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Abstract-The Artificial Bee Colony (ABC) is an algorithm 

designed to solve continuous problems. ABC has been proven to 

be more effective than other biological-inspired algorithms. 

However, it is needed to modify its functionality in order to solve 

a discrete problem. In this work, a natural modification to the 

original ABC is made to make it able to solve discrete problems. 

Six neighborhood operators are proposed to simulate the original 

behavior of ABC. Moreover, several Traveling Salesman 

Problem Library (TSPLIB) problems were used to examine the 

proposed method. The results of the proposed method are 

promising. 

Keywords-Artificial Bee Colony (ABC); discrete problem; TSP 

I. INTRODUCTION  

A heuristic is a method for solving a problem that does not 
guarantee convergence to a global optimum but can offer a 
good enough solution. There are two types of heuristics for 
addressing a combinatorial optimization problem: perturbative 
and constructive heuristics [1]. A constructive heuristic creates 
a comprehensive solution from the bottom-up. A perturbative 
heuristic, on the other hand, changes an existing solution in 
order to find better solutions in the neighborhood of the present 
solution (i.e. operates neighborhood search operations). 
Problem-specific heuristics are used to solve particular 
problems. The nearest neighborhood heuristic and the multiple 
fragment heuristic are examples of constructive heuristics for 
the Traveling Salesman Problem (TSP), whereas perturbative 
heuristics include swap mutation, insert mutation, reverse 
mutation, order crossover, and partially mapped crossover. 

A problem of the ABC algorithm is that it is originally 
designed for continuous problems so modification should be 
applied to make it work with other problem types. `ABC 
integrating grenade explosion and Cauchy operator to avoid 

random search and solving the Dynamic Economic Emission 
Dispatch (DEED) problem was established in [2]. Authors in 
[3, 4] used ABC for routing and performance enhancement of 
wireless sensor networks. Authors in [5] modified ABC to 
solve constrained optimization problems. Instead of the greedy 
selection of the original ABC, the modified ABC used Deb’s 
rules for constrained problems. MABC is a Modified ABC for 
solving the stage shop scheduling problem [6]. The MABC 
uses tabu search in the employee phase instead of the greedy 
selection. Moreover, the onlooker bee phase was also modified 
and the idea of Particle Swarm Optimization (PSO) was used 
instead of random search. Authors in [7] analyzed the 
performance of a discrete ABC algorithm with a neighborhood 
operator. The original ABC uses two solutions for 
neighborhood search while the discrete ABC uses one solution 
for the neighborhood search. 

The aim of this paper is to simulate the original 
neighborhood search behavior of ABC. The main contribution 
of this work is the use of a crossover operation as a 
neighborhood search and the introduction of six neighborhood 
operators which simulate the original ABC neighborhood 
searching behavior.  

II. TΗΕ TRAVELING SALESMAN PROBLEM 

The TSP is one of the most commonly investigated 
optimization problems. The statement of TSP is simple 
however, it remains a challenging problem. The TSP can be 
defined as finding the shortest path, for a given set of cities, 
starting from a base city, visiting all other cities once, and 
returning to the base city. The description of the TSP is an 
indirect weighted graph � =  ��,   ��, where � symbolizes the 
set of cities, and � symbolizes the set of links that connect the 
cities. Each link which connects two cities is assigned a length 
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value  	
� , where  �,  
  ∈  � . The problem is called symmetric 

TSP when the distance between two cities is the same 
regardless of direction, i.e. 	
� = 	�
. On the other hand, it is 

called asymmetric TSP when there is at least one link with a 
different distance with respect to direction, that is, the distances 

are direction-dependent and 	
� ≠ 	�
 . TSP is NP-hard 

problem. Equation ( 1) can be used to find the total possible 
solutions [8]: 

����� ��������� =   �����!
�     ( 1) 

where n is the number of nodes or cities.  

For example, if we have 60 cities and each city is connected 
to all other cities, the total possible solutions will be 

(60 1)!
6.9341559 79

2
e


  . In the case of evaluating 1 billion 

possible solutions per second, it would take about 2.2×10
63

 
years to check all possible solutions [9]. From the above 
example, it is obvious how large the search space is. Although 
good techniques are used to reduce the search space (e.g. 
nearest neighbor [11]), the TSP is still classified as an NP-hard 
problem. 

The TSPLIB benchmark [10] provides a large collection of 
TSP cases and is represented as a standard coordinate data 
system. Figures  1, 2 show an example of a TSP before finding 
the solution and the optimal solution respectively. 

 

 

Fig. 1.  A TSP problem. 

 

Fig. 2.  TSP solution. 

III. THE ARTIFICIAL BEE COLONY ALGORITHM 

The ABC algorithm is a well-studied algorithm developed 
to solve continuous function optimization problems [11]. It 
simulates the foraging behavior a swarm of bees perform to 
find food. ABC is successfully used in many fields like energy 
management of for mobile devices [12] and for routing of 
mobile agents in Internet of Things (IoT) applications [13]. In 
ABC, the bees are divided into 3 groups: employed, onlookers, 
and scouts. Employed bees search for food sources and share 
information with an onlooker bee. The onlooker bee tries to 
search for a better food source in the neighborhood by using 
the knowledge passed from the employed bees. If the food 
source is abandoned, the employed bees responsible for that 
food source become scout bees and randomly search for the 
new food sources. In ABC, employed and onlooker bees 
accomplish the exploitation, while scout bees control the 
exploration process. In ABC, the employed bees use (2) to 
search neighbors by moving from an old position �
� to the new 

position �
�  if and only if the new position's fitness is better 

than the fitness of the old position: 

�
� = �
� + ϕ
�!�
� − �#�$    (2) 

Where �
 is the old position and �
 is the new position of �%& employed. ϕ
�  is a random real number in the range of  

[-1,1], j is an arbitrary integer number between 1 and the 
dimension of the problem, while k is a random number between 
1 and the number of employed bees. On the other hand, the 
onlooker bee selects a food source and evaluates all employed 
bees depending on the probability calculated by: 

'
 = (
%)∑ (
%+,-+./     (3) 

where fit is the fitness values of the solution (food source) of 
the employed bee, which is calculated by: 

0��
 = 1 �
�2(�3)�  , 0��
� ≥ 0

1 + |0��
�|, 0��
� < 0    (4) 

where 0��
� stands for the value of the objective function to be 
optimized. Like the employed bee, the onlooker bee uses (3) to 
update the position and explore the selected food source.  

 
Fig. 3.  Standard ABC algorithm. 

When a food source cannot be further exploited within a 
pre-defined trial limit, it will be abandoned, and the 
corresponding employed bee becomes a scout bee and 
randomly searches for a new food source. Such a combination 
of the exploration and exploitation search in ABC is important. 
It allows the algorithm to search the solution space for high-
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quality solutions and prevents them from getting stuck in local 
optima. In ABC, the employed bees maintain the current 
solution while the onlooker bees allow the best solution to be 
exploited. Furthermore, scout bees try to remove stagnating 
solutions and explore new solutions. Figure 3 shows the 
standard ABC algorithm. 

IV. ARTIFICAL BEE COLONY FOR TSP 

TSP is a discrete problem and ABC is designed to solve 
continuous problems. The neighborhood operator which is a 
replacement for (2) is used in [7, 14] to make ABC able to 
solve TSPs. However, in the original ABC, the process of 
updating the solution is done by choosing another solution 
(randomly from the employee bee and using a roulette wheel in 
onlooker bee) and trying to enhance a solution. In this work, 
six neighborhood operators are proposed to simulate the 
original behavior of ABC. 

A. Random Swap Crossover (RSC) 

Random swap involves swapping the position of two 
randomly selected cities, starting from the first solution to the 
second solution, and rearranging the final solution to fix the 
position of the cities inserted. Consider, for example, the 
following two solutions of the 7-city TSP�1,2,3,4,5,6,7� and �1,5,7,6,2,3,4�. First, select two random points as i and j. In 
our example i = 3 and j =5. Then copy the i-th item from the 
second solution into the first solution (7→3). Then, the repair 
algorithm runs to map the i-th item in the first solution to the 
position of the old i-th item (3 → 7) and repeats the same 
operation for the j-th item as shown in Figure 4. 

 

 

Fig. 4.  Random Swap Crossover 

B. Random Swap Subsequence Crossover (RSSC) 

RSSC operation is the same as that of RSC, with one 
difference, which is the subsequence to swap in a solution from 
solution to solution. For example, if we have two solutions like 
in Figure 4 where i = 2 is the start position of sequence and k = 
3, where k is the sequence length. First, copy the i-th item from 
the second solution into the first solution (5→2). Then, the 
repair algorithm maps the i-th item in the first solution to the 
position of the old i-th item (2 → 5) and repeats the same 
operation k times. 

C. Random Insertion Crossover (RIC) 

In RIC, a city from the first solution is randomly picked, 
removed from the second solution, reinserted into a random 
position in the second solution, and the repair algorithm is 

executed as explained in RSC. Figure 6 shows the RIC 
operation. 

 

 
Fig. 5.  Random Swap Subsequence Crossover. 

 

Fig. 6.  Random Insertion Crossover. 

D. Random Insertion of Subsequence Crossover (RISC) 

In RISC, a subsequence from a solution is randomly picked 
and then inserted into a second solution. The repair algorithm is 
again executed as in RSC. Figure 7 shows the RISC operation. 

 

 

Fig. 7.  Random Insertion of Subsequence Crossover. 

E. Random Reversing Crossover (RRC) 

RRC is the same as RSC, with one difference, which is the 
inversion of the inserted cities when copying from the first to 
the second solution as shown in Figure 8. 

F. Random Swap Subsequence Reverse Crossover (RSSRC) 

It is the same as RISC with the difference that the inserted 
sequence is inverted before insertion as shown in Figure 9. 
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Fig. 8.  Random Reversing Crossover. 

 
Fig. 9.  Random Swap Subsequence Reverse Crossover. 

V. RESULTS AND DISCUSSION  

In this work, the proposed method was implemented using 
C#. The algorithm was tested in 12 TSP problems (pr76, 
kroA100, kroB100, kroC100, kroD100, kroE100, rd100, gr120, 
pr124, bier127, ch130, pr136) taken from the TSPLIB 
benchmark library [12]. The code was run on a 2.80 GHz Intel 
Core i7 processor with 16 GB RAM. The same parameter 
values were used in all experiments to make sure of a fair 
judgment between all different methods. Each method ran the 
same TSP benchmark 30 times. The best and the average 
solutions were collected for every 30 runs. 

The experimental results obtained by the discrete ABC 
algorithm with crossover and ABC with neighborhood 
operators explained in [7] are shown in Table I (RSC), Table II 
(RSSC), Table III (RIC), Table IV (RISC), Table V (RRC), 
and Table VI (RSSRC). 

TABLE I.  RANDOM SWAP CROSSOVER 

Problem 
RSWC RS 

error avg error error avg error 

pr76 46.99748 54.72502 73.58703 91.39779 

kroA100 80.78658 96.99104 139.8036 163.6677 

kroB100 79.63055 88.92176 135.0029 152.0174 

kroC100 74.64938 98.85922 131.963 163.369 

kroD100 85.98666 94.72684 136.2168 155.6664 

kroE100 71.01233 92.52387 132.8938 153.7324 

rd100 69.38053 85.36747 116.7762 145.2078 

gr120 78.45001 94.11505 138.0726 154.8065 

pr124 136.2697 168.2421 241.074 265.6827 

bier127 47.11283 69.60656 105.9739 118.8277 

ch130 86.30115 104.0835 161.9804 183.4746 

pr136 87.92729 112.748 181.9473 197.9853 

TABLE II.  RANDOM SWAP SUBSEQUENCE CROSSOVER 

Problem 
RSSWC RSS 

error avg error error avg error 

pr76 59.73151 71.36817 25.39687 47.79393 

kroA100 86.09153 108.4756 84.81346 110.7512 

kroB100 77.17357 101.3199 78.25753 100.5301 

kroC100 98.665 111.3994 90.92968 118.8134 

kroD100 85.83639 103.1306 82.44576 105.7127 

kroE100 90.4749 102.0346 80.2021 106.9497 

rd100 83.67889 97.02318 74.71555 98.79351 

gr120 85.07635 95.13253 88.61999 113.2892 

pr124 131.1164 149.0558 138.3534 185.6913 

bier127 69.38587 78.58206 52.21082 70.05222 

ch130 107.234 120.3644 97.10311 122.9116 

pr136 102.9296 115.7102 114.7532 142.3517 

TABLE III.  RANDOM INSERTION CROSSOVER 

Problem 
RIWC RI 

error avg error error avg error 

pr76 27.94312 39.36553 10.94685 20.9037 

kroA100 38.01334 61.09639 35.77671 52.17602 

kroB100 37.36507 55.50231 33.21892 51.09405 

kroC100 52.78327 65.16459 30.12193 57.67137 

kroD100 47.56269 60.26111 35.18832 53.36621 

kroE100 44.0638 59.97311 31.6431 52.00773 

rd100 31.66877 55.39022 31.32743 58.60598 

gr120 48.2858 60.77883 53.31317 72.07241 

pr124 68.42453 89.73748 63.58123 101.3253 

bier127 41.45855 49.50531 47.90162 69.3766 

ch130 57.54501 70.97709 74.04255 116.2635 

pr136 54.72967 68.41197 77.31782 104.5502 

TABLE IV.  RANDOM INSERTION OF SUBSEQUENCE CROSSOVER 

Problem 
RISWC RIS 

error avg error error avg error 

pr76 49.2266 58.47 50.86031 66.37531 

kroA100 76.14416 86.6875 104.2618 130.5938 

kroB100 69.49099 81.44588 90.89472 113.5918 

kroC100 79.03031 90.92808 100.8964 130.3549 

kroD100 67.30065 81.70236 93.09665 119.8395 

kroE100 64.37375 81.873 99.69639 124.8651 

rd100 70.0885 81.38938 94.96839 115.2503 

gr120 66.30654 77.97273 90.01729 121.2134 

pr124 101.5297 117.2478 137.2438 200.9112 

bier127 54.447 69.39636 67.83112 81.2194 

ch130 79.1653 93.60993 111.9476 146.4146 

pr136 74.26735 87.27759 135.192 156.8362 

TABLE V.  RANDOM REVERSING CROSSOVER 

Problem 
RRWC RR 

error avg error error avg error 

pr76 21.22307 26.50754 8.847839 13.58325 

kroA100 18.54547 29.62665 8.4486 14.70384 

kroB100 19.15563 27.48035 4.879309 12.21972 

kroC100 6.691075 17.47819 1.227822 4.689023 

kroD100 13.33333 18.1679 1.185185 4.019753 

kroE100 15.1942 26.48397 15.15869 20.62213 

rd100 25.02455 34.71413 28.01964 40.71358 

gr120 19.04861 30.61965 4.089297 13.66924 

pr124 16.38715 23.30662 5.198294 10.8402 

bier127 32.74267 44.25733 17.94681 30.11028 

ch130 26.09536 34.55156 22.58505 34.33286 

pr136 21.25158 28.10493 8.609355 15.42815 

 

The results clearly show that the proposed method is better 
for all considered problems and RSC, RISC, RRSSRC 
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methods. In RSSC, it got a better result in 9 cases. On the other 
hand, RIC solves half of the problems with better results than 
the other methods. However, the RRC operator gives poor 
performance compared to the random-reverse neighborhood 
operator. 

TABLE VI.  RANDOM SWAP SUBSEQUENCE REVERSE CROSSOVER 

Problem 
RSSRWC RSSR 

error avg error error avg error 

pr76 58.71911 70.09199 102.3012 114.1171 

kroA100 93.22902 113.2607 182.3983 192.9061 

kroB100 84.36837 103.8512 168.6645 178.0544 

kroC100 85.88848 111.2542 169.8588 194.1552 

kroD100 81.38443 105.0621 168.5404 185.8098 

kroE100 90.64709 104.1044 169.0955 182.4486 

rd100 84.93047 103.8972 168.8748 183.0523 

gr120 85.86863 100.5695 161.8986 180.8902 

pr124 131.9532 156.3919 283.1865 311.2413 

bier127 67.18267 82.61759 125.0528 135.4019 

ch130 107.2831 123.7621 212.455 223.1844 

pr136 103.5847 120.2145 208.8197 229.9761 

 

VI. CONCLUSIONS  

In this work, the Artificial Bee Colony algorithm is 
modified with new neighborhood operators to solve discrete 
problems. The proposed method was tested on 12 TSP 
problems from the TSPLIB. The results show that Random 
Swap Crossover, Random Insertion of Subsequence Crossover, 
and Random Swap Subsequence Reverse Crossover operations 
give a good performance. The proposed method is similar to 
the original Artificial Bee Colony algorithm and gives 
promising results. 

Our future work will focus on introducing new 
neighborhood operators and optimizing the implementation of 
the proposed method. Furthermore, due to the encouraging 
result, the proposed method can be easily integrated into other 
optimization algorithms. 
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