
Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9726-9731 9726 

 

www.etasr.com Narang & Mittal: Performance Assessment of Traditional Software Development Methodologies and … 

 

Performance Assessment of Traditional Software 
Development Methodologies and DevOps 

Automation Culture 
 

Poonam Narang 
Department of Computer Science and Applications 

Maharshi Dayanand University 
Rohtak, Haryana, India 

poonam.mehta20@gmail.com 

Pooja Mittal 
Department of Computer Science and Applications 

Maharshi Dayanand University 
Rohtak, Haryana, India 

mpoojamdu@gmail.com 
 

Received: 10 September 2022 | Revised: 25 September 2022 | Accepted: 26 September 2022 

 

Abstract-Successful implementations of Software Development 

Methodologies significantly improve software efficiency, 

collaboration and security. Most companies are moving away 

from traditional development methodologies towards DevOps for 

faster and better software delivery. DevOps, which is a primary 

need of the IT industry, brings development and operation teams 

together to overcome communication gaps responsible for 

software failures. It relies on different sets of automation tools to 

robotize the tasks of software development from continuous 

integration, to testing, delivery, and deployment. The existence of 

several automation tools in each development phase raises the 

need for an integrated set of tools to reduce development time. 

For this purpose, we used the DevOps-based hybrid model 

Integrated Tool Chain (ITC), along with three sample java-based 

projects or code repositories to quantify the results. This paper 

evaluates and compares measurement metrics of java projects 

using traditional development methodologies and DevOps, and 

the results are shown in tabular and graphical format. The latest 

Google and Stack Overflow Trends have also been included to 

retrieve the best performer development methodology. This 

comparative and evaluative performance analysis will be 

beneficial to young researchers that study the metrics of software 

development, while also they will be introduced to the automotive 

environment of DevOps, the latest emerging buzzword in 

software development. 

Keywords-automation; automation tools; DevOps; integrated 

tool chain; software development 

I. INTRODUCTION  

Software engineering is a branch of software design 
through the Software Development Life Cycle (SDLC), which 
consists of several development phases, from gathering 
requirements and thorough analysis, to design, coding, testing, 
deployment/delivery, and maintenance. Software development 
has introduced various methodologies from traditional and 
agile to the most recent DevOps culture. Traditional and agile 
development methods include models like waterfall, iterative, 
evolutionary, spiral, prototype, V Model, Scrum, XP RAD, etc. 
The availability of multiple models necessitates their careful 
selection for successful and quality software delivery. As 

development models under traditional methodologies struggled 
with many defects responsible for late software delivery and 
budget overruns, fast and successful development was one of 
the major challenges for traditional development models. Agile 
methods provided better solutions for quick releases with small 
sprint sizes as they introduced flexibility into their methods, but 
still lacked continuity in development and operations, which is 
where DevOps comes in. DevOps, the industry's common term 
for development, is based on five software development 
continuums, i.e. continuous integration, continuous testing, 
continuous delivery, continuous development, and continuous 
monitoring. The continuity in the environment of DevOps is 
achieved through different sets of automation tools employed at 
each and every phase of software development. DevOps works 
on the principles of an infinite continuous cycle that starts from 
continuous integration of code repositories and continues until 
the monitoring stage of the software development to deliver 
quality successfully.  

The current research quantitatively evaluates the 
performance of different software development methodologies, 
including DevOps, based on various software performance 
metrics. For the application of these metrics and to obtain 
quantitative results, three sample code repositories or java-
based projects have been taken into consideration. This paper 
also considers our proposed [1] and implemented [2] DevOps-
based hybrid model of automation Integrated Tool Chain 
(ITC). The proposed and implemented ITC model demands 
automation tools in each phase of software development. As 
there are various automation tools in each phase of software 
development, prior selection of automation tools will not only 
reduce development time but also ensure delivery within 
budget and quality. This study examines the proposed and 
verified ITC [2] for DevOps implementation. The result of 
traditional methodologies and DevOps performance evaluation 
based on various software metrics validate the quality of the 
delivered product and also helps in recovering the best 
performing software development methodology. The outcome 
of our study will be useful for young researchers/students to 
understand the course of action of DevOps and its automation 

Corresponding author: Poonam Narang



Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9726-9731 9727 

 

www.etasr.com Narang & Mittal: Performance Assessment of Traditional Software Development Methodologies and … 

 

tools. It will also be important for software developers to 
choose the best execution tools from the various automation 
tool sets available.  

SDLC contains detailed edits of the various steps or 
processes necessary to configure the software. It covers many 
methodologies such as traditional and agile methodologies and 
now DevOps, while these methodologies cover various models. 
DevOps, on the other hand, includes a set of different 
automation tools to achieve the goal of competitiveness in the 
era of digital transformation and to increase the speed of 
adaptation or reaction to changing software requirements [3]. 
DevOps, with its principles of continuity, helps companies 
survive in this competitive world. The main focus of the 
current paper is to describe and compare DevOps with 
traditional and agile methodologies  

II. TRADITIONAL METHODOLOGIES 

Traditional methodologies specifically include the waterfall 
model, first introduced in the 1970s. The cascade model is 
explained stage-by-stage [4]. Through these stages, including 
iterative approaches, the author introduced the development of 
large-scale systems. The step-by-step approach of traditional 
methodologies allows large-scale projects to be handled and 
developed more successfully. But on the other hand, traditional 
development methods are rigid and also fail to respond to 
aggressive or frequently changing customer requests [5]. 
Compared to the traditional methodology, the agile 
development methodology provides a set of practices that allow 
rapid adaptation to changing customer needs. In terms of 
research gaps, the authors discussed the failures of traditional 
models very well, but did not propose any solution to overcome 
the major flaws of traditional development methodologies. 
Current research included DevOps culture, with its validation 
analysis of out-performance, as a result of comparison with 
other development methodologies. 

A. Agile Development Methods 

Although agile methods were created to address any flaws 
or limitations of traditional development methodologies, they 
are also confirmed to be effective for large-scale distributed 
projects [5]. Agile approaches are drivers in huge and 
extremely large-scale development [6]. Therefore, the agile 
approaches encourage greater communication, continuous 
integration, and fast delivery of products using an incremental 
and iterative approach, but they also have several 
disadvantages, such as lack of planning, lack of documentation, 
lack of predictability, etc. [7.] To discover genuine constraints 
of agile approaches outside the existing literature review, the 
authors in [7] also performed an online survey. There are still 
research gaps in terms of solutions to the problems faced by 
flexible methods. Basic research talks about DevOps 
development culture to overcome many of the difficulties of 
software development. 

B. DevOps Development Culture 

DevOps proposes a solution to a variety of development 
and delivery challenges, including the quality of the generated 
product. In their research on DevOps, authors in [8] examined 
the effects of DevOps features on software quality. Increasing 

the speed, frequency of development and product quality is the 
main goal of DevOps. To minimize differences or fill in all 
kinds of communication gaps between dev and ops teams, 
DevOps promises to deliver successful projects with shorter 
deployment or sprint times [8]. To deliver or deploy high-
quality products, authors in [9] agree that development and 
operations teams should cooperate well [9]. Although 
numerous studies support the use of DevOps, others are 
opposed to it and discuss the lack of quantification of 
performance and quality measures [10]. Authors in [11] found 
that DevOps helps businesses to achieve their goals and also 
increases their speed in reacting to changes [11]. The literature 
also confirms the existence and successful implementation of 
various DevOps models in practice [12]. Similarly, many 
papers, including [11, 16], accept the emerging paradigm as a 
response to the growing awareness of the existing many types 
of communication or collaboration and cultural gaps between 
dev and ops team functions. Again, there are research gaps in 
terms of quantified quality outcomes provided by DevOps. 

C. Motivation 

The motivation behind this research is to provide quantified 
results of DevOps quality and on-time delivery. To this end, the 
current research examines the proposed [1] and implemented 
[2] model of hybrid integrated automation tools based on 
DevOps. Study is also conducted from different perspectives of 
model building [13, 15] to the application of cloud computing 
[15] or the adoption of recent approaches for development 
industries. Based on the existing literature and our tool model, 
this paper performs an evaluation of different types of 
parameters or software metrics for quality measurement. This 
research has taken three sample software projects developed in 
JDK environment to measure DevOps performance and 
quality. Lines Of Count (LOC), number of different 
components/modules, development time, and risk consideration 
are considered as evaluation metrics. 

III. DEVOPS BASED HYBRID MODEL OF INTEGRATED TOOL 

CHAIN 

For the performance evaluation of DevOps, we propose [1] 
and apply [2] a DevOps-based hybrid ITC model as depicted in 
Figure 8 of [1]. For the hybrid model, different tools are 
proposed from which only one automation tool is selected as 
the best performer tool based on several performance 
evaluators. The current research work considers the same set of 
automation tools [1] for the implementation of sample java 
projects, mentioned in Table I, using DevOps development and 
deployment culture. 

IV. RESEARCH DESIGN AND DATA SET 

The current research compares traditional and agile 
methodologies with DevOps development. For this purpose, 
three sample projects, i.e. a website for online faculty 
recruitment, a car search engine, and a scientific calculator tool 
in java have been designed through traditional methods and 
later on uploaded local repositories to GitHub for 
implementation through DevOps tools. Different parameters 
for measurement of projects were calculated. 

 



Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9726-9731 9728 

 

www.etasr.com Narang & Mittal: Performance Assessment of Traditional Software Development Methodologies and … 

 

 
Fig. 1.  Components/modules and LOC for sample java projects. 

Figure 3, gives the total count of lines of code along with 
different components and other parameters to consider for 
metric evaluation purposes. Table I shows the descriptive 
measures of these sample projects. 

TABLE I.  SOFTWARE METRIC CLASSIFICATION OF THE SOFTWARE 
PROJECT 

Name of Java project Size 
No of components/ 

modules 
Project domain 

Web site for online 
faculty recruitment 

(Project1) 
2430 18 Web based 

Car search application 
(Project2) 

1579 14 
Search 

application 

Scientific calculator 
tool (Project3) 557 8 Tool 

 
The sample projects mentioned in Table II have Java as the 

application development environment. These projects were 
designed in local repositories in the JDK environment and were 
uploaded in GitHub, which was used as a remote repository for 
the smooth working of the DevOps environment. After the 
uploading of the code, the next phase is to plan and write test 
cases for proper execution and implementation of the code. If 
the test case fails, then the test case must be rewritten after code 
refactoring. Successful test case execution is followed by code 
deployment and monitoring or the operations phase of the 
project. The complete step by step procedure in terms of 
process flow diagram for current research work is shown in 
Figure 2. 

 
Fig. 2.  Process flow diagram of the current research work. 

As clearly depicted in the flowchart of Figure 2, writing the 
test cases and successful code testing is a major part of the 
DevOps process. For the implementation purpose, Jenkins 
continuous integration tool is selected which also takes charge 
of continuous delivery of the product. Different plugins are also 
installed with Jenkins to ensure smooth working of the tool. 
Code repository or maintenance is done through GitHub. 
Ansible with Jenkins is responsible for the continuous 
deployment of the code. Test cases were written using Junit. 
The build work was done by Maven. All these steps or 
procedures are fully automated and were done through the 
DevOps based hybrid model of automation tool set. 

V. MEASUREMENT METRICS OF SOFTWARE DEVELOPMENT 

Quality plays an important role in software acceptance. 
Software quality is not a single factor or value, but it covers 
many different parameters like testability, predictability, and 
maintainability. So, quantification of these performance or 
efficiency parameters becomes more important for measuring 
the quality value. This research work considers three types of 
software metrics, i.e. project, process, and product metrics. 
The project metrics covered in the current work are Project 
Defect Density (PDD) and Release Deployment Frequency 
(RDF), to measure defect density covered in the project along 
with the deployment frequency of the project. Similarly, 
Process metrics cover the Productivity (PP) of the whole 
process in the form of the throughput of the system. Lastly, 
product metrics involve System Risk Identification (SRI) and 
the reliability of the developed product. These software 
metrics along with their expected outcome are shown in Table 
II. The categorization of software metrics in Table II clearly 
mentions the expected results. These metrics with their 
calculation formulas and methods are explained below. 

A. Project Defect Density (PDD) 

PDD refers to whether the software can be deployed. PDD 
actually depends directly on the presence of defects in the 



Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9726-9731 9729 

 

www.etasr.com Narang & Mittal: Performance Assessment of Traditional Software Development Methodologies and … 

 

system. As defects can occur at any stage of software 
development, checks at regular intervals become a necessary 
activity of the development. The value of PDD must be low to 
ensure quality delivery of the software. The PDD formula is: 

PDD = ∑
Total number of �efects

Size of �oftware (in KLOC)

n
i�1     (1) 

where n refers to the total number of components or modules in 
the system and n>0.  

Equation (1) is used to first find the defect density of 
individual components or modules of the system and to get the 
defect density for the whole system/project by summing them 
up. Table III shows the PDD of the system as calculated with 
traditional methods of development and DevOps. TDM refers 
to Traditional Development Methods and DC refers to DevOps 
Culture. 

TABLE II.  CONSIDERED SOFTWARE METRICS AND THEIR EXPECTED 
OUTCOME 

Software metric type Software metric Expected outcome 

Project 
PDD Low 
RDF High 

Process SRI High 
Product PP High 

TABLE III.  PDD MEASURE OF SAMPLE PROJECTS  

Name of 

project 

Size 

(LOC) 

No of 

modules 

Total no of defects PDD 

TDM DC TDM DC 

Project1 2430 18 30 15 12.35 6.17 
Project2 1579 14 18 8 11.40 5.07 
Project3 557 8 10 4 17.95 7.18 

 
Defect density is computed by dividing the total number of 

defects with the size of the corresponding project as given by 
(1). In Table III, DevOps gives a low PDD value that clearly 
indicates more reliability and success of the underlying 
process. Figure 3 displays a graphical comparison of these 
methods.  

 

 
Fig. 3.  Graphical comparison of traditional and DevOps development for 
PDD measure. 

B. Release Deployment Frequency (RDF)  

RDF reports the total number of deployments in a particular 
time period. In other words, RDF refers to the rate of released 
deployments. The higher the value of RDF, the lesser is the 
chance of errors/defects in the system. The calculation is RDF 
is done by: 

RDF = ∑
Total number of Deployments

Time Unit (in Hours)

n
i�1     (2) 

Equation (2) calculates the total number of deployments or 
the release count in particular time units, taken in hours, for 
individual components and adding them all to get the RDF for 
the whole system/project. The deployment frequency data of 
the java projects with the usage of traditional principles and 
DevOps rules is shown in Table IV. Table IV clearly indicates 
the high value of deployments that leads to the acceptance of 
frequent changes in the system. The comparative graph of these 
development methodologies in Figure 4 shows similar results. 

TABLE IV.  RDF MEASURE OF SAMPLE PROJECTS  

Name of 

project 

Size 

(LOC) 

No of 

deployments 

Time taken to 

deploy (h) 
RDF 

TDM DC TDM DC TDM DC 

Project1 2430 18 20 1.8 1.1 10 18.18 
Project2 1579 15 16 1.5 0.9 10 17.78 
Project3 557 9 10 1 0.7 9 14.29 

 

 

Fig. 4.  Comparative graph for DevOps and traditional approaches. 

As depicted in Figure 4, the DevOps deployment number is 
higher as compared to TDM. DevOps deployment speed is 
much higher for all types of development projects. Automation 
tools and prior selection of tool chain is the major reason of 
DevOps success over the other methodologies.  

C. System Risk Identification (SRI)  

SRI refers to the assessment of risk associated with the 
project/system to be developed. A high value reflects the 
identification of more risk components and ensures safe and 
risk-free delivery of software. The formula for SRI is: 

SRI = ∑ Wx
n
i�1  , n>0    (3) 

where n refers to the total number of components in the system, 
Wx refers to the weightage assigned to each individual risk and 
the sum of all Wx gives the SRI number. Risk coverage 
analysis or risk identification gives the total number of risk sets 
injected with risk sets executed positively and total risks not 
tested or broken. Table VI depicts different risk set coverage 
calculated for traditional development approaches and DevOps.  

TABLE V.  SRI ESTIMATE OF SAMPLE PROJECTS  

Project 

Total 

risk 

tests 

Total no of 

executed 

risks tests 

Risks 

broken 

Total risks 

not tested 

Risks not 

executed 

Risk 

coverage 

(%age) 

TDM DC TDM DC TDM DC TDM DC TDM DC 

Project1 275 188 211 42 23 22 24 23 17 68.36 76.73 
Project2 150 104 116 23 12 12 13 11 9 37.81 42.18 
Project3 60 40 46 9 5 15 5 6 4 14.55 16.62 



Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9726-9731 9730 

 

www.etasr.com Narang & Mittal: Performance Assessment of Traditional Software Development Methodologies and … 

 

In Table VI, the number of total risk sets included, 
executed, broken, and even ignored or not tested at all in 
DevOps culture are compared with the similar parameters for 
traditional development methods. The results again indicate a 
better risk coverage in DevOps. The graphical comparative 
study in Figure 5 confirms this statement. 

 

 

Fig. 5.  Risk coverage comparative study graph. 

D. Process Productivity (PP)  

The productivity of any system is the total units of work 
done in a particular time period. It refers to the throughput of 
the system. Process or system productivity is measured by: 

PP = ∑
Total number of &ser �tories

Time 'aken to )omplete

n
i�1     (4) 

where user stories refers to the units of work done in a given 
time period. 

Equation (4) finds the productivity of the process or system 
and computes the summation of productivity of individual 
components. PP is also measured as the throughput of the 
whole system or software. It measures the total units of work 
done in a particular time period. The PPs for traditional 
methods and DevOps are shown in Table VII. The results of 
Table VII and of the comparative graph of Figure 6 clearly 
indicate enhanced throughput/productivity measure for projects 
developed under the DevOps culture.  

TABLE VI.  PP ESTIMATION/MEASUREMENT OF CURRENT DATASET  

Name of 

Java 

project 

Size 

(LOC) 

Total no of 

user stories 

Time taken 

(weeks) 
PP 

TDM DC TDM DC 

Project1 2430 180 18 14 10 12.86 
Project2 1579 117 12 9 9.75 13 
Project3 557 41 4 3 10.25 13.67 

 

 
Fig. 6.  PP comparative graph for DevOps and traditional approaches. 

Figure 8 shows speedy releases or output in terms of 
productivity measure for DevOps in comparison with 
traditional development. 

Each of the performance metric and graphic visualization 
tools proves the effectiveness of DevOps as a symbol of quality 
and speedy delivery with less defect density and high coverage 
of risk sets. 

VI. CONCLUSION AND FUTURE WORK 

Fast and quality delivery is an essential indicator for 
assessing the power of software development methodology. 
This study examined the efficacy of the previously proposed 
and implemented DevOps-based hybrid model of automation 
tools. In this esteem, we presented three java based projects 
from different domains and compared the performance of 
DevOps culture with traditional methods of software 
development based on performance metric measurement 
values. The measured results showed the superior performance 
of DevOps culture. 

Although previous studies developed many models in 
software development, no such model has been developed to 
analyze the effect of prior automation tool selection, before 
commencement of actual development, on delivery or 
deployment. Our proposed, implemented and now validated, 
DevOps-based hybrid model of tool chains comes out to be 
more technically focused in terms of software development. As 
a part of future work, real time industry data can also be taken 
or our own tool can be designed to get more automated results. 
Finally, it would be interesting to go deeper in the analysis to 
identify another automation tool that could implement more 
DevOps projects in different arenas. 

REFERENCES 
[1] P. Narang and P. Mittal, "Hybrid model for software development: an 

integral comparison of DevOps automation tools," Indonesian Journal of 

Electrical Engineering and Computer Science, vol. 27, no. 1, pp. 456–
465, Jul. 2022, https://doi.org/10.11591/ijeecs.v27.i1.pp456-465. 

[2] P. Narang and P. Mittal, "Implementation of DevOps based Hybrid 
Model for Project Management and Deployment using Jenkins 
Automation Tool with Plugins," International Journal of Computer 

Science and Network Security, vol. 22, no. 8, pp. 249–259, Aug. 2022, 
https://doi.org/10.22937/IJCSNS.2022.22.8.31. 

[3] M. Gomes, R. Pereira, M. Silva, J. B. de Vasconcelos, and Á. Rocha, 
"KPI’s for Evaluation of DevOps Teams," in Information Systems and 

Technologies, Cham, 2022, pp. 142–156, https://doi.org/10.1007/978-3-
031-04829-6_13. 

[4] W. W. Rovce, "Managing the Development of Large Software Systems," 
in Technical Papers of Western Electronic Show and Convention, Los 
Angeles, CA, USA, Aug. 1970. 

[5] G. Papadopoulos, "Moving from Traditional to Agile Software 
Development Methodologies Also on Large, Distributed Projects.," 
Procedia - Social and Behavioral Sciences, vol. 175, pp. 455–463, Feb. 
2015, https://doi.org/10.1016/j.sbspro.2015.01.1223. 

[6] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, "Exploring 
software development at the very large-scale: a revelatory case study and 
research agenda for agile method adaptation," Empirical Software 

Engineering, vol. 23, no. 1, pp. 490–520, Feb. 2018, https://doi.org/ 
10.1007/s10664-017-9524-2. 

[7] A. Agrawal, Mohd. A. Atiq, and L. S. Maurya, "A Current Study on the 
Limitations of Agile Methods in Industry Using Secure Google Forms," 
Procedia Computer Science, vol. 78, pp. 291–297, Jan. 2016, 
https://doi.org/10.1016/j.procs.2016.02.056. 



Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9726-9731 9731 

 

www.etasr.com Narang & Mittal: Performance Assessment of Traditional Software Development Methodologies and … 

 

[8] A. Mishra and Z. Otaiwi, "DevOps and software quality: A systematic 
mapping," Computer Science Review, vol. 38, Nov. 2020, Art. no. 
100308, https://doi.org/10.1016/j.cosrev.2020.100308. 

[9] P. Debois, "Agile Infrastructure and Operations: How Infra-gile are 
You?," in Agile 2008 Conference, Toronto, ON, Canada, Dec. 2008, pp. 
202–207, https://doi.org/10.1109/Agile.2008.42. 

[10] A. A. Khan and M. Shameem, "Multicriteria decision-making taxonomy 
for DevOps challenging factors using analytical hierarchy process," 
Journal of Software: Evolution and Process, vol. 32, no. 10, 2020, Art. 
no. e2263, https://doi.org/10.1002/smr.2263. 

[11] M. Ramzan, M. S. Farooq, A. Zamir, W. Akhtar, M. Ilyas, and H. U. 
Khan, "An Analysis of Issues for Adoption of Cloud Computing in 
Telecom Industries," Engineering, Technology & Applied Science 

Research, vol. 8, no. 4, pp. 3157–3161, Aug. 2018, https://doi.org/ 
10.48084/etasr.2101. 

[12] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, "A Survey of 
DevOps Concepts and Challenges," ACM Computing Surveys, vol. 52, 
no. 6, Aug. 2019, Art. no. 127, https://doi.org/10.1145/3359981. 

[13] D. Trihinas, A. Tryfonos, M. D. Dikaiakos, and G. Pallis, "DevOps as a 
Service: Pushing the Boundaries of Microservice Adoption," IEEE 

Internet Computing, vol. 22, no. 3, pp. 65–71, Feb. 2018, https://doi.org/ 
10.1109/MIC.2018.032501519. 

[14] K. Aldriwish, "A Deep Learning Approach for Malware and Software 
Piracy Threat Detection," Engineering, Technology & Applied Science 

Research, vol. 11, no. 6, pp. 7757–7762, Dec. 2021, https://doi.org/ 
10.48084/etasr.4412. 

[15] M. F. Hyder and M. A. Ismail, "INMTD: Intent-based Moving Target 
Defense Framework using Software Defined Networks," Engineering, 

Technology & Applied Science Research, vol. 10, no. 1, pp. 5142–5147, 
Feb. 2020, https://doi.org/10.48084/etasr.3266. 

[16] M. A. Silva, "Productivity Gains of DevOps Adoption in an IT Team: A 
Case Study," in 27th International Conference on Information Systems 
Development, Lund, Sweden, 2018. 

[17] J. Stoneham, P. Thrasher, T. Potts, H. Mickman, and C. DeArdo, 
DevOps Case Studies: The Journey To Positive Business Outcomes. IT 
Revolution. 

 
AUTHORS PROFILE 

 
Poonam Narang, is a research scholar, pursuing her PhD from the 
Department of Computer Science and Applications, Maharishi Dayanand 
University, Rohtak, Haryana under the supervision of Respected Dr. Pooja 
Mittal. Author’s Qualification is M.Phil. (CS), MCA. She had attended many 
National and International Conferences and has also published many research 
papers.  

 

Pooja Mittal, obtained her Ph.D. from Maharshi Dayanand University. Her 
areas of research and specialization include data mining, data warehousing, 
and computer science. She had published more than 50 research papers in 
renowned International and National Journals and has attended more than 30 
Conferences. Currently she is working as an Assistant Professor in the 
Department of Computer Science & Applications, Maharishi Dayanand 
University, Rohtak (Haryana). 

 


