
Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9697-9702 9697

www.etasr.com Benaouda & Benaouda: An Original Approach for Translating Grafcet into C/Unix Code for Validation …

An Original Approach for Translating Grafcet into
C/Unix Code for Validation Purposes

Nacera Benaouda
Department of Computer Science
Ferhat Abbas University Setif I

Setif, Algeria
nacbenaouda@univ-setif.dz

Abdelhafid Benaouda
Department of Computer Science
Ferhat Abbas University Setif I

Setif, Algeria
ahbenaouda@univ-setif.dz

Received: 19 September 2022 | Revised: 3 October 2022 | Accepted: 6 October 2022

Abstract-This paper proposes an approach to simulate the

function of the control part of a Grafcet model, translating it into

C code in a Unix environment. First, the Grafcet/C generation

schemes are established. The Grafcet model, described in graphic

or text form, is transformed in an internal form and then to C

code by a generation algorithm based on the previously found

diagrams. The result is a program that simulates the operation of

the automation in question and makes it possible to validate the

functional specifications of sequential automation. This validation

can be used for educational purposes, such as the learning of the

Grafcet formalism, or corrective or evolutionary maintenance.

Once the configuration, testing, and validation of the program

are complete, it is possible to implement the object code on the

microcontroller of the control system.

Keywords-C/Unix; Grafcet; process; sequential automation

I. INTRODUCTION

Equipment manufacturers and automation engineers
responsible for automated industrial installations should master
the programs that drive their installations to perform preventive
[1, 2], corrective, adaptive, and evolutionary maintenance tasks
[3]. These programs are often outsourced, use a variety of
libraries, and depend not only on the problem to be solved but
also on the past of their provider. Grafcet [4, 5] is a graphic
formalism for describing automatisms, accepted by mechanical
automation engineers who consider it to represent the right
level of specification without much complexity. In an
automated system, the control part is the image of the operative
part that represents the automated machine. Simulation and
validation of the operation of an automated system are
necessary before its implementation in the actual installation.
Simulating the operation of Grafcet is equivalent to translating
it into appropriate languages, which generate programs with the
same semantics. These programs have shown their usefulness
for maintenance or educational purposes. This study chose
C/Unix as the target language and system for the Grafcet
translation. This choice was motivated by two reasons; the C
language extended by the Unix libraries has all the necessary
tools for the translation of Grafcet, and the required hardware
and software configuration for the application is very simple,
just a personal computer with a Linux distribution.

II. RELATED WORK

Several studies achieved to formalize Grafcet. In [6],
Grafcet translation schemes were designed in the Occam2
language, which is executable on transputers, exploiting the
possibilities of expressions of parallel tasks offered in Occam2
to express the respective representation in Grafcet. The
resulting program could run on a parallel machine and simulate
the actual operation of an automated system. This work could
obtain the equivalent Occam2 program from a Grafcet in
graphical or textual form. Being a parallel language, Occam2
possesses the necessary tools to translate Grafcet, but the
resulting program can only be exploited if a parallel machine
existed. Since parallel machines are only available in certain
research laboratories or specific industrial settings, such a
program may have limited use. In [7], a semi-coarse ontology
was defined and tested by integrating it into an existing
educational tool to teach Grafcet for use in programmable logic
controllers. This ontology was OWL (Web Ontology
Language) DL based, a specific decidable fragment of first-
order logic applied to OWL markup language. The objective of
this method was to complement previous studies and promote
this type of technique in the formalization of Grafcet. The
advantages of ontologies are numerous, as they make
collaboration and sharing of knowledge easier, provide better
reliability, and assure to handle automatically any input change
without having to recompile the processing code. This
approach was validated according to two criteria, accuracy and
completeness. A new vision was adopted in [8], by proposing a
systematic implementation of the control software in IEC
61499. This constituted a key advantage over previous Grafcet
implementations because it allowed engineers to implement
models distributed over several devices and also kept the initial
centralized design. IEC 61499 has all the translation tools for
most of the Grafcet elements. This work made it possible to
systematically translate Grafcet and introduced several
translation models. The disadvantages of this method lied in the
fact that it was not possible to model the structuring
mechanisms such as fences or forcing steps, and the macros-
steps that could be implemented were limited to simple
sequences.

Corresponding author: Nacera Benaouda

Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9697-9702 9698

www.etasr.com Benaouda & Benaouda: An Original Approach for Translating Grafcet into C/Unix Code for Validation …

III. MOTIVATION FOR CHOOSING C LANGUAGE

Grafcet is a logical automatism description formalism that
allows expressing competing processes. A language to translate
Grafcet has to preferably be parallel [6] and/or real-time. The
duration of the task's installation or its switching time is
decisive in choosing such a language. C and Unix [9] were
chosen due to their portability, universality, and control by
most computer scientists. Its disadvantage lies in the fact that
Unix is not quite real-time, because its slow temporal
primitives were defined according to the only problems of the
timeshare. C language is a High-Level Machine-Oriented
Language (HLMOL) that allows defining bit-close fields, and
expanded by Unix libraries can provide the illusion of
simultaneous execution of tasks on uniprocessor machines, as
shown by functions such as fork, wait, sleep, kill [9]. Pipes are
the main means of communication between Unix processes [9].
Several synchronization means are available in Unix. This
study used the wait function, which is the most basic mean of
synchronization and can be used to synchronize a parent
process on the termination of its children. Time management
was carried out using the sleep() function, as the call to the
sleep(n) function suspends the calling process for n seconds.
Since the seconds are not useful for many real-time scenarios,
the macro tempo() was used to allow timers in microseconds:

 #define tempo(n){
 clock_t reveil = clock()+n;
 while(clock()<reveil) sleep(0);
 }/*n in microseconds */

So, sleep(1) is equivalent to tempo(1000000). These timers

were used in processes running in parallel and can limit the
waiting time for certain events.

IV. SIMULATION SYSTEM DESCRIPTION

Two subsystems constitute the simulation system [10]:

 Grafcet entry: this subsystem offers two possibilities:

o Graphical input: Based on a graphical editor, allows any
Grafcet to be entered graphically and outputs its image
data structure.

o Text entry: Rarely used in practice, except for
maintenance purposes. It allows to enter the Grafcet as
text, so requires a text analyzer that outputs the same
data structure as the graphical editor.

 Translation of the Grafcet: This subsystem exploits the data
structure from the entry and translates it into C. Two steps
are possible:

o Interpreter/simulator: A program that executes step-by-
step the appropriate C sequences according to the data
structure.

o Generator: A program that creates a complete C code of
all the Grafcet. Executing this code is the simulation of
the automatism described by the Grafcet, as long as this
code is not configured according to real I/O.

In both cases, translation requires defining the Grafcet/C
generation schemes.

V. GRAFCET/C TRANSLATION SCHEMES

The definition of the translation schemes from Grafcet to C
consists of finding for each Grafcet basic element a program
scheme in C which has the same semantics. The elements of
Grafcet are: simple transition, divergences (AND, OR),
convergences (AND, OR), the stage, and the macro stage [10].

A. Preliminary Study [10]

Let's consider the following scenario:

 A rotating bar at a position x, y of the screen successive
display in x, y of characters -, /, |, \, -, /, …)

 In case of no overflows, pressing the arrow keys causes the
bar to move down, left, right, and up respectively.

 If limits are exceeded, the above characters produce an
audible signal, and the bar keeps rotating in the same place.

 Pressing the character "q" stops the scenario.

 Pressing any other character is ineffective.

Figure 1 shows the Grafcet of the above scenario.

Fig. 1. Grafcet associated with the rotating bar scenario.

Let EB and TB be the stages and transitions of the rotating
bar branch, and EL and TL be the stages and transitions of the
reading characters branch.

Stages

E0: initial stage, beginning of the program.
EB1: rotating bar.
EB2: end of the rotating bar process.
EB3: Test of the character read in the pipe.
EB4: audible alarm.
EB5: moving the bar.
EB6: rest (sleep).
EL1: read and test the read character.
EL2: sending a KILL and exit.
EL3: write ↓, ←, →, ↑ in the pipe.
EL4: rest (sleep).
S: end of the scenario.

Transitions

T1: pressing any key to start both processes.
TB1: reception of a KILL signal.
TB2: read ↓, ←, →, ↑ in the pipe.
TB4: overcoming limits.
TB5: no overflows.
TB6: = 1; TB7 = 1
TL2: read ↓, ←, → or ↑ from the keyboard.
TL3: reading of the 'q' character of the keyboard.
TL4 = 1; TL5 = 1; TLF = 1.

Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9697-9702 9699

www.etasr.com Benaouda & Benaouda: An Original Approach for Translating Grafcet into C/Unix Code for Validation …

B. Principles of the Image Program

Once the program is launched, two processes are created
and launched simultaneously (proc1, proc2). Proc1 is a
standalone process associated with the rotating bar, while proc2
is associated with its movement and is under external influence.
At some point, the two processes must act simultaneously on
the coordinates x, y of the bar. A first solution is to create a
critical section within each process to achieve mutual exclusion
of both accesses [8]. A second solution would be to allow
effective access to a single process, such as proc1, which will
rotate and move the bar, proc2 reads the arrow characters,
considered as the move commands of the bar, and sends them
through a pipe to proc1 to use them to move the bar in the
desired direction. The end of the scenario will take place when
proc2 reads the "q" key. Table I shows the general processing
algorithms of proc1 and proc2. This program, modeled in
Grafcet, is the basis to deduce the basic translation schemes
from Grafcet into C. These schemes were extended for
industrial processes where the system entries can be numerous,
simultaneous, and real-time. Therefore, push buttons and
sensors were integrated.

TABLE I. PARALLEL RUNNING OF PROC1 AND PROC2

Proc1 Proc2

At each position of the bar:
Display the bar
Look in p[0] if a character is placed in
the pipe.
If yes the character is stored in cc1 and
tested.
If exceeding the limits, warning sound,
otherwise move in the desired
direction.
Rotation of the bar.

Reads a cc character from the
keyboard and test it.
If cc ='q' then sends a SIGKILL to
proc1 then EXIT.
If cc ="↓", "←", "→" or "↑" then
places cc in the inlet p[1] of the
pipe;
If cc is other, ignore cc.

C. Grafcet-C Translation Schemes

A simple transition is an external event that can arise at any
time from a sensor, button, etc. Three cases exist to simulate it:
keyboard, order box, and always concurrent. Keyboard input
can be given as a simple scheme:

cc=getch()

In case of an order box, let boitcom be the port address of
the command box, reading 8 to 16 digital inputs. By
assimilating all the bits to zero in the absence of an entry, the
scheme could be the following:

while(!(*boitcom)) sleep(0);

These diagrams are taken up and developed when a
configuration language would cover the essential cases
concerning the real-time management of arbitrary devices,
which will be part of a realistic simulation. Meanwhile, the
input from the control box can be simulated by programming
the keys of the keyboard, associating a sequence of bits: for
i=1,…,7, command[0],…, command[7], command[i]=1 when
the receptivity i is true, and command[i]=0 when no receptivity
is true. In an always occurrent case, t=1, which means that the
sum of the internal and external receptivity conditions is 1. In
this case, a comment is generated (/* t=1 */).

1) Divergences

 AND divergence:

while(!t) sleep(0);
rep=forkn(tab_fonc,nproc,tab_pid);
rep1=wait(&status);
while((rep1 !=-1) wait(&status);

where tab_fonc is an array of pointers to functions performed
in the context of each process, nproc is the number of the
created processes, tab_pid is the pid chard of the created
processes, and tab_fonc[i] is the pointer to the function
executed by the process with the pid_tab_pid[i]. Forkn() details
can be found in [9].

 OR divergence: The exclusive OR divergence is given by:

while(!t1&&!t2&&!t3... &&!tn)sleep(0);
switch(transition){
 case t1 : p1();
 case t2 : p2();
 . . .
 case tn : pn();
}

where pi() is the procedure executed for the transition ti and
there is no priming of new paths. Inclusive OR is given by:

while(!t1&& !t2&&... && !tn) sleep(0);
if(t1) p1();
if(t2) p2();
…
if(tn) pn();
/* the creative process enters the
zombie state */
rep1=wait(&status);
while (rep1 !=-1) wait(&status);

where pi() is the process creation procedure i. There is a boot of
new paths. Two images are likely in the classical case of an
input form: A general but expensive image (competition
diagram), or an effective image applicable under certain
conditions. In the case of an effective image, the alternative
scheme is applicable if and only if the transitions are disjoined
two by two.

The evaluation of this question in a generator is the subject
of a decision procedure, which in case of difficulties may
substitute, the absolute criterion above, one or more sufficient
conditions easier to evaluate. For example, if two transitions
occur as products of elementary conditions, they are disjoint if
the same condition is present in the two transitions in opposite
forms, such that: T1 = x y z and T2 = x y z. In the case of
expectations with time-out, there is divergence with two issues,
one of which carries the receptivity "event" and the other a
receptivity "time limit". Since this can only be performed in
excess, it is normal to consider the two as disjoint (in case of
conjunction, the event is considered to have happened after the
prescribed duration). The quality of the decision procedure thus
directly governs the quality of the code, which may be
inaccurate, correct but heavy, correct and effective, and even
optimal for a perfect decision procedure. On the other hand, the
generation with divergences must agree with the generation
with convergences.

Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9697-9702 9700

www.etasr.com Benaouda & Benaouda: An Original Approach for Translating Grafcet into C/Unix Code for Validation …

2) Convergences

 AND Convergence: Two cases arise: If pi has the same
divergence as the origin, the synchronization is performed
by wait(), while if they don't have the same origin,
synchronization is mandatory. For each father process,
synchro is a global variable. Initially, synchro is the
number of incoming branches. Once it finishes, each
process simulating an incoming branch must access
synchro and decrement it. When synchro becomes null, it
implies the end of all branches. As the access to synchro
may be simultaneous, it must therefore be a critical section
within each process, using either semaphores or locks [11].
This study used a method of choosing a process, called the
coordinator, and took the one that simulates the most left
incoming branch. When it finishes, the coordinator
performs the following algorithm.

/* scheme associated with coordinator*/
/*only the coordinator accesses synchro*/
int rep ; char cc ;
...
/* as soon as it finishes, it
decrements synchro */
synchro-- ;
while(1){
 cc = ' ';
 dup(tube1[1]);
 close(tube1[1]);
 read(tube1[0],cc,1);
 if (cc=='f') synchro--;
 ...
 cc=' ';
 dup(tuben[1]);
 close(tuben[1]);
 read(tuben[0],cc,1);
 if (cc=='f') synchro--;
}/* finwhile */
 /* synchro=0, le process p0 kills
 all the other processes and makes
 an exit */
 rep=kill(pid1, SIGKILL);
 rep=kill(pid2, SIGKILL);
 ...
 rep=kill(pidn, SIGKILL);
 exit();

Once it finishes, each other process associated with other

branches should perform the following algorithm:

/* let's suppose the process number i,
 other than the coordinator, sends the
 character 'f' in the pipe */
 dup(tubei[0]);
 close(tubei[0]);
 write(tubei[1],'f',1);
/* infinite loop as wait */
 for(; ;) sleep(0);

 OR Convergence: Exclusive OR comes down to the simple
transition, while inclusive OR is discussed in the same way
as the AND convergence.

3) The Stages

It executes within a process, and can be simulated by a
message specifying it, possibly a time-dependent timer
associated with it, encapsulated in an enn() procedure:

void enn()
printf("etape %d",num_etape);
tempo(duree) ;

4) The Macro Stage

The macro stage is translated using a procedure that is an
image similar to the main program because it is a sub-Grafcet
and militates a recursive generation.

5) Forcing

The diagrams can be implemented in the case where the
automatism is modeled by a single Grafcet, which is a single
connected component. They can be extended by adding the
associated macros in the case of forcing or applied in the case
of a hierarchy of Grafcets. The forcing function is an action of
macro stage M. This is then called macroaction, and is a
procedure using another Grafcet (slave). The functions
associated with forcing operations are summarized below:

 Freezing: This operation consists of sending the signal
SIGSTOP to the active stages of the given Grafcet.

void suspendre(g){
int i, rep ;
i=1 ;
while (i<= nbactif){
 rep=kill((pid[i],SIGSTOP);
 i++ ;
}
//nbactif = number of active stages
//pid : table of active pid

 Disabling the slave Grafcet: This operation is associated

with a deactivate() procedure which consists of sending a
SIGKILL signal to the active processes in the slave Grafcet
given by g.

 Put in initial situation: This procedure consists of calling a
subroutine that is analogous to the main program. This is
similar to using the macro stage in the case of the normal
operation of automation.

 Put in any situation: Two cases may arise, reactivate a
previously suspended Grafcet, which would consist of
sending the SIGCONT signal to the suspended process, or
activate certain stages of the Grafcet in question where it
would be necessary to put to true their input receptivities
and launch the functions associated with them.

VI. NECESSARY CONFIGURATION FOR THE SYSTEM

The implementation of this system requires:

 A Unix or Linux or any multitasking system.

 A graphic screen for entering the Grafcet.

 A keyboard as input device and, if possible, a box of
commands.

 Effectors: LEDs, bulbs, effectors.

The screen is divided into two windows. The first window
(FEN1) is used to draw the currently active Grafcet (command
part), while the second (FEN2) is specific to the messages that
illustrate the actions carried out by the operative part. Initially,

Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9697-9702 9701

www.etasr.com Benaouda & Benaouda: An Original Approach for Translating Grafcet into C/Unix Code for Validation …

the Grafcet is animated from the initial situation. The arrival of
the transitions from the keyboard or the control box causes the
evolution of the Grafcet, i.e. activation of the new stage or
stages (following the transition), and deactivation of the stage
or stages. Active stages will be highlighted in FEN1, showing
their associated messages in FEN2. The command box allows
making several entries at once, a case that can be tested for OR
divergences and transitions whose branches run in parallel.
Figure 2 shows a Grafcet and the corresponding C program.

Fig. 2. From Grafcet to C code.

VII. APPLICATION

Figures 3 and 4 show two industrial Grafcet examples that
were used to validate the proposed method. The principle of
validation of a Grafcet has two phases: static validation,
respecting the conditions of good form, and dynamic validation
of the execution.

A. Grafcet Good Form Conditions

A Grafcet is:

 Except: if for any situation accessible from E0, no step is
reactivated.

 Living: If for any accessible situation from E0, a crossing
sequence of any transition exists.

 Clean: If for any situation accessible for E0, there is a
crossing sequence leading to E0.

B. Importance of the Preceding Properties for the Grafcet

Evolution

If the Grafcet is safe, no step is reactivated during its
possible evolutions. Reactivation is dangerous and can lead to
errors. A living Grafcet will never block and will never find
inert steps or transitions (unactivated steps, unsensitized
transitions) at a certain stage of the evolution. If a Grafcet is
clean, this implies possible re-initiation. This is a very
important phenomenon for automation, as the initial step is
considered a resting stage. The proposed method assumes:

 Transitions from the keyboard or the control box are always
occurring (= 1), simulating well external or internal events.

 Simple steps: The considered Grafcet can easily be
assimilated to the complete Grafcet that takes into account
any type of transition or step. This method is effective for
Grafcet validation.

The Grafcet shown in Figure 3 is not safe because there is a
reactivation of step 2, in the case of crossing transition 5. The
proposed method indicates it by a message and rejects it when
meeting again step 2 within the normal operating cycle.

Fig. 3. Industrial Grafcet example1.

Fig. 4. Industrial Grafcet example2.

In Figure 4, transitions 2 and 3, are OR divergences. If they
occur together, the OR of this divergence is inclusive and the
Grafcet is clean, alive, and safe. If they do not occur together,
the OR is exclusive, and one branch will be executed, but
arriving at the AND convergence, transition 5 can be crossed
only if steps 4 and 5 are both active and the transition is equal

Engineering, Technology & Applied Science Research Vol. 12, No. 6, 2022, 9697-9702 9702

www.etasr.com Benaouda & Benaouda: An Original Approach for Translating Grafcet into C/Unix Code for Validation …

to 1, which is not the case if the OR is exclusive. The proposed
program reports a blockage in this case.

C. Compatibility of Simultaneous Actions and Correlation of

Stages and Receptivity

A subsystem displaying the steps and associated actions
would allow the user to know if the steps that have run
simultaneously correspond to compatible actions, after
observing the execution of the Grafcet. For example, two
pumps, one operating while the other is at rest, should never
appear together in two simultaneous actions in a Grafcet.
Similarly, the action-receptivity correlation can be checked by
consulting the transitions and the associated receptivity
conditions (the symbol table contains all the information
relating to the steps and transitions).

D. Search of Cycles

In principle, a cycle exists, outside the normal operating
cycle, if there is a reactivation of at least one previous step. The
proposed algorithm, as designed, rejects the Grafcet as soon as
a previously activated stage is reactivated. A cycle within the
normal cycle of operation can have dangerous consequences.

VIII. CONCLUSION

The proposed algorithm allows to translate a large number
of Grafcets by compositions of the most elementary elements.
On a practical level, this study created a Grafcet library of
translation diagrams. This library was tested on several
examples, is independent of the assumed internal form, takes
into account the automatisms described by a single Grafcet, and
can be extended to explicit macros and procedures relating to
forcing processing used in the case of a Grafcets hierarchy. A
program was developed that requires to start from a graphic
editor or specialized analyzers to enter the Grafcet in an
internal form to produce a C code whose execution will behave
according to the entered Grafcet. Automatic production of the
C code is based on the elementary translation schemes
described. As a second step, after the test, validation, and
configuration of the algorithm and the program, the object code
can be implemented on the microcontroller of the actual control
system, in particular explaining everything related to the
execution configuration. The advantage of the proposed
algorithm is that it can be widely used because it requires a
simple hardware and software configuration as a
microcomputer equipped with the Linux operating system is
more than enough. Compared to other works, the proposed
method can simulate any type of Grafcet and the various
forcing treatments, and it presents precision and
exhaustiveness. The only downside of the proposed method is
that Unix is not quite real-time, but this approach can be
assumed as complete by staying at the simulation stage. Future
work would focus on translating Grafcet into Promela/SPIN.

ACKNOWLEDGMENT

This paper pays tribute to Mr. Louis Frécon, who was a
professor at INSA/Lyon, and passed away on November 11,
2018, for his contribution during the realization of this work.

REFERENCES
[1] O. A. Adebimpe, V. Oladokun, and O. E. Charles-Owaba, "Preventive

Maintenance Interval Prediction: a Spare Parts Inventory Cost and Lost
Earning Based Model," Engineering, Technology & Applied Science

Research, vol. 5, no. 3, pp. 811–817, Jun. 2015, https://doi.org/
10.48084/etasr.565.

[2] L. S. Tavassoli, N. Sakhavand, and S. S. Fazeli, "Integrated Preventive
Maintenance Scheduling Model with Redundancy for Cutting Tools on a
Single Machine," Engineering, Technology & Applied Science Research,
vol. 10, no. 6, pp. 6542–6548, Dec. 2020, https://doi.org/10.48084/
etasr.3903.

[3] M. A. Munir, M. A. Zaheer, M. Haider, M. Z. Rafique, M. A. Rasool,
and M. S. Amjad, "Problems and Barriers Affecting Total Productive
Maintenance Implementation," Engineering, Technology & Applied

Science Research, vol. 9, no. 5, pp. 4818–4823, Oct. 2019,
https://doi.org/10.48084/etasr.3082.

[4] B. M, Comprendre Maîtriser Et Appliquer Le Grafcet. Toulouse, France:
Éditions Cépaduès, 2005.

[5] Reeb Bernard, Développement des grafcets : des machines simples aux
cellules flexibles, du cahier des charges à la programmation / Bernard
Reeb, Nouvelle édition. Paris, France: Ellipses, 2011.

[6] Z.Remaki, J. F. Ponsignon, M. Nekkache, "Schémas de traduction
grafcet Occam2", presented at the 3rd Maghreb Congress on Artificial
Intelligence and Software Engineering, Rabat, Morocco, 1994.

[7] E. González, R. Marichal, and A. Hamilton, "Ontology-based approach
to Basic Grafcet formalization," Journal of the Chinese Institute of

Engineers, vol. 39, no. 8, pp. 946–953, Nov. 2016, https://doi.org/
10.1080/02533839.2016.1215939.

[8] O. Miguel-Escrig, J.-A. Romero-Pérez, B. Wiesmayr, and A. Zoitl,
"Distributed implementation of Grafcets through IEC 61499," in 2020

25th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA), Vienna, Austria, Sep. 2020, vol. 1, pp.
402–409, https://doi.org/10.1109/ETFA46521.2020.9212087.

[9] W. Stevens and S. Rago, Advanced Programming in the UNIX

Environment, 3rd Edition, 3rd edition. Upper Saddle River, New Jersey:
Addison-Wesley Professional, 2013.

[10] Nacéra Benaouda and Abdelhafid Benaouda, "Translating Grafcet
Specifications into C/Unix Program," presented at the IADIS
International Conference Information Systems 2021, 2021, pp. 209–217.

[11] M. Raynal, Concurrent Programming: Algorithms, Principles, and
Foundations. Springer, 2013.

