
Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9477-9482 9477 

 

www.etasr.com Lavanya et al.: A Deep Learning Technique for Detecting High Impedance Faults in Medium Voltage … 

 

A Deep Learning Technique for Detecting High 

Impedance Faults in Medium Voltage Distribution 

Networks 
 

S. Lavanya 

Department of Electrical and Electronics Engineering 

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya 

Kanchipuram, Tamilnadu, India 

lavanya@kanchiuniv.ac.in 

S. Prabakaran 

Department of Electrical and Electronics Engineering 

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya 

Kanchipuram, Tamilnadu, India 

prabakaran@kanchiuniv.ac.in 

N. Ashok Kumar 

Department of Electrical and Electronics Engineering 

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya 

Kanchipuram, Tamilnadu, India 

ashokeee@kanchiuniv.ac.in 
 

Received: 29 August 2022 | Revised: 8 September 2022 | Accepted: 9 September 2022 

 

Abstract-Utility companies always struggle with the High 

Impedance Fault (HIF) in the electrical distribution systems. In 

this article, the current signal is seen in situations involving 

10,400 different samples, with and without HIF, like linear, non-

linear load, and capacitance switching. A better method that 

processes signals very fast and with low sample rates, requiring 

less memory and computational labor, is demonstrated by 

Mathematical Morphology (MM). For HIF identification, Deep 

Convolution Neural Networks (DCNNs) are being developed. 

This paper presents a novel method for signal processing with 

low sample rates, high signal processing speed, and low 

computational and memory requirements. The suggested six-

layer DCNN is compared with other models, such as the four-

layer and eight-layer DCNN models and the results are discussed. 

Keywords-high impedance fault; mathematical morpologhy; 

deep convolution neural networks 

I. INTRODUCTION  

For a power system to operate securely and dependably, an 
adequate protective mechanism that can recognize, classify, 
and locate the system's defects is essential. Even though 
standard protection relays are able to quickly recognize low-
impedance network faults [1-3], but they can't notice HIFs' 
small fault current, something that represents a significant 
safety threat. In addition, the power network experiences 
cascading failures as a result of the HIFs spreading into a 
functioning area of the grid system. Therefore, HIF detection is 
very important in a distribution system. Feature extraction and 
classifier development are the first two steps in the detection of 
HIF. 

Numerous Signal Processing Techniques (SPTs) have been 
presented to extract features for the purpose of training and 

testing classifiers during the pattern recognition stage using 
time-frequency transforms to obtain the proper patterns. This 
technique separates the different disturbances. The Fast Fourier 
Transform (FFT) includes information on signal loss and the 
time loss while analyzing the data for feature extraction [4, 5]. 
The Short Time Fourier Transform (STFT) has been often used 
for fault analysis. It is, however, inadequate for evaluating non-
stationary transient signals that have both temporal and 
frequency components due to its constant window length. 
Time-frequency analysis performs well across all detection 
criteria and is particularly sensitive to non-stationary signals. 
However, the length of the computations raises questions about 
the technology's suitability for protection applications. The 
signal can be processed using the Wavelet Transform (WT) 
approach by examining its low- and high-frequency 
components. Using the wavelet decomposition coefficient of a 
voltage waveform, a WT-based approach may identify HIFs. 
Wavelet packet transform is applied to features extracted from 
voltage and current signal data in order to identify and 
distinguish HIFs. The level 5 and level 7 approximation 
coefficients as well as the standard deviation of detail of the 
db4 mother wavelet are employed for such detection process. 
WT offers greater signal processing resolution. However, the 
implementation of this approach in protective applications is 
limited by its high computational complexity, high data rate, 
and storage space requirements [6]. Recently, Mathematical 
Morphology (MM) was used in HIF detection, although the 
technique needs to be improved. 

The majority of detection techniques observe the input 
signal for processing while selecting a high sample rate. High 
sampling rates increase the amount of the needed 
computational space. The current study shows an improved 
technique that processes signals extremely quickly and with 
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low sampling rates, which requires less memory and 
computational work. To gather the HIF and non-HIF current 
signal data, a precise MATLAB/SIMULINK model of a 
genuine power distribution network was used. MM is a time-
domain, nonlinear signal transformation technique. Processing 
time is reduced because of the usage of simpler calculations [7, 
8]. Additionally, MM filters are appropriate for real-time power 
system activities like transmission line protection. The most 
important task in the signal processing technique is the 
extraction of critical features, which is made possible by the 
interaction between the signal and the Structured Element (SE). 
SE shape plays a key role in signal processing. The MM filter 
is used in this study to pre-process the current signal. While 
preserving fault current characteristics, this filter lowers the 
signal's noise level. 

Deep Learning (DL) is very good at automatically 
extracting features from speech and image analysis. DL can 
capture both temporal and spatial data from the input without 
the need for signal manipulation [9-11]. By removing manually 
created feature extraction, the use of DL in fault and non-fault 
detection not only increases accuracy, but also streamlines the 
process. Convolution Neural Networks (CNNs) were used to 
solve the high impedance fault problem, and performance 
against noise, training time, parameter count, and overall 
performance have all been discussed. For the purpose of 
detection and classification, a Deep Convolution Neural 
Network (DCNN) receives a 2D image that has been converted 
from the fault and non-fault signal. The 1D signal data and the 
2D signal image are completely different things [12-14].  

Previous literature has not taken into account multiple 
power quality disturbances. The proposed method is using 
DCNN for the problem of multiple fault and non-fault 
detection and signal classification. The MM filter is used in this 
study to pre-process fault and non-fault current signals while 
maintaining fault current characteristics [15-18]. This filter 
reduces the signal noise level. Then, using a CNN, the output 
signal of the mathematical morphology with and without faults 
is detected. The following is a list of the current study's 
contributions. 

 By analyzing the fault and non-fault MM output signal, the 
DCNN layer minimizes the manual extraction of features 
and permits automatic feature extraction. 

 Due to the high computational complexity of the CNN, a 
Batch Normalization (BN) layer is implemented to speed 
up the training procedure and minimize the number of 
parameters. 

II. ΤHE MATHEMATICAL MORPHOPOLOGY 

The structure of signals is altered via a non-linear signal 
processing method termed MM. This method was created in its 
natural shape in 1975. Integral geometry and set theory are the 
foundations of MM. MM operates entirely in the time domain 
and does not compute the frequency content of a signal, as 
opposed to Fourier or wavelet transforms, which separate the 
signals' frequency information. Recently, MM has been applied 
to power distribution systems, particularly for fault 
identification [19, 20]. As a result, an effort has been made to 

leverage MM in pre-processing the signals in order to lessen 
the workload on the computer, the amount of memory needed, 
and the overall detection latency. The SE is the foundation of 
the MM processing applications. For the execution of any MM-
based operation, the choice of SE is a crucial step. The type and 
frequency content of the fault signal affect the choice of SE. 
Erosion and dilation are two essential MM changes [21, 22]. 
These two transformations can be creatively coupled to create 
other transformations that can be applied in the right situations. 
It has been stated that various MM-based tools are used for 
power system applications [23]. These instruments are 
produced using a variety of replications and mixes of dilation 
and erosion employing various structuring components [24]. 

A. The Choice of a Structuring Element 

The SE is a necessary component of MM-based signal 

processing. It is an operator used in signal processing that 

separates a signal into sub-signals of various important 

properties. Depending on the types of applications, it could 

have different geometrical structures [25]. The one-

dimensional signals obtained from power systems are 

examined using linear SEs. Signal transformations depend 

significantly on the SEs' length and height (magnitude). 

B. Structuring Element Length 

The window size for any MM function is determined by the 
length of a SE, which also determines the delayed in output. 
With respect to the MM operation, the output delay is equal to 
(m-1) ΔT, where T is the sampling interval, and m is the length 
of the SE. It should be observed that the output delay 
constantly grows as the SE lengthens. Therefore, linear SE with 
a length of 3 has been regarded as the best for fault detection 
applications in order to decrease time in MM transformations. 

C. Structuring Element Height 

In power systems, various current and voltage densities are 
employed. Therefore, the samples of current or voltage signals 
must be standardized using the peak magnitude of their rating 
value before MM modifications in order to have a more general 
option of the SE. In normal conditions, the normalization limits 
the signal magnitude to roughly 1 despite the various system 
voltage and current levels. As a result, a SE will always be at 
its best for any voltage or current levels. The magnitude (or 
height) of each SE element can be any small arbitrary value 
once the waveform has been adjusted [26]. 

III. THE FILTERS OF MATHEMATICAL MORPHORLOGY  

Assume that X(n) is a signal that needs to be translated and 
specified in the domain Dx = {a0, a1...an} and Y(m) is a SE 
defined in the domain Dy = {b0, b1….bm}. The Dilation (+) of 
the signal X(n) by Y(m) is given by: 

Dilation(n) = (X(n)+Y(m))=Max{X(n-m)+Y(m)}    (1) 

where 0 ≤ (n-m) ≤ n, m ≥ 0, n > m, and n, m are integers. 

The Erosion (-) of signal X(n) by Y(m) is given in (2): 

Erosion (n) = (X(n)–Y(m))=Min{X(n+m)–y(m)}    (2) 

where 0 ≤ (n+m) ≤ n, m ≥ 0. 
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As indicated above, the opening (α) and closing (+) 
functions are defined based on (1), (2) in (3) and (4) 
respectively. 

Opening (n) = (X(n)@Y(m))=[(X(n)+Y(n))–Y(m)]    (3) 

Closing (n) = (X(n)*Y(m))=[(X(n)-Y(m))+Y(m)]    (4) 

Different Mathematical Morphological Filters (MMFs) are 
developed from these MM functions and employed in real-time 
signal processing applications. Closing – Opening(0) and 
Opening – Closing(α) are defined by: 

Co(n) = (X(n) * Y(m)) @ Y(m)    (5) 

Oc(n) = (X(n) @ Y(m)) * Y(m)    (6) 

The Mean Closure – Opening Filter (MCOF) is designed as 
the arithmetic mean of close and open: 

MCOF(n) = [Opening(n) + Closing(n)]/2    (7) 

The Mean Closing – Opening and Opening – Closing Filter 
(MCOOCF) is the mathematical mean of Co and Oc: 

MCOOCF(n) = [Co(n) + Oc(n)]/2    (8) 

IV. SYSTEM DESCRIPTION 

Authors in [5, 6] analyzed HIF with non-HIF scenarios 
using the 33KV feeder model shown in Figure 1. This model 
has a distribution transformer connecting its 11KV bus to its 
33KV bus. The feeders in a subsystem model have seven 
numbers. The sixth feeder serves as a candidate feeder. Both 
HIF and non-impedance fault conditions were applied to this 
model to analyze the capacitance switching and non-linear 
loads for non-high impedance fault circumstances. 

 

 

Fig. 1.  System fescription. 

A. Fault and Non-fault Signal Data 

In this work, both kinds of distribution signals—fault and 
non-fault signal data—are taken into account. The non-fault 
signal data represent normal switching, load switching, and 
capacitance switching, while the fault signal data represents the 

HIF [27]. The data set, which is obtained from various 
simulation cases taken into account and is shown in Table I, is 
used in the proposed fault and non-fault signal detection 
method [28]. 

TABLE I.  VARIOUS SIMULATION HIF AND NON-HIF CASES 

Event Simulation conditions Total cases 

HIF 

Resistance of the HIF model varied 

from 100 to12k. 

The HIF model's DC voltage varied 

from 1kV to 11kV. 

Angle of origin of the fault at 0°, 30°, 

45°, 60°, 90°. 

Phase angles of the source voltage are 

0°, 30°, 45°, and 60°. 

1500 

(60×5×5) 

Switching 

loads 

Load level changes at 10 cases. 

Angle changes in a cycle of 0°, 30°, 

45°, and 60°. 

Phase angles of the source voltage are 

0°, 30°, 45°, and 60°. 

250 

(10×5×5) 

Switching of 

nonlinear 

loads 

NLL load level changes at 24 cases. 

Angle changes in a cycle of 0°, 30°, 

45°, and 60°. 

Phase angles of the source voltage are 

0°, 30°, 45°, and 60°. 

600 

(24×5×5) 

Switching of 

capacitance 

Switching a 1MVAr on and off 

depending on the load. 

Angle changes in a cycle of 0°, 30°, 

45°, and 60°. 

Phase angles of the source voltage are 

0°, 30°, 45°, and 60°. 

250 

(5×2×5×5) 

 

A total of 1500 HIF cases and 1100 non-HIF cases, such as 
linear load switching, Non-Linear Load (NLL) switching, and 
capacitor switching, were considered (Table I). The generated 
signal has 2600 sampling points and a fundamental frequency 
of 50Hz (10 cycles, 0.2s). Data have been produced in each 
fault (1500) and non-fault (1100) case using different 
parameters. Thus, a total of 2600 sample points of fault and 
non-fault signal data examples have been produced. However, 
when the signal is actually acquired from the actual system 
through sensors, additional distortion is always imposed on the 
signal. Signal-to-Noise Ratios (SNRs) of 20dB to 40dB are 
added to the fault and non-fault signal data set in order to bring 
the total number of data samples up to 10,400. The 
specifications of the data set used in this analysis are listed in 
Table II. 

TABLE II.  THE DATA SET 

 Counting samples Quantity of noise 

Training Set 2600*4 = 10,400 20 db - 40 db 

Validation set 10,400*0.01 =104 20 db - 40 db 

Test set 10,400*0.01 =104 20 db - 40 db 

 

B. The Convolution Layer 

The main layer in CNN is the Convolution Layer (CL), in 
which low-level features are transformed into high-level 
features. In order to create features, a kernel is used with the 
convolution operator on the input. The following is the CL's 
output: 

y � f�Wr  ∗  xi �  br 
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where y is the result of CL. The weight and bias of the r
th
 layer 

are w
r
 and b

r
 respectively, and the activation function is f(x). It 

understands how a neuron becomes active and produces. The 
tanh function is not chosen in DL, but rather the rectified linear 
unit - activation functions. 

fReLU = max(0, y) 

C. Pooling Layer 

Usually, the CL is followed by a pooling layer. Its primary 
use is in down sampling. The pooling layer is used to decrease 
the dimension of the input and retrieve crucial information after 
the CL. It can lessen the effects of data volatility. Max pooling 
is used in this work because it performs better than average 
pooling for both fault and non-fault waveforms. The 
mathematical formula for max pooling is: 

f(y) = maxi (yi) 

D. BN Layer 

The BN method is used for to speed up neural networks. It 
is used to normalize the input by altering and scaling the 
activations. Unlike the previous layers, it allows each network 
to learn independently. Additionally, compared to dropout, it 
efficiently reduces over fitting. The following formula can be 
used to normalize the input data batch xi: 

y� � γ ∗  �����
��� ��  � �  β  

where ��  �  represents the batch variance and ��  represents the 
batch mean. �  and   provide the learned scale and shift 
parameters respectively, guaranteeing that the input data have 
the same distribution. 

E. Completely Joined Layer 

The learning parameter D is included in this layer, which is 
also known as a "dense layer." The output of the dense layer is 
calculated using the formula below: 

y � f�x ∗ D" � b" 

F. SoftMax Layer 

The probability distribution of each output class with "n" 
outputs is computed by the softmax layer. Thus, the softmax 
layer predicts the class to which the input data belong. The 
probability distribution is calculated using the following 
equation: 

P� �  $��
∑$�&  ,        j � 0,1,2, … … … . . n  

where the input is xi. The sum of all probabilities will equal to 
1 if the output of p is between 0 and 1. In this work, fault and 
non-fault classification is done using the softmax layer [29]. 

V. THE PROPOSED METHOD-DCNN ALGORITHM 

Figure 2 shows the proposed DCNN model's structure, 
which consists of two completely connected dense layers at the 
end of three convolution layers with pooling layers layered on 
top. 

 

 

Fig. 2.  The proposed DCNN architecture. 

VI. SIMULATION RESULTS 

A. Assessment Metrics 

The proposed method was evaluated with the following 
criteria: 

 The confusion chart is employed to evaluate a model's 
capability for classification. 

 Accuracy is calculated as (true positive + true negative)/ 
total test instances. 

 The product of the true positive and true negative 
determines precision. 

 Recall equals the product of true positives and false 
negatives. 

 The F1 score is determined as: 

(Precision + Recall) 2 × Precision 

B. Results and Discussion 

As stated above, 10,400 samples have initially been created. 
One percent is utilized for validation, 1% for testing, and 98% 
of the total data set were used for training. In DL, the training 
process is often carried out using a small batch. In order to 
appropriately calculate the training time for various scenarios, 
the mini-batch size for all 3 DCNN cases is set at 64. A total of 
100 epochs of validation loss were tracked. In order to avoid 
over fitting, the training method would be completed before the 
scheduled epochs, since the validation loss does not decrease 
continuously for 20 epochs. The final model is determined by 
whatever model performed best in the validation set. The 
suggested DCNN's entire architecture was coded in Python 
using a Tesla K80GPU in this study. 



Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9477-9482 9481 

 

www.etasr.com Lavanya et al.: A Deep Learning Technique for Detecting High Impedance Faults in Medium Voltage … 

 

All models' accuracy and loss values during training are 
calculated using the DCNN with 4, 6, and 8 layers. Table III 
shows the 3 final models' variables, training period, number of 
epochs that have passed, accuracy level, and validation losses. 

TABLE III.  DCNN TRAINING MODEL PERFORMANCE  

Model type 
Epoch's 

duration (s) 

Optimum 

validation 

losses 

Maximum 

validation 

precision 

Epochs 

DCNN with 4 

layers 
32 0.0038 0.98 49 

DCNN with 6 

layers 
46 0.0022 0.999 32 

DCNN with 8 

layers 
72 0.003 0.996 36 

 

Less training parameters and classification accuracy of 
99.9% are produced by the 6-layer DCNN model. The 
confusion matrices for each of these DCNN models, HIF (600 
samples) and non-HIF (440 samples), which were trained on a 
total of 1040 samples, are shown in Tables IV-VI. The DCNN 
with 6 layers correctly identified 600 HIF samples, with 0 
samples being misclassified, yielding a 99.99% accuracy rate. 
A total of 592 HIF samples were accurately diagnosed by the 
4-layer model, whereas 8 samples were incorrectly classified, 
giving it a classification accuracy of 98%. Also, 598 HIF 
instances were accurately diagnosed by the 8-layer DCNN 
model, whereas 2 samples were incorrectly classified, yielding 
a classification accuracy of 99.6%. 

TABLE IV.  DCNN6's CONFUSION MATRIX 

Actual event 
Predicted 

HIFs NHIFs 

HIFs 600 0 

NHIFs 1 439 

TABLE V.  DCNN8's CONFUSION MATRIX 

Actual event 
Predicted 

HIFs NHIFs 

HIFs 598 2 

NHIFs 2 438 

TABLE VI.  DCNN4's CONFUSION MATRIX 

Actual event 
Predicted 

HIFs NHIFs 

HIFs 592 8 

NHIFs 12 428 

 

Table VII displays the precision, recall, and F1 score 
performance of the 6-layer DCNN model. While the 4-layer 
and 8 layer DCNN models generated 98.66% and 99.6% 
precision respectively, the suggested 6-layer model delivers 
100% precision. Similar to this, the F1 score for a DCNN with 
6 layers is 99.9%, compared to 98.33% and 99.66% of the 4- 
and 8-layer models respectively. As a result, the proposed 6-
layer DCNN model outperformed the competition in terms of 
the evaluation parameters. Also, the 6-layer DCNN method 
outperforms the other models when compared to noisy 
environments. This approach reduces the detection delay to 
23.66ms, making real-time applications possible. 

TABLE VII.  PARAMETERS OF EVALUATION OF THE THREE MODELS 

Actual Event 
DCNN 4 

Precision Recall F1 score 

HIFs 0.98666667 0.9801325 0.9833887 

Actual Event 
DCNN 6 

Precision Recall F1 score 

HIFs 1 0.99833611 0.99917 

Actual Event 
DCNN 8 

Precision Recall F1 score 

HIFs 0.99666667 0.99666667 0.99667 

 

C. Comparing the Computation Lengths 

To get greater performance, the DCNNs may be run on 
GPU. The GPU processor has more overall units than the CPU 
processor. As a result, DCNN computations run relatively 
quickly on a GPU. Due to its simultaneous GPU calculation, 
DCNN has a significantly shorter computation time. Table VIII 
compares the computation times on the GPU and CPU for the 
DCNN models using 2600 and 10400 samples. 

TABLE VIII.  PROCESSOR EFFECT ON TRAINING DURATION 

Processor 

Time interval (s) 

2600 examples 

are included 

10400 examples 

are included 

Tesla K80 GPU 6 24 

Intel i7 processor, CPU 18 72 

 

VI. CONCLUSION 

In order to classify HIFs and non-HIFs, this study suggests 
the use of a 6-layer DCNN model. The study demonstrates a 
new method that processes signals very quickly, with low 
sampling rates and reduced computational and memory load. 
The suggested DCNN with 6 layers is compared with other 
models, namely the 4- and 8-layer DCNN models. The findings 
show that the proposed 6-layer DCNN model has a greater 
accuracy while requiring less training than the other models. 
The 6-layer DCNN model outperforms the other models in 
noisy environments, it has fewer parameters, and is more 
convoluted. Future research will use the DCNN model to take 
into account more system faults. 
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