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Abstract-Steel-Concrete Composite (SCC) beams have been 

commonly used in civil and industrial buildings. It is the main 

bearing structure and accounts for 30-40% of the structural cost. 

Therefore, the optimal design with minimum weight and safety 

structure of the SCC beams is very important. Reliability is an 

important part of structural safety. Design according to 

reliability has been included in standards such as ISO 2394:2012, 

JB50153-92, and BS 5760-0:2014. This article aims to propose 

and apply a design optimization algorithm for the reliability-

based design of SCC beams. The reliability-based design 

optimization of the SCC beams combines the safety conditions of 

EC-4, Genetic Algorithm, and Monte Carlo simulation. The 

numerical results show that with safety probability constraint 

conditions Ps=98%, the cross-section of the SCC beams can be 

reduced from IPE 400 to IPE 300. 

Keywords-reliability; design optimization; Genetic Algorithm 

(GA); Monte Carlo simulation; steel-concrete composite beams 

I. INTRODUCTION  

SCC beams are designed according to the American 
Institute of Steel Construction (AISC360-10) [1], the European 
Committee for Standardization 2004a (EC-4) [2], and the Japan 
Society of Civil Engineers (JSCE-2009). The calculation 
methods for design strengths of steel–concrete composite 
members can be divided into the Load and Resistance Factor 
Design (LRFD) method and the Partial Factor Method (PFM) 
[3]. Reliability assessment of steel and SCC beams is an open 
research topic. Fatigue-reliability evaluation of steel bridges 
according to AASHTO was proposed in [4]. Reliability 
assessment of SCC beams considering metal corrosion effects 
was published in [5]. A reliability assessment of SCC beams 
according to EC-4 using FORM was proposed in [6]. Seismic 

reliability assessment of a two-story steel-concrete composite 
frame designed according to Eurocode 8 was conducted in [7].  

Some recently published studies on the reliability of steel 
and reinforced concrete beams and design optimization can be 
seen in [7-17]. However, previous studies mostly focused on 
the structural reliability and optimization of steel and SCC 
structures. To the best of our knowledge, no studies have been 
conducted yet on the reliability-based design optimization of 
SCC beams combined with safety conditions according to 
European Committee for Standardization 2004a (EC-4), 
Genetic Algorithm (GA), and Monte Carlo simulations. 

This study proposes an optimization algorithm for 
reliability-based design of SCC beams. The developed 
algorithm combines Monte Carlo simulation and GA. Random 
values of the input parameters are considered in the proposed 
procedure and various safety conditions according to the EC-4 
are investigated. Finally, numerical validation has been 
performed with 5 case studies. 

II. MATERIALS AND METHODS 

A. Safety Conditions of Steel-Reinforced Concrete Composite 

Beams  

The steel-reinforced concrete composite beams in this study 
were designed according to EC-4 [2]. The safe conditions of 
composites steel-reinforced concrete that must be satisfied are: 
(i) Ultimate limit state and (ii) serviceability limit state. The 
destructive structure of composite steel-reinforced concrete 
beams has three cases, as shown in Figure 1. The safe 
conditions can be rewritten as in (1): 
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(a) 

 

(b) 

 

(c) 

 

Fig. 1.  Plastic design of steel-reinforced concrete beams: (a) when the 

PNA lies in concrete slab, (b) when the PNA lies in steel flange, (c) when the 

PNA lies in steel web. 
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where 
saf

M represents the safe conditions based on EC-4. 

B. Structural Reliability 

The probability of failure of a structure for random strength 
(R) and random load (Q) is calculated according to [18]: 

     ,
f R Q

P I r q f r f q drdq
 

 
       (2) 

where �
� 

represents the load probability density functions, 

�
� 

the strength probability density functions, and �(�, 	) is a 

function indicator and defined by: 
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    (3) 

Equation (3) cannot be solved in a closed form but is 
instead estimated using analytical or numerical techniques. 
Determining the reliability of the structure has been covered in 
detail in [18], where the reliability structure has been proposed 
through the first-order reliability index with the assumption that 
R and Q have independent normal distributions. 
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where �� is the mean of "true" resistance and �� the nominal 
resistance as determined by a specification procedure. 

Monte Carlo simulation [18] has been proposed to estimate 
the probability of failure and avoid the limitations of the first-
order reliability index method. The general expression (1) can 
be rewritten as follows: 
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       (5)  

where ��(�, �) is importance sampling density. This integral 
can be estimated by the sum of the discrete values as follows: 
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The variance of the sampled estimated significance is given 
by: 
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C. Genetic Algorithm 

GA is based on Darwinian evolution theory. The aim of 
GAs is to search for an optimized solution to a technical 
problem. GA basics can be found in [19-21]. The main 
structure of GA is a 5-step process:  

Step 1. Randomize the first generation. 

Step 2. Evaluate the fitness of each individual. 

Step 3. Compute the probability distribution. 

Step 4. Create the next generation via crossover and 
mutation. 

Step 5. Repeat steps 2 to 5 for the desired number of 
generations. 

D. Deterministic Model and Stochastic Model 

The deterministic model is a composite steel-reinforced 
concrete beam design problem according to EC-4. The input 
parameters used include geometrical properties ( �, �, ��� ), 
material properties (��� , �� ), and total active load (�) . The 
input parameters can be written as � = [�, �, ���, ��� , ��, �]. 
The deterministic model has the following form: 

�� ! = �(�)    (8) 
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The stochastic model was built based on the deterministic 
model, in which some input parameters are randomized. In this 
study, two input vectors have been used. The first vector 
consists of a deterministic inputs group �" = [�, �, ���] and 
the second vector consists of a stochastic inputs group 

�#($) = [���($), ��($), �($)] , where  characterizes the 
random value. The stochastic model has the form of: 

�� ! = �(�", �#($))    (9) 

III. RELIABILITY-BASED DESIGN OPTIMIZATION OF THE 

STEEL-CONCRETE COMPOSITE BEAMS 

A. Schematic Diagram Algorithm 

In this study, reliability-based design optimization of SCC 
beams has been built based on the stochastic model, Monte 
Carlo simulation, and GA. The algorithm consists of the 
following steps: 

Step 1. Prepare the input data (geometrical properties, material 
properties, and total active load) 

Step 2. Design and safety testing for cross-section of SCC 
according to EC-4 with deterministic input parameters. 

Step 3. Randomize input parameters and build the stochastic 
model based on the deterministic model. 

Step 4. Reliability assessment based on the stochastic model 
and Monte Carlo simulation. 

Step 5. Reliability-based design optimization of steel-concrete 
composite beams. 

 Constraint conditions: The safety probability structure. 

 Objective function: Minimum weight of steel beam. 

Step 6. Reliability-based design optimization using GA. 

The process diagram of the reliability-based design 
optimization of the SCC beams using GA and Monte Carlo 
simulation is shown in Figure 2. From the process diagram, a 
program has been built on MATLAB. 

B. Optimization Analysis of Steel-Concrete Composite Beams 

In this section, we apply reliability-based design 
optimization of SCC beams using GA and Monte Carlo 
simulation, considering the SCC beam example in [22] as 
shown in Figure 3. The deterministic and random input 
parameters are shown in Table I. The distribution of material 
properties are based on [23] and the cross-section and loading 
are adopted from [24]. The upper and lower bounds of the 
cross-section of the steel beam are shown in Table II. The 
safety probability constraint conditions of steel-concrete 
composite beams are ��  = 98% and the objective function of 
steel beams is minimum weight. Optimization analysis results 
of the steel beams through 5 case studies are shown in Table 
III, which shows that with deterministic input parameters and 
safety conditions according to EC-4 [22], the obtained cross-
section design of the steel beams is IPE 400. Meanwhile, when 
the reliability-based design optimization was applied to the 
SCC beams using GA and Monte Carlo simulations with safety 
probability constraint conditions �� =  98%, the obtained 

optimal design of the cross-section of the steel beams is IPE 
300. This proves that reliability-based design optimization of 
the SCC beams using GA and Monte Carlo simulation has 
great economic and technical advantages.  

 

 
Fig. 2.  The schematic diagram of reliability-based design optimization of 

SCC beams. 

 

 

 

(a) 

 

(b) 

Fig. 3.  (a) Cross-section of slabs and (b) stress distribution of the cross-

section. 

TABLE I.  STATISTICAL PROPERTIES OF RANDOM VARIABLES FOR 

RELIABILITY ASSESSMENT OF SCC BEAMS 

Properties Variables Nominal 
Mean/ 

nominal 
COV Distribution Ref. 

Material 

(N/mm2) 

��� 25.0 1.10 0.06 Lognormal [23] 

�� 450 1.10 0.06 Lognormal [23] 

Loading 

(kN/m) 

�� 9.54 1.05 0.10 Normal [24] 

	� 13.69 1.05 0.10 Normal [24] 

Cross-

section 

IPE 400 

(mm) 

�! 180.00 1.00 0.05 Normal [24] 

%! 13.50 1.00 0.05 Normal [24] 

ℎ  400 1.00 0.05 Normal [24] 

%' 8.60 1.00 0.05 Normal [24] 

� 21.0 1.00 0.05 Normal [24] 
* Load combinations of the overall dead load (��) and the service load on the floor (	�)) 
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TABLE II.  UPPER AND LOWER BOUNDS OF THE CROSS-SECTION OF 

BEAM STEEL 

No. 
() 

(mm) 

*+ 

(mm) 

,- 

(mm) 

,- 

(mm) 

Weight 

(kg/m) 

Area 

(cm2) 

IPE 300 300 150 7.1 10.7 15 42.2 

IPE 330 330 160 7.5 11.5 18 49.1 

IPE 360 360 170 8.0 12.7 18 57.1 

IPE 400 400 180 8.6 13.5 21 66.3 

IPE 450 450 190 9.4 14.6 21 77.6 

IPE 500 500 200 10.2 16.0 21 90.7 

IPE 550 550 210 11.1 17.2 24 106 

IPE 600 600 220 12.0 19.0 24 122 

TABLE III.  OPTIMIZATION ANALYSIS RESULTS THROUGH 5 CASE 

STUDIES 

Case study 
Minimum weight of 

SCC beams (kg/m) 

Cross-section of 

optimization 

Results in 

[22] 

1 17.60 IPE 300 IPE 400 

2 18.01 IPE 300 IPE 400 

3 17.50 IPE 300 IPE 400 

4 16.90 IPE 300 IPE 400 

5 17.56 IPE 300 IPE 400 

 

IV. CONCLUSIONS 

This study proposes an optimization algorithm for 
reliability-based design of steel-concrete composite beams. The 
developed algorithm combined Monte Carlo simulations and 
Generic Algorithm. Random variables for input design 
parameters are considered in the proposed procedure. 
Additionally, the safety conditions according to EC-4 are 
investigated. Finally, a numerical validation has been 
performed with 5 case studies. The main points of the current 
paper are: 

 A reliability-based design optimization algorithm of steel-
concrete composite beams was developed. 

 The proposed optimization procedure was successfully built 
on MATLAB platform and it can be convenient for design 
practices.  

 A numerical validation has been performed with 5 case 
studies. The result shows that with safety probability 
constraint conditions of �� =  98%, the SCC beam can 
reduce the cross-section from IPE 400 to IPE 300. 
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