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Abstract-The present paper presents an analytical study of the 

one-dimensional weak shock wave problem in a perfect gas under 

the action of a generalized magnetic field subjected to weak shock 

jump conditions (R-H conditions). The magnetic field is 

considered axial and azimuthal in cylindrically symmetric 

configuration. By considering a straightforward analytical 

approach, an explicit solution exhibiting time-space dependency 

for gas-dynamical flow parameters and total energy (generated 

during the propagation of the weak shock from the center of the 

explosion) has been obtained under the significant influence of 

generalized magnetic fields (axial and azimuthal) and the results 

are analyzed graphically. From the outcome, it is worth noticing 

that for an increasing value of Mach number under the 

generalized magnetic field, the decay process of physical 

parameters (density, pressure, and magnetic pressure) is a bit 

slower, whereas the velocity profile and total energy increase 

rapidly with respect to time. Moreover, for increasing values of 

Shock-Cowling number the total energy grows rapidly with 

respect to time. 

Keywords-weak shock waves; analytical solution; Rankine- 

Hugoniot conditions; magnetogasdynamics 

I. INTRODUCTION  

In general, the complex physical phenomena occurring in 
nature are non-linear and are described by mathematical 
models in the form of Non-linear Partial Differential Equations 
(NPDEs). During the last few decades such nonlinear 
mathematical models are getting a vital role in the fields of 
natural, engineering, and medical sciences such as plasma 
physics, solid-state physics, fluid mechanics, optical fibers, 
geophysics, biomechanics, etc. and many efforts have been 
made for confronting the exact and numerical solutions of such 
physical systems [1-6]. Due to the high complexity, finding the 

exact (closed form) solution of such realistic models is thus a 
challenging and rigorous task because it comprises many 
physical and natural intricacies and only in certain cases can we 
explicitly unravel the solutions. 

Mathematically, the nonlinear wave (shock wave) 
propagation phenomenon is formulated as a quasilinear 
hyperbolic system of partial differential equations. The shock 
wave occurs in gaseous media by a dynamical mechanism in 
which an immense amount of energy is abruptly released over 
a small interval of time during the propagation of wave 
discontinuity, e.g. prolonged rapid electrical discharges in the 
air such as thunder-strokes, explosions of long thin wires, etc. 
It is well known that shock processes usually occur due to the 
high temperature in which the gas ionizes, so the effect of the 
magnetic field also becomes significant. The understanding of 
the influence of the magnetic field on wave propagation 
phenomenon and the resulting flow field is of great importance 
as it involves many applications in the field of space science 
research, atmospheric sciences, nuclear sciences, etc. The study 
of shock wave propagation under the action of a magnetic field 
for a perfect gas are important for the interpretation of the 
phenomena encountered in astrophysics from the theoretical 
and experimental points of view, as the ideal magneto-
gasdynamic flow involves a plasma in which the diffusion 
effects are negligible. 

Many researchers [7-11] have worked to better understand 
the magnetic field effects on the dynamics of shock waves. In 
keeping with [7-11], authors in [12] discussed the self-similar 
solution of the blast wave problem with identical geometry 
under constant axial current. Authors in [13] studied one 
dimensional steady flow of a perfect gas and reported the first 
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complete explicit shock solution in the aligned field 
magnetogasdynamics. In [14], the authors considered spherical 
shock propagation in a magnetized medium and found that the 
model has some limitations on real flare produced shocks, 
taking into account isothermal flow conditions in planar and 
identical geometry. Authors in [15] reported the existence of 
self-similar solutions for blast waves and observed that the 
magnetic field effects play a significant role in the theory of 
blast waves. Authors in [16] used the asymptotic approach and 
analyzed the decay behavior of sawtooth profile for planar and 
cylindrical gas dynamical flows headed by weak wave front 
under the action of axial magnetic field. Authors in [17] studied 
the evolution and formation of the 1-dimensional magneto-
hydrodynamic shock wave in the approximation of the low 
plasma-to-magnetic pressure ratio and obtained an analytical 
expression for shock formation. A detailed theoretical, 
experimental, and computational review on magneto 
aerodynamics was presented in [18] and the features of shock 
structure in the presence of magnetic field were discussed. 

Within the above mentioned framework, several 
investigations have been recently performed for finding the 
analytical solution of ideal MHD equations. Authors in [19] 
obtained a particular solution of strong discontinuity waves in 
ideal magneto-gasdynamic flow via lie group transformation 
analysis and studied the effect of the applied magnetic field on 
the evolutionary behavior of reflected and transmitted waves 
which arises when a magnet-acoustic wave collides with a 
shock. The methodology proposed in [20, 21] gave the precise 
solution of the shock wave problem involving strong 
discontinuities in magneto-gas-dynamic regime. The 
convergence of the shock wave in the cylindrical symmetry 
was investigated in [22] and rendered analytical asymptotic 
results on the shock trajectory for small radii. By using the 
method of generalized wavefront expansion, authors in [23] 
derived nonlinear coupled evolution equations and assessed 
how the magnetic field, either axial or azimuthal, influences the 
formation of weak shock waves in an ideal gas. Authors in [24] 
presented the numerical description of the flow field in 
magnetogasdynamics and analyzed that the presence of 
magnetic field suppresses the instabilities in the point explosion 
problem. Authors in [25] reported an approximate analytical 
solution for propagation of cylindrical shock waves in 
isothermal flow conditions with azimuthal magnetic field. 
Authors in [26] initiated the analysis of weak shock 
propagation in a simplified van der Waals gas influenced by 
thermal radiation under optically thin limit. Authors in [27] 
studied the strong explosion problem in perfect gasdynamics 
with magnetic field effects using power series solution and 
recovered the result described by [28] in the absence of 
magnetic field. Recently, authors in [29] scrutinized the point 
explosion problem in perfect magneto-gasdynamic flow on 
stellar surface and reported an explicit exact solution of fluid 
characteristics (density, velocity, and pressure) which expounds 
time-position dependence. Authors in [30] highlighted the 
impact of dust-laden particles on the evolution of magnetic 
shock waves and analyzed the behavior of half N-wave. 
Authors in [31, 32] solved the Riemann problem for the 
hyperbolic system of conservation laws and examined the 
study of discontinuous solutions in non-ideal material media. 

In this article, our goal is to construct a closed-form 
solution (which exhibits a space-time dependence) to the weak 
shock wave problem in an ideal gas for cylindrically symmetric 
flow under the influence of axial and azimuthal magnetic fields 
(modelled in the form of Shock-Cowling number, �� = 2ℎ� ����⁄ ) and to investigate how the magnetic field and 
the Mach number affect the thermodynamic flow 
characteristics. It has been assumed that the mass density 
distribution obeys a power law of the radial distance from the 
centre of explosion. Furthermore, we derived an analytical 
expression for the total energy of the weak shock wave, 
influenced by the magnetic field. The way the behavior of 
physical parameters such as density, velocity, pressure, 
magnetic pressure and energy is affected by the Mach number 
and the presence of magnetic field, is also assessed. 

II. MATHEMATICAL MODEL OF THE PROBLEM 

To outline the approach, we consider a basic set of 
governing conservation equations, consisting one-dimensional 
compressible cylindrically symmetric unsteady adiabatic 
motion of a perfect gas under the influence of magnetic field in 
which viscous stress is negligible. Mathematically, this system 
of Euler’s equations corresponding to mass balance, 
momentum balance, energy and magnetic pressure balance in 
non-conservative form is given by [33-35]: 

�
 + �� + �� + ��� ⁄ � = 0    (1) 

���
 + ��� + � + ℎ + �2�ℎ ⁄ � = 0    (2) 

�
 + �� + ����� + �� ⁄ �� = 0    (3) 

ℎ
 + �ℎ + 2ℎ�� + ��1 − �� � ⁄ �� = 0     (4) 

In the above equations,  ∈ ℝ  and � > 0  stand for the 
spatial and time variables, ��, �� refers to the mass density, ��, ��  is the pressure, ��, ��  is the flow velocity, ℎ  the 
magnetic pressure defined as ℎ = � � 2⁄  with � as the 
magnetic permeability, and   is the transverse magnetic field. 
The entity c accounts for the equilibrium speed of sound and is 
defined as �� = Γ� �⁄  where Γ = "# "$ �1 < Γ < 2�⁄  is the 

adiabatic exponent and thermodynamic constants "#  and "$ 

denote the specific heat of the gas at constant pressure and at 
constant volume respectively. Here and hereafter nonnumeric 
subscripts with respect to physical characteristics indicate 
partial differentiation unless stated otherwise. The constant � = 0  exhibits the axial magnetic field and � = 1  the 
azimuthal magnetic field. For motion in ideal gasdynamic 
medium, the governing dynamical equations (1)-(4) are 
supplemented with the following constitutive relation (or 
equation of state): 

� = �'(    �5� 

where ' is the specific gas constant and ( is the temperature. 

Let ℛ = ℛ��� be the shock-location at time � moving with 

the shock speed � = +ℛ
+
  into the medium immediately ahead of 

the shock given by �� = 0 , �� =  constant, �� = ����  and ℎ� = ℎ���, where the thermodynamic profiles with subscript 
0 express the values in the pre-shock region. It has been also 
assumed here that weak shock propagation obeys a power 
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law  �� =  ��ℛ , , in which the density of the pre-shock 
(undisturbed) region  �� varies with respect to the shock radius. 
Here, �� is a dimensional constant and , a constant. The value 
of constant , is to be determined in the ongoing analysis. 

It is well known that the energy produced during the 
propagation of a weak shock wave in any gas medium is equal 
to the sum of the kinetic energy and internal energy of the gas 
and is a constant. The balance equation for the total energy -. 
in an ideal magneto-gas-dynamic flow is given by: 

-. = / 01
� �� + 1

�231� 4#
5 − #6567 + 48

5 − 865679 �ℛ� :    (6) 

In view of the relation / 5
56

ℛ�  : = ℛ;
�  obtained from 

Lagrangian equation of continuity, �6�  yields the following 
expression for total energy: 

-. = / 05=;
� + #

�231� + ℎ9 ℛ� : − #6ℛ;
��231� − 86ℛ;

�     (7) 

III. FORMULATION OF SHOCK-JUMP CONDITIONS 

At the outset, for the formulation of shock-jump conditions, 
we recast the fundamental set of balance equations (1) – (4) in 
conservation form which yields: 

�
 + ���� = −��� ⁄ �    (8) 

����
 + ���� + � + ℎ� = −���� ⁄ � − �2�ℎ ⁄ �    (9) 

45=;
� + #>�231�8

�231� 7
 + 4 2#=
�231� + 5=?>@=8

� 7 = 2#=
�132� −

       5=?>@8=
�     (10) 

4ℎA;7
 + 4�ℎA;7 = BℎA;�� − 1�� C D    (11) 

The Rankine-Hugoniot conditions across the shock front 
that connects the flow ahead and behind the shock waves can 
be derived from (8)-(11) and are given by: 

�� − ���� = ��� − ���    (12) 

���� + � + ℎ� − ������ + �� + ℎ�� = ���� − �����    (13) 

42#=
231 + 5=?>@=8

� 7 − 42#6=6231 + 56=6?>@=686� 7 =  

� 045=;
� +       #>8�231�

�231� 7 − 456=6;
� + #6>86�231�

�231� 79    (14) 

4�ℎA;7 − 4��ℎ�
A;7 = � 4ℎA; − ℎ�

A;7    (15) 

Substituting the values of flow profiles from (12), (13), and 
(15) in (14� yields the following cubic equation in terms of 
density profile ��, ��: 

�Γ − 2������F + ��2�� + ������� + ���Γ − 1�G��  

Γ��� − Γ�Γ + 1������G� = 0    (16) 

where G = � ��⁄  represents the Mach number with  �� = �Γ�� ��⁄ �1 �⁄  and �� = 2ℎ� ����⁄  denotes the Shock- 
Cowling number. 

On solving the cubic equation (16), one obtains the values 
of the thermo-dynamical characteristics �, �, and ℎ in terms of 

the density parameter �. Thus, (16) along with (12), (13), and 
(15) allow us to obtain the Rankine-Hugoniot jump conditions 
as follows: 

� = 2>1
231 B1 + �

�231�I;D31 ��    (17) 

� = �
2>1 41 − 1

I;7 �    (18) 

� = J�B13 KLA;KM;D
2>1 + N6OB231> ;M;D;3�2>1�;P

�B231> ;M;D; Q ����
    (19) 

ℎ = N6�2>1�;
�B231> ;M;D; ����    (20) 

IV. DERIVATION OF THE ANALYTICAL SOLUTION TO THE 

WEAK SHOCK WAVE PROBLEM 

In this section we shall derive an exact solution of 
compressible Eulerian equations (1)-(4) governing the one-
dimensional unsteady propagation of weak shock waves in 
generalized magnetogasdynamics by using an analytical 
approach proposed in [6]. In order to find an exact solution, 
subject to the Rankine-Hugoniot’s ratios (17)-(20), we establish 
an expression immediately behind the shock front for the 
physical characteristics of pressure and magnetic pressure of 
the flow, in terms of the other thermo-dynamical variables, 
density and flow velocity, given as: 

� = @�231�;B13 KLA;KM;D>N6�2>1�O�231�;3�2>1�;B1> ;�KLA� AM;DL;P
R�231�413 AM;7;B1> ;�KLA� AM;DLA ���   (21) 

ℎ = N6�2>1�?B1> ;�KLA� AM;DLA

R�231�413 AM;7; ���    (22) 

An inspection of (21) and (22) leads the Eulerian nonlinear 
system (2)-(4) to the following form: 

�
 + ==S�1>ℱ�LA − =5U5ℱLA + =;
 J �VN64231> ;M;7LA

R�2>1�L?413 AM;7; − ℱQ = 0    (23) 

where ℱ = @B13�KLA�;K AM;D>N6�2>1�
RB231> ;M;DLA413 AM;7;  and: 

�
 +  ��W + �231�
� � 4�W + =

W7 = 0    (24) 

�
 +  ��W + =
� 0�W + �13�V�=

W  9 = 0    (25) 

Plugging (23) and (24) and performing some algebraic 
manipulations, we get the resulting equation as: 

X��� = ����3ℒ���ℳ3ℒ    (26) 

where X(t) denotes the single function of time and the values of 
the constants ℒ and ℳ are given as: 

ℒ = �231�
�ℱ  and ℳ = 2� N6�2>1�?B1> ;�KLA� AM;DLA

R�231�413 AM;7;ℱ  
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Using (26) and after some analytical steps, the mass-
balance equation (1) of the compressible Euler system is 
eventually recast in the following form: 

��3ℒ�
= �
 + �1 − ℒ�� − �ℒ − ℳ + 1� =

 − 1
X

+X
+
 = 0    (27) 

On solving (24) and (27) we have: 

� = 1
�ℒ2>ℳ3��ℒ>2��


X

+X
+
     (28) 

By substituting the value of flow velocity from (28) in (27) 
and after simplification we have: 

X��� = X����3[    (29) 

where [ = ��ℒ>2�3ℒ23ℳ
2  and X� is an arbitrary constant. 

On using the Rankine-Hugoniot jump boundary conditions 
(17) and (18), we obtain explicit expressions for the radius of 
shock front ℛ and constant , as: 

ℛ = ���
�K\A�

;K4AL AM;7
    (30) 

, = �2]I;31^��3�ℒ>[��>��ℒ3ℳ3���2>1�I;
�2>1�I;     (31) 

Eventually, in reference of jump conditions (17)-(20), the 
analytical solution of the flow-field variables to the weak shock 
wave problem modelled in the prior section is given as: 

� = X��Γ��3ℒ ��;ℒLℳL;
�
��ℒ\[�L;    (32) 

� = ��ℒ�132�>2��>ℒ�3ℳ�
2����ℒ>2�3ℒ��>2�3ℳ�

W 

     (33) 

� =
X6��;ℒLℳ

⎣⎢
⎢⎢
⎢⎡413 KLA;KM;7>

AL �K\A�;
4KLA\ ;M;7;

b�c6�K\A��LA
⎦⎥
⎥⎥
⎥⎤

��2�ℒ�
��ℒ\[�413 AM;7;4231> ;M;7LA     (34) 

ℎ = X6N6��;ℒLℳ4231> ;M;7LA
R�2�ℒ�
��ℒ\[��2>1�L?413 AM;7;    (35) 

By applying the values of the physical flow parameters 
from (32)-(35), the explicit cumbersome solution for total 
energy -. is given as: 

-. = Λ. ����K\A�M;�;�ℒ\A�Lℳ�L;K�ℒ\[�]M;LA^;K]M;LA^     (36) 

where: 

Λ =
X6

⎣⎢
⎢⎢
⎢⎢
⎢⎡ c6�K\A�?
hKLA\ ;M;i>@413 AM;7;3 ;�K\A�h A;K�KLA� AM;\c6b i

�;�ℒ\A�Lℳ�LAhKLA\ ;M;iLA

>bhAL�KLA�;K AM;i\c6�K\A�jAL�K\A�;hKLA\ ;M;iL;k
hA\ ;�KLA� AM;iLA ⎦⎥

⎥⎥
⎥⎥
⎥⎤

R���ℒ>1�3ℳ��2�ℒ413 AM;7;   

V. RESULTS AND DISCUSSION 

The formulation of precise (closed form) and analytical 
solutions is of utmost importance in the field of natural and 
engineering sciences as these solutions are very helpful to 
understand and classify the involved physical phenomena. The 
expressions (32)-(36) depict explicitly the analytical solution of 
physical flow characteristics (such as density, velocity, 
pressure, and magnetic pressure) and total energy, to the 
cylindrical symmetric weak shock wave problem in an ideal 
supersonic magnetogasdynamic flow. It should be noted that 
the exact solutions obtained for the density, pressure, and 
magnetic pressure flow are greatly affected by the generalized 
magnetic field and shock Mach number. However, velocity 
profile and shock radius remain unchanged under the influence 
of the magnetic field, whereas the effect of shock Mach 
number appears significantly. 

Figures 1-3 illustrate the behavior of flow characteristics 
density, pressure and magnetic pressure, for the propagation of 
cylindrical weak shock wave in azimuthal magnetic field with 
the variation in Mach number G with respect to time �. The 
values of the constants utilized for numerical computation have 
been taken as: X� = 1, Γ =1.67, and ��=0.05. For the sake of 
convenience, the effect of magnetic field h has been entered 
through Shock-Cowling number ��.  

 

 
Fig. 1.  Dispersal of density profile with time at various values of Mach 

number. 

 
Fig. 2.  Dispersal of pressure profile with time at various values of Mach 

number. 
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Fig. 3.  Dispersal of pressure profile with time at various values of Mach 

number. 

From Figures 1-3, it is evident that for increasing value of 
shock-Mach number, the decay process of physical parameters 
(density, velocity, and pressure) gets a bit slower with respect 
to time. Further, it is observed that for the case of axial 
magnetic field �� = 0� , and various values of the ratio of 
specific heats �Γ� , the behavior of density, pressure and 
magnetic pressure remains unchanged, however, for smaller 
values of Shock-Cowling number, the discussed flow profiles 
decay rapidly with respect to time as compared to larger values 
of �� which closely coincide with the results obtained in [36, 
37] for non-magnetic flow. 

Figure 4  exhibits the behavior of velocity profile for 
cylindrical weak shock wave in ideal magneto-gas-dynamic 
flow with the variation in M with respect to �. It is observed 
that when increasing the value of M, the velocity profile of the 
cylindrical weak shock waves at the shock front under the 
influence of the magnetic field increases rapidly with time. 
Additionally we perceive that as compared to Γ =  1.67, the 
fluid velocity characteristics enhances faster for the adibatic 
index Γ = 1.4. Figures 5 and 6 demonstrate the behavior of the 
energy carried by the cylindrical weak shock wave in magneto-
gas-dynamic regime with respect to �  for varying values of 
Mach number  and Shock-Cowling number respectively. 

 

 
Fig. 4.  Dispersal of velocity profile with time at various values of Mach 

number. 

  
Fig. 5.  Dispersal of total energy with time at various values of Mach 

number. 

 

Fig. 6.  Dispersal of total energy with time at various values of Shock-

Cowling number. 

It is evident from Figure 5 that when the value of M 
increases, the energy of the cylindrical weak shock waves 
under the influence of the magnetic field increases much faster 
with time. Moreover, it can be noted, that for the case of axial 
magnetic field �� = 0� , the values of the total energy with 
respect to time for varying M get a bit slower as compared to 
the azimuthal magnetic field �� = 1� , which confirms the 
experimental considerations. In Figure 6, the behavior 
produced due to the varying Shock-Cowling number reveals 
that increasing the values of �� causes a rapid upsurge in the 
total energy with respect to time. Furthermore, it should be 
noted, that for the case of axial magnetic field, for increasing 
values of ��, the values of the total energy with respect to time 
are much closer, which means that the effect of azimuthal 
magnetic field has a more considerable impact on the behavior 
of energy with respect to time.  

VI. CONCLUSION 

In the present work, we performed an analytical 
investigation of the problem of propagation of quasi-one-
dimensional unsteady state compressible non-viscous adiabatic 
cylindrical weak shock wave in a perfect gas-dynamical 
regime, under the influence of axial and azimuthal magnetic 
fields. For this purpose, the simple and efficient analytical 
technique proposed in [20] has been used and the exact 
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solutions for the physical flow characteristics, such as density, 
velocity, pressure, and magnetic pressure, were obtained in the 
form of space-coordinates and time relations. Also, the 
cumbersome expression for total energy (i.e. the sum of kinetic 
and potential energy) carried by weak shock flow in the 
considered plasma influenced with magnetic field (axial and 
azimuthal) having dependency of space-time is determined. To 
describe the effect of Mach number and magnetic field 
(modeled in the form of the Shock-Cowling number) on flow-
field characteristics and total energy carried are graphically 
presented. All the computations for this purpose have been 
done with the computational software package 
MATHEMATICA 9.0. 

Since the shock proliferation processes are associated with 
a high-temperature gas dynamics phenomenon, thermal 
radiation has a significant impact on the wave phenomenon due 
to its coupling with the magnetic field and its various 
applications in terms of theoretical and industrial aspects. In 
addition, for such physical processes, the consideration that the 
medium is perfect is no longer valid. Therefore, an analytical 
investigation of the current study into realistic gas-dynamic 
regimes, and thermal radiation effects, is a potentially 
interesting area for future work. 

Based on the results of the present study, the following 
conclusions are made: 

 For increasing value of shock-Mach number, the decay 
process of physical parameters (flow velocity, density, and 
pressure) gets a bit slower with respect to time for a fixed 
value of �� , which clearly resembles the pattern of non-
magnetic flow. 

 An increase in the value of Mach number causes a rapid 
increase to the flow velocity of weakly nonlinear waves 
with respect to time. Consequently, we perceive that as 
compared to the specific heat ratio Γ =1.67, the velocity 
characteristics grows faster for the adibatic index Γ =1.4. 

 The total energy of the cylindrical weak shock waves under 
the influence of the azimuthal magnetic field increases 
much faster with respect to time for an increasing value of 
Mach number. However, as compared to the azimuthal 
magnetic field �� = 1�, in the of the axial magnetic field �� = 0�, the total energy with respect to time enhances a bit 
slower for varying Mach number, which validates the 
theoretical considerations. 

 In azimuthal magnetic field, for increasing value of Shock-
Cowling number ����  and with fixed values of Mach 
number, the total energy grows rapidly with respect to time. 
Moreover, for the case of axial magnetic field, the behavior 
remains unchanged although the values are much closer, 
which makes leads to the conclusion that as compared to 
the axial magnetic field, the effect of the azimuthal 
magnetic field has considerable impact on the behavior of 
energy with respect to time.  
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