
Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9532-9535 9532 

 

www.etasr.com Azmat et al.: Environmental Noise Reduction based on Deep Denoising Autoencoder 

 

Environmental Noise Reduction based on Deep 

Denoising Autoencoder 

 

Received: 4 August 2022 | Revised: 31 August 2022 | Accepted: 1 September 2022 

 

Abstract-Speech enhancement plays an important role in 

Automatic Speech Recognition (ASR) even though this task 

remains challenging in real-world scenarios of human-level 

performance. To cope with this challenge, an explicit denoising 

framework called Deep Denoising Autoencoder (DDAE) is 

introduced in this paper. The parameters of DDAE encoder and 

decoder are optimized based on the backpropagation criterion, 

where all denoising autoencoders are stacked up instead of 

recurrent connections. For better speech estimation in real and 

noisy environments, we include matched and mismatched noisy 

and clean pairs of speech data to train the DDAE. The DDAE has 

the ability to achieve optimal results even for a limited amount of 

training data. Our experimental results show that the proposed 

DDAE outperformed the baseline algorithms. The DDAE shows 

superior performances based on three-evaluation metrics in noisy 

and clean pairs of speech data compared to three baseline 

algorithms. 
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I. INTRODUCTION  

Speech enhancement is a key part of Automatic Speech 
Recognition (ASR) [1]. It has been implemented in many 
commercial products for decades, but in order to achieve 
human-level performance, it requires further improvement in 
real-world scenarios [2], e.g. when we talk to a person or a 
voice recognition system like an ATM verification call, many 
environmental noises are added and transmitted, posing 
difficulties to the system. To deal with such noises, speech 

signal processing algorithms have been developed to improve 
the quality and intelligibility. 

Neural network-based algorithms are more efficient in 
learning high-order statistical information automatically by 
using nonlinear processing units and are efficient for noise 
reduction [3, 4]. Many algorithms are proposed to train deep 
neural networks efficiently for speech enhancement and noise 
reduction [5-7]. Deep learning algorithms have been used to 
extract speech features and for acoustic modeling [2]. The 
denoising autoencoder has been used for image processing and 
other classification applications to extract robust features when 
the input is a binary masked feature for each autoencoder. For 
speech feature extraction, a recurrent denoising autoencoder for 
ASR was proposed for noise reduction in [8]. There are many 
conventional methods for speech signal processing. For speech 
enhancement, the most used algorithms are Log Minimum 
Mean Square Error (logMMSE) [9], Karhunen-Loeve 
Transforms (KLT) [10], and Robust Principal Component 
Analysis (RPCA) [11], which are designed with specific 
additive background noise based on statistical speech 
properties and noisy signals. However, these methods do not 
work in real settings when people talk in a noisy environment. 
Consequently, it is essential to build a framework to deal with 
the various types of noise in real-world environments. 

This article introduces an explicit denoising framework 
called the Deep Denoising Autoencoder (DDAE), a variant of 
the denoising autoencoder. However, unlike previous works, 
where the input is noisy speech and the output is clean speech 
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for training, the DDAE is trained on datasets of matched noisy 
and clean pairs of speech and mismatched noisy and clean pairs 
of speech for speech estimation in real and live environments. 
In the DDAE, the parameters in the encoder and decoder 
(formed by multiple layers of neural networks) are optimized 
based on the backpropagation criterion, where all denoising 
autoencoders are stacked up instead of recurrent connections. 
The DDAE has the ability to achieve optimal results even with 
a limited amount of training data. Our experimental results of 
DDAE were compared with the speech enhancement 
algorithms RPCA, KLT, and logMMSE. Based on three 
evaluation metrics, the DDAE outperforms these three baseline 
algorithms in matched and mismatched noisy and clean speech. 

II. THE DDAE FRAMEWORK 

This article uses the DDAE framework presented in [12], 
which removes the noise quickly and efficiently. The DDAE 
can achieve optimal results even with inadequate training data. 
It uses the noisy signal to produce clean speech features 
efficiently, even under mismatched testing conditions. Unlike 
[13], where the denoising autoencoder was trained using clean 
speech only, we trained the denoising autoencoder with both 
noisy and clean speech data. Figure 1 shows a single-layer 
hidden neural autoencoder, trained on clean speech with noisy 
and speech data as input. It consists of one nonlinear and one 
linear encoding and decoding stage: 

ℎ���� = ���	�� + ��
�� = ��ℎ���� + �� �    (1) 

where �	 and �� are the weight matrices for encoding and 
decoding neural network connections respectively. Typically, 

regularization takes place when �	 = ��� = �. Also, � is the 
input layer’s bias vector, whereas �  represents the output 
layer’s bias vector. Similarly, ��  is the noisy speech signal 
equivalent to the clean signal �� . The nonlinear logistic 
function utilized by the hidden neuron is ���� = �1 + �����	. 
By optimizing the objective function in (2), the parameters are 
determined as follows: 

���� =  ∑ ||�� − ��||���     (2) 

where the set of the parameters is defined as � = {�, �, �}. In 

addition to using �	 = ��� = �, we apply regularization on 
weights and hidden neural output. This improves the 
generalization and prevents overfitting, which is defined as 
follows: 

 ��� = ���� + ! ||�||�� +  "#�ℎ���))    (3) 

where ||�||�� =  ∑  $�%� . &'ℎ����(�%
�

�% is a regularization 

function defined on the output neurons of the hidden layers, 
and ! and " are its weight coefficients. Thus, the parameters 
may be derived as follows: 

�∗  ≜ arg min1 ���    (4) 

There are numerous unconstrained optimization algorithms 
to solve (4) for the estimation of �∗, �∗, �∗. In this framework, 
the linear search-based algorithm of quasi-Newton is applied.   

Figure 1 depicts the DDAE training procedure using noisy 
and clean voice samples. The DDAE can be constructed by 

stacking up several autoencoders. For the training of the 
DDAE, a dense layer of wised pretraining and fine-tuning is 
employed. When another hidden layer is introduced during the 
pretraining phase, the output of the previous hidden layer is 
used as the input of the subsequent autoencoder. The 
transformed noisy and clean speech data are used for training in 
denoising. As illustrated in Figure 1, the training pair for the 
first autoencoder is � and �, and followed by ℎ��  and ℎ��  or 
the subsequent autoencoder. During the fine-tuning step, the 
initial network parameters are fixed as those obtained from the 
pretraining step. These training stages may produce a better 
overall result than training the DDAE with random 
initialization.  

 

 
Fig. 1.  The training process of the DDAE with noisy and clean speech 

data. 

III. EXPERIMENTAL SETTING 

This section evaluates the proposed DDAE framework and 
the baseline algorithms for speech enhancement tasks. A clean, 
continuous Taiwan Mandarin Hearing In Noise Test 
(TMHINT) data set with 100 utterances was used for training 
by adding 5 noise types (machine, babble, party crowd, 
restaurant, vacuum cleaner) and 5 signal-to-noise ratios (SNR). 
Therefore, the total training dataset for noisy speech contains 
2500 utterances. The first testing scenario is a matching case in 
which 40 utterances are added with the same two types of 
noises (babble and party crowd) with 5 SNR levels. Thus, the 
total number of match case utterances are 400. More details of 
the dataset can be found in [14]. 

We have investigated the accuracy of noise reduction, 
speech enhancement, and intelligibility using 3 different 
metrics with a defined standard range set. The range for PESQ 
is between –0.5 to 4.5. As the value of PESQ increases, the 
quality of speech enhancement will increase. Similarly, the 
range for Short-Time Objective Intangibility (STOI) is between 
0 and 1. As the value of STOI increases, the number of words 
identified by the listener will increase. The Speech Distortion 
Index (SDI) is the opposite of the first two metrics, ranging 
between 0 and 1. As the value of SDI decreases, so does the 
quality of speech enhancement. Most conventional speech 
enhancement algorithms are designed to filter out noisy speech 
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using the gain function estimation. This article compares 3 
traditional algorithms, logMMSE, KLT, and RPCA, with the 
proposed DDAE. The unprocessed speech is named Noisy. The 
experimental results were evaluated using 2 matched noise 
types with two SNR conditions (6dB, -6dB) and 4 mismatched 
noise types with 3 SNR conditions (-2, 0, 2), as shown in Table 
I. The DDAE was trained using 5 layers, each containing 2048 
neurons.. 

TABLE I.  EXPERIMENTAL SETUP OF THE TMHINT DATASET 

Train set 

2500 utterances 

Noise type: Machine, cafeteria babble, crowd party, 

restaurant, vacuum cleaner 

SNR levels: -6dB, -3dB, 3dB, 6dB, 10dB 

Test set 

Matched condition 
400 utterances 

Noise type: Cafeteria babble, crowd party 

SNR levels: -6dB, 6dB 

Mismatched condition 
800 utterances 

Noise type: Applause, baby cry, grocery store, pink 

noise 

SNR levels: -2dB, 0dB, 2dB 
 

IV. RESULTS 

In this section, we evaluate and compare the results of the 
baseline algorithms with DDAE based on 3 evaluation criteria 
using different scenarios and SNR levels as mentioned in Table 
I. 

Table II shows the average PESQ results, normalized across 
the different SNRs. Compared to the baseline algorithms, the 
DDAE framework has a better PESQ score, i.e. improved 
speech quality, for both matched and mismatched noise types. 
Table II demonstrates that the DDAE framework (5 hidden 
layer configuration, each layer containing 2048 hidden 
neurons) outperformed the 3 baselines algorithms, with the 
exception of most pink noise, where the logMMSE 
utperformed the DDAE framework and the other algorithms 
under mismatched stationery noise conditions. In addition, the 
DDAE exhibited a better PESQ score of speech enhancement 
than logMMSE, RPCA, and KLT by maintaining high scores 
for STOI. For instance, the average PSESQ score of the DDAE 
is 2.55, while the PESQ scores of RPCA, logMMSE, and KLT 
are 2.18, 2.15, and 1.90 respectively. Compared to the baseline 
algorithms, on average, the PESQ score of the DDAE is higher 
than RPCA, logMMSE, and KLT by 16.97 %, 18.60%, and 
34.21%, respectively.  

TABLE II.  DDAE COMPARISON WITH THE BASELINE ALGORITHMS 

BASED ON THE AVERAGE PESQ SCORE 

Noise type 
Framework 

Noisy KLT logMMSE RPCA DDAE 

Matched noise (seen noise) 

Babble 2.26 1.89 2.21 2.25 2.58 

Crowd party 2.26 1.85 2.15 2.24 2.61 

Mismatched noise (unseen noise) 

Applause 2.13 1.76 1.89 1.99 2.95 

Baby cry 2.17 1.77 1.97 2.02 2.50 

Grocery 2.19 1.80 2.09 2.18 2.26 

Pink noise 2.32 2.38 2.58 2.40 2.38 

AVG 2.23 1.90 2.15 2.18 2.55 

Table III illustrates the average STOI score for the DDAE 
and baseline algorithms, with 6 noise types with different 
SNRs. The Table shows that the DDAE has a better STOI 
score for all types of noise. Moreover, the DDAE demonstrated 
better average speech enhancement capabilities by maintaining 
high STOI scores. Compared to the baseline algorithms, the 
average STOI score of the DDAE is higher than RPCA, 
logMMSE, and KLT by 16.39%, 65.11%, and 10.93% 
respectively. 

TABLE III.  ALGORITHM COMPARISON BASED ON AVERAGE STOI 

SCORE 

Noise Type 
Framework 

Noisy KLT logMMSE RPCA DDAE 

Matched Noise (seen noise) 

Babble 0.58 0.58 0.38 0.55 0.68 

Crowd party 0.63 0.61 0.46 0.66 0.71 

Mismatched Noise (unseen noise) 

Applause 0.69 0.68 0.57 0.697 0.73 

Baby cry 0.71 0.71 0.54 0.71 0.73 

Grocery 0.45 0.58 0.29 0.45 0.60 

Pink noise 0.52 0.68 0.31 0.52 0.74 

AVG 0.59 0.64 0.43 0.61 0.71 

 

Table IV shows the average SDI results averaged over the 
different SNRs for the 6 considered noise types. The Table 
shows that the DDAE performs better than the other algorithms 
for all types of noise. In addition, the DDAE demonstrated 
better speech enhancement capabilities. Compared to the 
baseline algorithms, the SDI score of the DDAE is 22.64%, 
24.07%, and 12.96%, lower than the RPCA, logMMSE, and 
the performance of DDAE significantly outperformed the 
them. Figure 2 depicts the spectrogram of a test utterance 
contaminated with non-stationary noise applause at  
SNR = -2dB achieved by different models. For comparison, the 
spectrograms of clean and noisy speech signals are also 
presented in Figure 2(a)-(b). The spectrograms of the test 
utterance enhanced by logMMSE, KLT, and RPCA algorithms 
are shown in Figures 2(c)-(e), while Figure 2(f) depicts the 
spectrogram of the enhanced speech signals produced by the 
DDAE. Figure 2 clearly demonstrates that the DDAE 
framework efficiently restores clean speech under very 
challenging conditions (non-stationery noise, -2dB SNR) and 
effectively suppresses noise components from the noisy signal 
(Figure 2(b)). DDAE suppresses noise components more 
effectively and produces better speech quality than the previous 
approaches. 

TABLE IV.  ALGORITHM COMPARISON BASED ON THE AVERAGE SDI 

SCORE 

Noise Type 
Framework 

Noisy KLT logMMSE RPCA DDAE 

Matched noise (seen noise) 

Babble 0.61 0.45 0.48 0.50 0.40 

Crowd party 0.61 0.48 0.48 0.50 0.38 

Mismatched noise (unseen noise) 

Applause 0.61 0.55 0.585 0.58 0.41 

Baby cry 0.61 0.56 0.59 0.56 0.38 

Grocery 0.61 0.52 0.55 0.53 0.50 

Pink noise 0.61 0.25 0.57 0.53 0.39 

AVG 0.61 0.47 0.54 0.53 0.41 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2.  Spectrograms of (a) clean, (b) noisy, (c) logMMSE, (d) KLT, (e) 

RPCA, and (f) DDAE. A noise of -2dB was added to the test utterance. 

V. DISCUSSION AND CONCLUSION 

In this study, the DDAE framework for speech 
enhancement of environmental noise is presented. The 
proposed framework provides a more understandable speech to 
the listener. The major contributions of this study are the 
introduction of the DDAE framework, which enhances speech 
intelligibility over 4 different baseline methods, and the 
confirmation, based on experimental data, that this proposed 
framework can improve speech performance. These 
contributions allow our proposed architecture to serve as a 
straightforward and efficient means of bridging the acoustic 
mismatch condition.  

The DDAE framework provides better generalization and a 
universal approximation capability. For mismatch and non-
stationery conditions, DDAE has better generalization 
performance compared to the conventional speech 
enhancement techniques. The experimental results demonstrate 
that even with insufficient training data, our proposed 
framework outperformed KLT, logMMSE, and RPCA under 
both matched and mismatched noise conditions at varying SNR 
levels. This is confirmed by the evaluation results, which show 
that DDAE outperforms the other algorithms on all levels, 
except for stationary noise where the logMMSE approach 
performs better. In addition, the comparative findings 
demonstrate that our method provides superior enhancement 
performance based on 3 widely used objective metrics. It is 
essential to find the ideal compromise between the parameter 
efficiency and the speech enhancement performance of the 
model. However, the majority of the baseline models cannot 
deliver great parameter efficiency. The experimental results 
suggest that the proposed model is superior to other speech 
enhancement frameworks in terms of trade-off. 
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