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Abstract-Weed control is essential in agriculture since weeds 

reduce yields, increase production cost, impede harvesting, and 

degrade product quality. As a result, it is indeed critical to 

recognize weeds early in their vegetation cycle to evade negative 

impacts to crop growth. Earlier traditional methods used 

machine learning to determine crops along with weed species, but 

they had issues with weed detection efficiency at early growth 

stages. The current work proposes the implementation of a deep 

learning method that provides accurate results for precise weed 

recognition. Two different deep convolution neural networks 

have been used for our classification framework, namely Efficient 

Net B2 and Efficient Net B4. The plant seedlings dataset is 

utilized to investigate the proposed work. The evaluation metrics 

average accuracy, precision, recall, and F1-score were used. The 

findings demonstrate that the proposed approach is capable of 

differentiating between 12 species of a plant seedling dataset 

which contains 3 crops and 9 weeds. The average classification 

accuracy and F1 score are 99.00% for our Efficient Net B4 model 

and 97.00% for the Efficient Net B2. In addition, the proposed 

Efficient Net-B4 model performance is compared to the one of 

existing models on the plant seedlings dataset and the results 

showed that the proposed model Efficient Net B4 has superior 

performance. We intend to detect diseases in the identified plant 

species in our future research. 

Keywords-deep learning; efficient net; machine learning; plant 

seedling classification; weed recognition; deep convolutional 

neural networks 

I. INTRODUCTION  

Weed control is one of the most challenging aspects of 
precision farming. Weeds harm the plant seedlings and take up 
the space and nutrients required for the crops reducing crop 
growth, while exercising herbicides over the crops would spoil 
the unexpected crops. It is important to identify plant seedlings 
because doing so can aid in identifying various plant species. 
When using machine learning algorithms to monitor plant state 
and even model climate change, a thorough knowledge of 
appearances, leaflet, and leaf classes in addition to the 
complete plant is crucial. Weed control should begin as soon as 
crop germination is complete. As a result, optimal weed control 
is recommended during the seedling stage. Automated plant 
seedling classification using machine learning methods has 
emerged as an important and encouraging field of research for 

enhancing agricultural results. Modern academics have 
developed numerous agricultural applications using cutting-
edge deep learning algorithms. At the early stages of growth 
the weeds and crops look similar in appearances when the 
images of plant seedlings are collected during various lighting 
conditions, the CNN methods achieved high classification 
performance. The goal of the current research is to develop a 
model for a crop-weed discrimination system that employs 
deep Convolution Neural Networks (CNNs) to classify 12 
crops and weed plant species. 

A generic image database with plant seedling classification 
benchmarks was acquired with the use of a conditional camera. 
The dataset consists of 12 species at early growth stages [1]. 
Authors in [2] implemented techniques using binary image 
conversion and SVM to differentiate between crop and weed 
and obtained an accuracy of around 50%. A review work was 
done in [3] in the introduction of artificial intelligence for crop 
and weed management. Authors in [4] used deep learning 
architectures, namely Resnet, VGG16, and InceptionV3 for 
banana disease detection. Authors in [5] utilized prediction 
models on CNN, SVM, and KNN for apple classification and 
recognition. Authors in [6] conducted research regarding plant 
image classification tasks, for instance classifying maize plants 
and weeds by utilizing segmented images at initial stages of 
growth, with a training accuracy of 97.00%. Image processing 
and identification have been the subjects of [7-8]. Weed 
identification is challenging to ambiguous crop constraints and 
differing rocky or sandy identities, and long established 
classification techniques are most likely to fail in this task [9]. 
Authors in [10] proposed a classification model for plant 
seedlings. The authors attempted to improve classification 
efficiency by combining seedling and individual leaf 
classification. Bayes belief integration was used for 
classification design. 

A deep encoder-decoder CNN was updated with a 14-
channel image containing vegetation index values for 
segmentation to solve crop-weed classification consisting of 
sugar beet plants and weeds in [11]. In [12], a CNN network 
was able to determine unsupervised feature characterizations 
from 44 different plant species with high accuracy. In [13], 
instance segmentation was utilized to identify crops and weeds. 
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The authors were able to classify crops and weeds with an 
accuracy of 60%. For a large dataset to obtain good accuracy 
we need graphical processing units, in addition, during the 
training operation, continuous modifications of the training 
parameters are needed in order to obtain a balanced output 
[14]. An image classifier model using deep CNNs was used to 
determine the accuracy of CNN, SVM, and KNN in [15]. 
Author in [16] proposed a CNN framework for classifying 
plant seedlings. The main topic of the endeavor involves 
classifying young plant seedlings using a CNN while 
monitoring accuracy and precision metrics. A hybrid 
architecture using Alex Net and VGG Net was implemented to 
determine the model accuracy and F1 score for a plant 
seedlings dataset with 94.38% average accuracy. In [17], in 
order to classify images of crop and weed seedlings, 5 pre-
trained convolution network techniques were used, i.e. 
ResNet50, Xception, MobileNetV2, VGG16, and VGG19. 
ResNet50 architecture produced the best results scoring 
95.23% testing accuracy [17]. Weeds and crops were classified 
using Residual Network 101 in [18], obtaining an overall 
accuracy rate of 98.47% on the validation set and 96.04% on 
the test set. CNN frameworks for plant seedlings classification 
by using ResNet50V2, MobileNetV2, and Efficient Net B0 
architectures were implemented in [19]. The Efficient Net B0 
method provided an average F1-Score of 96.26% and an 
accuracy of 96.52%. A limitation of this work is that the 
authors would have added more layers by increasing depth or 
resolution to obtain maximum accuracy. 

In this paper, a novel method that fully trains a network is 
presented. The Proposed Efficient Net B4 model is used to 
provide better accuracy for image classification by compound 
scaling the dimension of network width, depth and resolution. 
For this experiment, we have used an i7 processor with Nvidia 
RTX 3080 Ti GPU and other supporting frameworks such as 
Keras and Tensor flow for the classification and analysis of the 
images of plant seedlings. 

II. MATERIALS AND METHODS 

A. Dataset 

The plant seedling dataset for training, validation, and 
testing is described in this section. The dataset was obtained 
from Computer Vision and Biosystems Signal Processing 
group, Aarhus University, an open-source website which 
contains plant seedling images. The dataset contains 5541 plant 
seedling images, namely 833 test images, 833 validation 
images, and 3875 training images were acquired, each 
representing a different stage of growth for all the 12 
considered species [1, 19]. 

B. Dataset Distribution 

The plant seedling dataset is split into 3 sections: testing 
(15%), validation (15%), and training (70%). The testing set is 
used in evaluating the performance of the trained model. We 
made sure that testing and validation sets had no duplicates. 
The plant seedling dataset distribution is displayed in Table I 
and the test set of 12 plant seedling species is shown in Figure 
1. 

TABLE I.  PLANT SEEDLING DATASET WITH CLASS WISE 

DISTRIBUTION 

Class Species Training Validation Testing Total 

1 Black grass 217 46 46 309 

2 Charlock 316 68 68 452 

3 Cleavers 235 50 50 335 

4 Chickweed 497 108 108 713 

5 Common wheat 177 38 38 253 

6 Fat hen 376 81 81 538 

7 Loose silky-bent 532 115 115 762 

8 Maize 179 39 39 257 

9 Scentless mayweed 425 91 91 607 

10 Shepherd's purse 192 41 41 274 

11 
Small-flowered 

cranesbill 
404 87 87 578 

12 Sugar beet 325 69 69 463 

Total Images 3875 833 833 5541 
 

 

Fig. 1.  Test set of the 12 plant seedling species. 

C. Test Data Set 

The motivation of our research work was to investigate the 
Efficient Net [19, 27] architecture because this model 
outperforms other CNN models in terms of accuracy and 
efficiency. The Efficient Net model has received little attention 
when considering datasets of plant seedlings. In this paper, a 
new mobile-size baseline is established. Efficient Net, 
compound scaling, and neural architecture are used. Efficient 
Models introduced a new baseline network (B0-B7) to provide 
better accuracy for image classification by compound scaling 
size (e.g. depth, width, and resolution) of the network by 
having a balanced output for the above parameters. A 
compound scaling technique is suggested in [19] that 
consistently scales width, depth, and resolution according to a 
set of guiding principles. They suggest the following formula: 

�. �. �. ��. �� ≈ 2 

� ≥ 1, � ≥ 1, � ≥ 1 

where depth:  = ��, width: � = ��, resolution: � = ��, � is 
a user-defined coefficient that regulates the resources (e.g. 
FLOPs, or floating point operations) available for model 
scaling, and α, β, γ allocate resources according to depth, width, 
and resolution. A convolution operation uses a certain amount 
of FLOPS in relation to , �� and ��. In the equation above, 
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this information is reflected. For each new �, the number of 

required FLOPs increases by 2�. The authors scaled it up using 
the following method starting with EfficientNet-B0: 

 Fix � � 1 . We assume that the resource is twice as 
available at any given scaling step as it was at the one 
before. 

 Perform a quick grid search across α, β, and γ to ensure that 
the restriction in the above equation is not violated. 

 The authors discovered that the values α=1.2, β=1.1, and 
γ=1.15 perform optimally. 

 Fix α, β, and γ, then scale up the EfficientNet-B0 with 
various � to get recent scaled networks, i.e. Efficient Net 
B0-B7 [27]. 

TABLE II.  MODIFICATIONS IN ΝETWORK ΑRCHITECTURE 

Layer (type) Output shape Parameters 

Efficient Νet Β4 (Functional) (None,7,7,1792) 17673823 

global_max_pooling2d_5 

(Global Max Pooling2D) 
(None,1792) 0 

flatten_6(Flatten) (None,1792) 0 

dense_12(Dense) (None,1024) 1836032 

batch_normalization_4 

(Batch Normalization) 
(None,1024) 4096 

dropout_5(Dropout) (None,1024) 0 

dense_13(Dense) (None,512) 524800 

batch_normalization_5 

(Batch Normalization) 
(None,512) 2048 

dropout_6(Dropout) (None,512) 0 

dense_14(Dense) (None,128) 65664 

batch_normalization_6 

(Batch Normalization) 
(None,128) 512 

dropout_7(Dropout) (None,128) 0 

dense_15(Dense) (None,12) 1548 

Total Parameters 20,108,523 

Trainable Parameters 3,237,772 

Non- Trainable Parameters 16,870,751 

 

D. The Proposed Methodology 

In the proposed methodology, the first step is to obtain a 
plant seedling data set. Once we acquire the image dataset, the 
next step is to pre-process the raw images in order to keep only 
relevant information. The preprocessing steps consist of 
resizing the image into 380×380 resolution for Efficient Net B4 
and 280×280 resolution for Efficient Net B2 model, sharpening 
the image to highlight fine details by removing blurring and 
highlighting edges, and applying segmentation to the objects of 
interest, which are the leaves of the plant, and finally applying 
masking. After preprocessing we split the dataset into training, 
validation, and testing parts with ratio of 70:15:15 and passed it 
into a custom designed model using the Efficient Net B4 as the 
base model. The Modified Efficient Net B4 can be used in 
many different ways: 

 Training the whole Efficient Net architecture. 

 Applying transfer learning paradigm to extract features 
from the pre-trained Efficient Net on plant seedling dataset. 

 Applying the transfer learning paradigm along with fine-
tuning of the architecture by adding a few more layers like 

pooling, flattening, and normalization followed by a few 
dense layers and a final layer with softmax activation 
function. 

 

 

Fig. 2.  The proposed methodology. 

E. Pipeline for Image-Processing 

For training, each image in the plant seedlings dataset was 
scaled to 380×380 (resolution scaling) for Efficient Net B4 and 
280×280 for Efficient Net B2. We synthetically increased the 
dataset size by using image augmentation through rotating, 
zooming, and horizontal and vertical flipping. Gaussian filter 
was first used to smooth the image. As can be seen, the 
background of the plant images has numerous pointless rock-
formed borders. Because these edges would only provide 
background noise, we converted the values of the 
discontinuous pixels into continuous ones. Our next step was to 
identify the relevant information in the image and remove any 
unnecessary background. To classify an object, a binary image 
that we wish to represent must be created. We will just need to 
look at the beneficial object's shape, making the classification 
procedure considerably simpler. To accomplish this, we 
converted the RGB image to the much more useful HSV 
format, which makes it much easier to discriminate between 
colors. There is now no overlap because the object can be 
easily distinguished from the background, but still there is 
some noise and flaws in the image, so as a follow-up, we 
slightly eroded it. We rescaled all images, created a mask for 
every image and then applied segmentation on each sample. 
Each image in the dataset was subjected to the processing pipe 
line by a function that we defined which outputs the processed 
dataset. Figure 3 shows the pre-processed images of the 
training model. 

 

 

Fig. 3.  Pre-processed images of plant seedlings. 
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F. Transfer Learning 

In order to complete tasks that are related to one another, 
transfer learning is another used high-level concept. We could 
not directly apply the pre-trained weights for interpretation and 
expect excellent performance due to the different fields of the 
dataset images. As a result, we carried out refinement to 
customize towards the original domain of the images. For an 
Efficient Net B4 model, few more layers were added and minor 
parameter adjustments to the trained model were made in this 
step. There are numerous approaches to fine tuning. These 
incorporate the use of a pre-trained design for feature extractors 
out of which features were fed to each classifier, for fine 
adjustment to all or a few parameters at the last number of 
layers in the pre-trained modeling. 

III. IMPLEMENTATION 

We cover the implementation and training of Efficient Net 
B4 and Efficient Net B2 in this section to ensure 
reproducibility. 

A. Learning Rate Change 

The learning rate is classified by the best significant hyper-

parameters to obtain quick and reliable training for neural 

networks. A large range of the loss gradient is applied to the 

latest parameters in order to alter them in the orientation of the 

reduced loss. In order to do this, the network's learning rate 

was linearly increased in a certain range of values after each 

network had been trained for a few epochs. We observed the 

change in validation loss by decreasing the learning rate from 

0.01 to 0.001. After this change, the validation loss is 

considerable. The final plot of the validation loss against 

epoch is displayed in Figure 4. 

B. Fine Tuning Efficient Net B2 

All layers in the Efficient Net B2 were trained using 
gradient updates and a learning rate of 0.001. We applied 
Stochastic Gradient Descent optimizer for custom dense layers 
and a default decay rate for this implementation. 

C. Fine Tuning Efficient Net B4 

Since training was unstable, we have added a few more 
layers for Efficient Net B4. Based on multiple runs with hyper 
parameter tuning as well as grid search techniques, we found 
the best parameters suitable for our problem for Efficient Net 
B4 architecture with a learning rate of 0.001, RHO value of 
0.9, epsilon of 1e-08 and default decay values. We applied 
Adam Optimizer for the custom dense layers. 

D. Performance Evaluation Metrics 

The effectiveness of any classification model cannot be 
assessed with common criteria. The performance metrics 
considered for each model are accuracy, precision, recall, F1 
score, support, and confusion matrices.  

E. Confusion Matrix  

The confusion matrix provides details about the classifier's 
errors, including the kinds of errors that are occurring. The 
performance of a classification model's predicting power was 
compiled in an N×N table (N represents the number of classes). 

It is a matrix that shows the relationship between the model's 
categorization and its real label (predicted label). A correct 
estimation of an image's class is referred to as a True Positive 
(TP). When the model suggests an image's class incorrectly, it 
produces a False Positive (FP). Whenever the model correctly 
estimates a negative class of the image, it produces a True 
Negative (TN). False Negative (FN) will occur when it 
incorrectly predicts a negative class of an image. The accuracy 
score is applied to assess our model's performance wherein 
TPc, FPc and FNc signify True Positives, False Positives and 
False Negatives. Pc indicates a class' specific precision metric 
that says, out of all points that are predicted to be positive, how 
many are actually positive. Rc represents a class specific recall 
metric that says, out of all positive points, how many are 
actually positive. N represents the overall collection of images, 
whereas Nc denotes the overall collection of images of class c 
and C denotes the overall collection with regard to classes. S 
denotes the mean of average weighted (F1) over all cross 
validation folds. 

P� =
���

�������
    (1) 

R� =
���

�������
    (2) 

f�,� = 2 
����

����� 
    (3) 
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.
. +�,0

0
01�     (4) 
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IV. RESULTS AND DISCUSSION 

We used (1) to (4) to evaluate the performance. The 
topmost validation accuracy obtained on Efficient Net B4 
model is 99% whereas for Efficient Net B2 is 97%. Figures 4 
and 5 show the accuracy and loss curves of training and 
validation sets for Efficient Net B4 and Efficient Net B2 
respectively. 

 

 

 

Fig. 4.  Efficient Net B4 model performance. 
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Fig. 5.  Efficient Net B2 model performance. 

(a) 

 

(b) 

 

Fig. 6.  Plant seedlings classification report of (a) Efficient Net B4 and (b) 

Efficient Net B2 on the test data set. 

The performance metrics on the test dataset for precision, 
recall, F1-score, and support are depicted in Figure 6. The 
average weighted accuracy of the Efficient B4 model is 99% 
whereas the Efficient Net B2 model has 97%. For Efficient Net 
B4, classes black grass and loose silky bent have F1-score 
equal to 0.88 and 0.95. For the remaining plant species the F1-
score is 1 indicating that all the plants are correctly classified. 
For the Efficient Net B2 model, classes black grass, common 
wheat, fat-hen, loose silky bent, and sugar beet have F1-score 
of 0.85, 0.88, 0.98, 0.94, and 0.97 while the remaining plant 
species are correctly classified. Figures 7 and 8 demonstrate the 
confusion matrix for the test data set in support of the 12-class 
configuration of the plant seedlings dataset during testing. The 
plant seedling dataset consists of 12 species representing 12 
rows and 12 columns of the matrix, which analyzes correct 
classification using 833 test images. In the confusion matrix, 
the rows indicate the current classification, while the columns 

indicate the predicted score. From the confusion matrix of the 
Efficient Net B4 model we can infer that 6 images of black 
grass and 5 images of loose silky bent are misclassified while 
the remaining plant species are predicted correctly. For the 
Efficient Net B2 model, 5 images of black-grass, 4 images of 
common wheat, 6 images of loose silky bent, and 4 images of 
sugar beet are incorrectly classified and the remaining are 
classified correctly. The conclusion is that the Efficient Net B4 
model performed better than the B2 model. 

 
Fig. 7.  Confusion matrix of the plant seedling test dataset of Efficient Net 

B4. 

 
Fig. 8.  Confusion matrix of the plant seedling test dataset of Efficient Net 

B2. 

Loss 
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The proposed Efficient Net B2 and Efficient Net B4 
methods were compared with existing methods [16-19] for the 
plant seedlings dataset and the results are shown in Table III. 
We can see that the proposed Efficient Net B4 method 
outperforms the latest competitive approaches in terms of 
accuracy and F1-score. 

TABLE III.  METHOD COMPARISON ON THE PLANT SEEDLING 

DATASET 

Ref. Method Accuracy (%) F1-score (%) 

[16] Alexnet + VGGNet 94.38 93.57 

[17] Resnet 50 95.23 95.00 

[18] Residual Network 101 98.47 95.72 

[19] Efficient Net B0 96.52 96.26 

Proposed 
Efficient Net B2 97.00 97.00 

Efficient Net B4 99.00 99.00 

 

Figure 9 depicts examples of charlock and sugar beet 
images of the test set that are correctly classified with the 
proposed Efficient Net B4 model. 

 

 
(a) 

 
(b) 

Fig. 9.  Correctly classified charlock and sugar-beet images. 

Figure 10 depicts loose silky-bent and black-grass, images 
which are misclassified plant seedling images of weed species, 
because they almost look similar. Black grass class contains 6 
images and loose silky bent class contains 5 images which are 
misclassified. 

 
(a) 

 
(b) 

Fig. 10.  Incorrectly classified loose silky bent and black grass images. 

V. CONCLUSION 

In this paper, deep convolution neural networks were 
investigated for identifying plant species at early growth stages. 
The proposed Efficient Net B4 model for plant seedling 

classification dataset which contains 12 species of crops and 
weed achieved a high level of accuracy and average F1-score 
rate, precision, and recall of 99.00%. When compared with 
other known methods, the proposed model shows a significant 
increase in accuracy in the considered plant seedlings dataset. 
Nevertheless, throughout our investigations, we discovered that 
images from two specific groups, black-grass and loose silky-
bent, had been incorrectly classified. There are some 
limitations in distinguishing crops and weeds during the 
seedling stage: (a) image resolution is insufficient to allow 
differentiation among susceptible soil, plant seedlings, and 
weeds, (b) there are spectral and apparent similarities in the 
initial stages, as there is a competition among weeds and useful 
crops, and (c) the detection method and the soil background 
reflectance overlap. The proposed model can be further 
extended and improved with the use of a larger dataset.  
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