure of protein-protein, protein-DNA, and 
protein-RNA complexes. However, experimental determination 
of such complexes lags far behind the number of known protein 
sequences. Hence, there is a need to develop reliable 
computational methods for identifying protein-protein, protein-
RNA, and protein-DNA interface residues. Identifying 
macromolecules and detecting specific amino acid residues that 
contribute to the strength of interactions is a fundamental 
problem with broad applications ranging from rational drug 
design to the analysis of metabolic and signal transduction 
networks.  

This article aims to utilize deep learning models to classify 
the macro molecule types based on the amino acid sequence 
and residue count. We used state-of-the-art deep learning 
models like CNN [4], LSTM [5], GRU) [6]. We used word 
embedding to represent the amino acid sequences as vectors. 
The CNN extracts features from amino acid sequences, which 
are treated as vectors. These vectors are then fed to the models 
mentioned above to train robust classifiers. Our results show 
that word2vec embedding combined with VGG-16 performs 
better than LSTM and GRU. 
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II. LITERATURE REVIEW 

The revolution in machine learning, mainly deep learning 
[7-10], allowed the study and extraction of complex patterns 
from data and made the machine models more robust. For 
instance, authors in [7] proposed deep learning techniques to 
perform brand and logo recognition tasks using multiple 
modern CNN models. In [8], a CNN model was applied to 
handwritten character recognition and was compared to a 
standard handwritten digit recognition task. It was found that 
CNNs efficiently deal with the variability of 2D shapes and 
outperform the other techniques. A variable size replicated 
CNN in [9] gathers relevant input information and eliminates 
irrelevant variabilities. A CNN model was proposed in [10] for 
the study and investigation of the accuracy and efficiency of 
new image datasets via transfer learning. Authors in [11] 
targeted learning as an informative feature representation of 
protein sequence as the input of neural network models to 
obtain the final predicting output of the belonging protein 
family. Authors in [12] proposed a framework with a deep 1D 
CNN, which is robust in both fold recognition and the study of 
sequence-structure relationships to classify protein sequences. 
Authors in [13] developed a framework with a CNN that used 
the idea of translation to convert DNA sequences to word 
sequences for final classification. Likewise, recurrent neural 
networks have shown promising results in many machine 
learning tasks. For example, an LSTM-based end-to-end 
approach was proposed in [14] for sequence learning, where 
the model makes nominal assumptions on the sequence 
structure. Similarly, authors in [15] described that recurrent 
neural networks could perform better on a challenging machine 
translation task. In the current article, we aim to evaluate the 
deep leaning techniques CNN, LSTM, and GRU for 
macromolecule classification. It is well established that these 
techniques work well on sequence-based tasks, even with long-
term dependencies. 

III. MATERIALS AND METHODS 

A. Dataset 

We used the protein data bank dataset [21]. A DNA 
molecule consists of two long polynucleotide chains composed 
of 4 types of nucleotide subunits, called a DNA chain. These 
may be adenine (A), cytosine (C), guanine (G), or thymine (T). 
The dataset contains two files with a different number of 
entries. One file has 467304 entries with 5 columns (Table I). 
The other file contains protein meta-data, i.e. resolution, 
extraction method, experimental technique, etc. with 141401 
entries and 14 columns. We merged the two files based on 
structure IDs. The pre-processing step is to drop all the entries 
with NaN value or if a label or sequence is missing. After 
removing the missing values, the sequence is checked for the 
removal of tags and numbers. Once the dataset is cleaned, the 
sequence is divided into tri-gram, each sequence now 
combining three character strings. For example, CGC GAA 
TTC GCG. The final block may not have all three, and we 
added 0 to make it an equal slice (padding). The final output 
contains two columns, one for sequence and one for the label. 
As discussed above, there are 432474 rows in the processed 
data with 4 labels. These are all unbalanced data, and this issue 
will be discussed below.  

TABLE I.  TYPES OF MACROMOLECULE PROTEINS 

Type Label Data structure Entries 

Structure ID structureid Object 140250 

Chain ID chainid Object 2837 

Sequence protein sequence Object 104813 

Residue 

count 

No. of residues 

ATCG's 
Integer 4737 

Macromolecule 

type 

Macromolecule 

type 
Object 14 

 

B. Biological Structures in the Dataset 

The central dogma of life if that DNA makes RNA, RNA 
makes amino acids, and amino acids make proteins. DNA and 
RNA are made of four types of nucleotides (A, T, C, G). The 
nucleotide sequence is the combination of these nucleotides in 
a row. Three nucleotides combine to form a codon, building a 
block of amino acids. The amino acids then are combined to 
form proteins. To make a protein, at least 20 amino acids are 
necessary. Consider the following real example. ATT is a 
codon, which consists of three nucleotides. This codon 
represents amino acid (isoleucine) represented by the letter "I." 
TTT is another codon, i.e. another amino acid (phenylalanine) 
and is characterized by the letter "F." These "IF"s are combined 
with others to make proteins. The letters in the codon represent 
nucleotides, while the letters in the protein sequence represent 
amino acids. At least 20 amino-acids must be combined to 
make a functional protein. The maximum number depends on 
when a stop codon is met. Such a codon can be met after 20 or 
after 500 amino acids. The amino acid sequence determines the 
type of proteins. 

IV. THE PROPOSED METHOD 

Figure 1 shows the block diagram of the proposed system. 
This system can be broadly divided into 3 tasks. The first 2 are 
dataset processing and embedding. We have different choices 
in embedding, but word2vec [16], Fast-Text [17], and GloVe 
[18] are well-known embedding techniques in Natural 
Language Processing (NLP). These embedding techniques 
have been tested in different bioinformatics tasks with 
promising results. Another famous embedding method is one-
hot vector. We used word2vec in this study. The final task is 
the CNN, in which the number of network layers must be 
determined. We also need to find hyper-parameters along with 
the model's size, height, and width. The output layer is a 
SoftMax layer used to classify the sequence. Classifying 
macromolecule types using sequences can be seen as a 
sequence classification problem. This is analogous to the 
sentence classification task in NLP. Thus, we apply a skip-
gram analysis from NLP research to model our problem. There 
are various sequence models in the deep learning domain. We 
used LSTM, GRU, and 1D convolution for our problem. 
Recurrent neural networks, such as LSTM, are specifically 
designed to support input data sequences. Figure 2 shows the 
layout of the model. CNNs can learn the complex dynamics 
within the temporal ordering of input sequences and use 
internal memory to remember or use information across long 
input sequences. As it is crucial to any deep learning task, we 
applied data prepossessing before feeding them to our model. 
Prepossessing includes handling missing values and 
downsampling the dominant class to balance data distribution.  
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Fig. 1.  The blog diagram of the proposed method. 

 

Fig. 2.  LSTM model using embedding at the input. 

 

Fig. 3.  word2vec model relation between sequences. 

A. Word Embedding 

We used word2vec as the embedding technique in this work 
[17]. We need embedding techniques because deep learning or 
machine learning models only deal with real numbers. 
Embedding not only converts these texts or sequences into 
numbers but also produces relationships between them. We 
have two algorithms for word2vec, skip-gram and Common 
Bag Of Words (CBOW). After using both these algorithms in 
the 3 models, we find that skip-gram suits better in our case. 
We used the tri-gram data to generate our word2vec model. 
Figure 3 shows the relationship between the sequences. We 
used different output dimensions, i.e. 100, 150, and 300. We 
find that the 300-dimension output has better performance. 

B. Convolution Neural Network 

The CNN is the most famous deep learning method. We 
used the network architecture of VGG [19, 20].  

 

Fig. 4.  CNN model parameters with dimensions. 

We are using Convolution1D as the data dimension is 1D. 
This network has 4 convolution layers, each layer followed by 
a max-pooling layer. The network also includes batch 
normalization and dropout to prevent the model from over-
fitting. Two dense layers follow the final max-pooling layer. 
The hyper-parameters which give the best results were set as: 
learning rate: 0.001, batch size: 512, loss function: cross-
entropy, optimizer: Adam, number of epochs: 20, dropout rate: 
0.5, activation: ReLU. The final layer is SoftMax. Figure 4 
shows the model architecture along with the model parameters. 

V. EXPERIMENTS AND RESULTS 

We evaluated our models on a protein data bank [21], a 
database for the three-dimensional structural data of large 
biological molecules, such as proteins and nucleic acids. 
Performance comparison between different models will only 
make sense if we keep the same pre-processing and embedding. 
Our experiments show that word2vec with output dimension of 
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300 performs better, and we will keep this setting unless 
mentioned otherwise.  

A. CNN Model Results 

Figure 5 shows the validation and training loss over the 50 
epochs with an embedding dimension of 50. We used an early 
stopping algorithm to save and use our best model. Training 
loss is 0.028, while validation loss is 0.034.  

 

 
Fig. 5.  Training and validation loss. 

 
Fig. 6.  Model training and validation accuracy. 

 

Fig. 7.  Confusion matrix for all classes. 

Figure 6 shows the accuracy curve for the same setting, 
where the final training accuracy is 99.2% and the test accuracy 

is 98.8%. The micro-average and macro-average are almost the 
same. To further dig out the details, we drew the confusion 
matrix of all four classes, as shown in Figure 7, where the 
accuracy of each class is nearly the same, as we can see from 
the diagonal color. Figure 8 shows the CNN model's Precision, 
Recall, and F1-Score. The model has precision of 0.98, 0.97, 
0.98, and 1.00 for classes of DNA, Hybrid, RNA, and Protein 
respectively. Recall and F1-Score can also be easily observed 
in Figure 8. 

 

 
Fig. 8.  Precision, Recall, and F1-Score. 

B. Additional Simulations 

One hundred estimators initialized Random Forest (RF) 
[22], showing 96.83% test accuracy for more than 90,000 test 
sequences. We tested the RF for balanced and unbalanced data, 
and the results were almost identical. Table II shows each 
class's Precision, Recall, and F1-Score. The results are not good 
enough compared to CNN, but RF is much faster and less 
expensive than CNNs. We are reporting these results to show 
that traditional machine learning algorithms also work better 
for some visual question answering times. 

TABLE II.  RANDOM FOREST RESULTS  

Label Precision Recall F1-Score 

Protein 0.96 0.99 0.97 

DNA 0.90 0.80 0.85 

RNA 0.93 0.69 0.79 

Hybrid 0.94 0.88 0.91 

Macro-avg. 0.93 .84 0.88 

Weighted-avg 0.96 0.96 0.96 

TABLE III.  PERFORMANCE OF DIFFERENT NETWORKS 

Model T. Acc. T. Loss Val-Acc. Val-Loss 

CNN 98.19% 0.0486 97.74% 0.0819 

GRU 90.79% 0.2691 89.70% 0.2715 

LSTM 95.12% 0.3982 95.14% 0.1962 

CNN-GRU 94.85% 0.1509 92.74% 0.1962 

RF 95.17% 0.4019 94.87% 0.4906 

VGG16 99.11% 0.0288 98.10% 0.0297 

 

The next step is to compare different state-of-the-art 
algorithms like LSTM, RF, and GRU with the proposed CNN. 
We used TensorFlow embedding in this case with 50-
dimension vectors. In this case, the LSTM and GRU have the 
same network structure and use the same number of cells, i.e. 
512. Table III shows the comparison of accuracy and loss 
across the different networks. The Table shows that VGG-16 
[19] performs better with word2vec as embedding. For 
example, the training accuracy (T. Acc.) and the validation 
accuracy (Val. Acc.) for the VGG-16 are 99.11 and 98.10 
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respectively. Moreover, the training loss (T. Loss) and the 
validation loss (Val. Loss) for the VGG-16 are 0.0288 and 
0.0297 respectively. The 7-layer CNN also performs better 
compared to LSTM and GRU. All CNNs are of one dimension. 
The other models' results can be easily read in Table III. 

VI. CONCLUSION 

In this article, we used NLP techniques to classify the 
protein sequences and very good results based on accuracy and 
precision were achieved. The CNN and CNN-FRU models 
have better performance than the other models. Although we 
didn't train the models for long epochs, we still obtained high 
accuracy with CNN. Moreover, the data are highly non-
normalized. These models perform much better when the data 
are normalized. Future work includes classifying the data with 
more models. 
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