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ABSTRACT 

A metaheuristic optimizer based on the cognitive behavior of crows, called the Crow Search Algorithm 

(CSA), is suggested in this paper for the optimization of the performance of the single link flexible 

manipulator as a constrained optimal control problem, which comprises objective functions, constraints, 

and decision variables. The CSA outperformed other algorithms, such as Differential Evolution, Grey Wolf 

Optimization, and Particle Swarm Optimization. Parameter setting is another highlight of the current 

paper. In conclusion, CSA yields more promising results than other approaches. 

Keywords-optimal control system; crow search algorithm; single link flexible manipulator 

I. INTRODUCTION  

Optimization has played a critical part in a wide range of 
problems during the last few decades. Engineers have relied on 
conventional search methods for decades to solve design 
problems. Despite the fact that these approaches give 
promising outcomes, they may fail in more complicated design 
challenges. Optimization problems are often complicated due 
to their complex objective functions, a substantial amount of 
decision variables, and many constraints. So, traditional 
optimization strategies often have limited effectiveness. The 
decision parameters may be too many and their influence on 
the objective function can be complex in real-world design 
challenges [1]. This means that the objective function might 
have multiple local optimal solutions while the design is only 
interested in the optimal global solution. These challenges can’t 
be solved by conventional methods that only discover local 
optima in a specific location. We need efficient optimization 
methods in these situations. Consequently, authors in [2] 

developed a new field of research called Swarm Intelligence 
(SI) in the late 1980s, which is still being explored today. 
Today’s trend is to use natural metaheuristic algorithms [3, 4] 
to solve challenging issues, and metaheuristics have been 
proved to be surprisingly efficient. Metaheuristic algorithms 
have shown promising performance in handling the most 
severely nonlinear and multimodal real-world optimization 
problems. Particular randomization and local search are used 
by all metaheuristic algorithms [5]. These methods can find 
good answers to challenging optimization problems, but 
optimum solutions cannot be found. However, it is hoped that 
these methods will work in most cases. It is possible to use 
metaheuristic algorithms for global optimization. 

Single-link flexible manipulators are often formulated as 
optimization problems [6-9] in order to optimize the 
performance index while meeting various constraints. As it has 
the potential advantage of lower cost, larger work volume, 
higher operational speed, greater payload-to-manipulator-
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weight ratio, smaller actuators, lower energy consumption, 
better transportability, and safer operation due to reduced 
inertia over traditional heavy and bulky robots. The main 
drawback of these manipulators is the vibration problem 
caused by their poor rigidity [2]. The Lagrangian-assumed 
modes technique [10] is used to create a dynamic model of a 
single-link flexible manipulator. Controlling was conducted by 
various law [11] and intelligent techniques [12, 13]. An overall 
goal is to maximize system characteristics [14] for 
accessibility, which is represented by a vector. Particle Swarm 
Optimization (PSO) algorithm was used to model a flexible 
manipulator system in [15]. An optimization technique begins 
by creating an objective function capable of generating the 
problem objectives without removing any constraints in order 
to identify the best feasible solution. According to the Glover 
Convention, all current procedures influenced by nature are 
considered metaheuristics [16]. Differential Evolution (DE) 
algorithm [9, 17], based on natural selection and PSO which is 
based on bird flock and fish schooling social behavior [18], are 
some of the best-known metaheuristic algorithms. The Crow 
Search Algorithm (CSA) [19] was presented in 2016. The 
social intelligence and food-collecting mechanism of a crow 
group are included in the design. Crows are a bird species that 
has expanded far across the globe and are considered very 
intelligent. They can memorize faces, utilize tools, 
communicate, and conceal food in various complicated ways.  

The main objectives of the work at hand are: 

 Parameter setting is done with the manipulator model using 
the proposed approach. 

 Performance comparison of the proposed CSA with the 
existing DE, PSO, and Grey Wolf Optimizer (GWO). 

 The CSA's ability to identify an appropriate alternative 
strategy for addressing complex engineering optimization 
problems is investigated. 

II. PROBLEM FORMULATION 

An optimization problem [20] is the objective of identifying 
the optimal solution among all possible options. Optimization 
problems can be classified as either unconstrained or 
constrained based on whether the variables are discrete or 
continuous. This section uses the SLFM to formulate the 
optimal control problem [9] described in detail. 

A. Modeling of the Dynamic System 

Regarding the modeling of the dynamic system, assume the 
following set of state equations: 

( ( ), ( ), )z g z t v t tɺ     (1) 

where z is a state vector, v is a manipulator control torque input 
vector, t is continuous-time, and g is a vector function. 

B. Performance Index 

An objective function or its inverse (referred to as a profit 
function, fitness function, utility function, or a reward function 
in some disciplines) is an objective function that should be 
maximized. It is referred to as: 

0

( ) ( ( ), ) ( ( ), ( ), )

ft

f f

t

J v z t t L z t v t t dt      (2) 

L is a real-valued state function and the input vector that 
may or may not be explicitly time-dependent depending on the 
situation. The cost function is a term that is often used to 
describe this function. The function is a real-valued function of 
the vector of the final state and its time vector, with the final 
state vector serving as the input. When it comes to quality, a 
performance index should be constructed, so that it is 
constrained from below, and the higher the index, the poorer 
the controller’s performance. For example, ensuring that the 
first term in (2) and the integrand in the second term are 

positive for all values of ( ),  ( )z t v t  and t, may be achieved by 

requiring. The first term in (2) denotes a constraint on the state 
vector’s final or terminal value. The value of the performance 
index decreases as the end state vector approaches the desired 
value. After specifying the cost function and constraint, the 
objective is to find the optimal controller, that is, the value of 

the control signal ( )v t  for the time period 0 ft t t   that 

yields the lowest values J under the assumption that the state 
vector obeys the state equation (1). 

C. Constraints 

When solving an optimization problem, a constraint is a 
requirement that the solution must meet. There are numerous 
different types of constraints, the most common of which are 
equality constraints, inequality constraints, and integer 
constraints. 

 Inequality constraints exist when a function has a border or 
limitations, e.g. less than equal to, less than, greater than, 
greater than equal to, and is expressed as: 

( ( )) 0G z t                                                      (3) 

where G(.) denotes the limitations imposed by inequality on the 
vector mapping of the state variables. 

 Equality restrictions exist when a function is just the equal 
to the requirements, i.e. it perfectly matches the value of the 
resource, and they are expressed as: 

( ( )) 0z t        (4) 

where (.)  represents equality constraints of the state 

variables. It’s possible that this variable is a state or a control 
variable. It may alter based on the problem’s design and 
demand. This variable may have limits on rare occasions. It’s 
referred to as: 

min max( )v v t v      (5) 

where (.)v is a control variable with lower and upper limits. 

Correspondingly, state variables may be specified based on the 
design and demand, but it is more complicated to identify 
boundary values, although a set of minimum and maximum 
values are used for estimations. Our ultimate objective is, 
therefore, to achieve the best value possible. 
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D. Optimal Control Problem (OCP) Formulation 

Consider the following description of an OCP [21] to be 
designed: 

0

min max

min

( ) ( ( ), ) ( ( ), ( ), )

su

)

bjected to

( )

( ( ) 0

ft

v k f f

t

J z t t L z t v t t dt

v v t

G z t

v

  

 




          (6)  

where J is the performance index, with state constraints G(.) 

and control constraints ( )v t  .The dynamic model of the SLFM 

assessed the performance index as well as inequality and 
equality constraints. For example, in [7, 8, 21], we determine 
the best solution to the given issue using the CSA and the 
constrained performance index.  

E. Example 

1) Single-Link Flexible Manipulator Model 

Assume a flexible manipulator model [6, 22, 23], as shown 
in Figure 1. 

 

 
Fig. 1.  Flexible link manipulator. 
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Let us assume the above equation by considering: 

21 3 4,  ,  ,  z z z z      ɺ ɺ    (8) 

and the above equation can be rewritten as follows: 
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           (9) 

where m is the arm end mass, J1 is the inertia of the arm, g is 
the gravity acceleration, Bm is the rotational friction, Jh is the 
moment of inertia of the motor, r is the radius, z1 is the arm end 
position (i.e. the angular position of the motor θ), z2 is the arm 
axis velocity (i.e. the angular displacement of the flexible joint 
α), z3 is the arm position, z4 is the arm end velocity. The 
parameter values are taken from [6]. 

2) Control Requirements 

Initially, consider the manipulator was at 
T z=[0.09 0.09 0.09 0.09]  and we wish to move it into the 

desired position, e.g. [0 0.4 0 0]Tz  at t =0.78s with the 

following constraints on the velocity and control signal: 

2 ( ) 0.4, [0,0.78]

10 ( ) 10, [0,0.78]

z t t

v t t

 

   
    (10) 

3) Formulation as a Constrained Optimal Control Problem 

The OCP is defined and formulated as: 

0

2 2 2

1 2

ft
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J z z v dt       (11) 
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III. SOLUTION METHODOLOGY 

CSA [19, 22], is based on the foraging behaviors of crows. 
Crows have various distinct characteristics that they display 
while hunting for food. When compared to other bird species, 
they have a large memory for remembering the locations of 
potential food stocks. Crows steal their owner's food supply 
after following other birds to food hiding locations. The crow 
moves the food source from its current site to one that is more 
barren as it scavenges the available food in order to protect it 
from other crows. Each point in the search space indicates a 
solution in the context of CROW. Crows have been observed to 
watch other birds, noting where they keep their food and then 
stealing it once the owner has left. If it has previously been a 
victim of theft, a crow will take extra precautions, such as 
changing hiding places, to avoid being a victim again. The 
previous behavior of an individual may be used to predict the 
future behavior of a thief and find the safest strategy to 
safeguard their stockpiles from theft. Based on the above-
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mentioned intelligent behaviors, the population-based 
metaheuristic algorithm, CSA, is implemented in this study. To 
attain the objectives, we must follow specific principles: 

 Crows live in groups of individuals (flocks). 

 Crows memorize their hiding places. 

 Crows congregate in order to steal. 

 Crows use measures to protect their caches against stealing. 

Each crow is required to make a move based on 1 of the 2 
fundamental CSA rules: either protect its own hiding place or 
find the locations of other members. Imagine, for instance, that 
a crow decides on iteration iter to steal food from a hiding spot. 
Depending on the situation, either (1) the individual crow is not 
aware that it is being watched, or (2) the individual crow 
recognizes the presence of the plunderer and acts dishonestly. 
According to the first scenario, the crow may discover and 
pillage the hiding location. The crow can be relocated as 
follows: 

, 1 , , , ,( )i iter i iter i iter i iter i iter
iz z r fl m z        (13) 

where ir  is a random number with an even distribution between 

0 and 1 and ( , )i iterfl signifies the flight length of the crow i at 

iteration iter. 

It’s worth noting that ( , )i iterfl  is a parameter of the 

algorithm and can affect the method’s search capabilities. 

Assume that smaller fl  values result in a local search near 
( , )i iterz , whereas more significant values of fl  expand the 

search space. In terms of optimization, smaller fl values 

contribute to the intensification of the results, whereas more 

significant fl values contribute to the diversification of the 

results. Both high-intensification and high-diversification are 
desirable properties of an efficient optimization technique. 

Alternatively, the thj crow might think a fellow flock 

member is chasing it (say the 
thi  crow). The thj  crow flew 

erroneously over a non-hideout area to guard its food source. If 

the 
thi crow is arbitrarily placed in the d-dimensional option 

space, the CSA can repeat the operation. Therefore, for the 2 
conditions mentioned above, the crows' tailing motion may be 
explained as follows: 

( , 1)

, 1 ,

, , ,
rand()

( )

random crow position    otherwise

i iter

i iter i iter

i iter i iter i iter
i

z z
AP

z r fl m z


  


   







⋯

⋯  (14) 

In metaheuristic algorithms, diversity and intensity should 
be well-balanced. When it comes to CSA, the system is 
essentially deepened and diversified by the Awareness 
Probability (AP) component. When a suitable solution already 
exists in place, CSA is more likely to look locally by lowering 
the AP. Low AP levels can be used to boost intensity. 
However, when knowledge grows, there may be a chance to 
find a workable solution, and CSA often expands the search 

area globally (randomization). The use of high AP values 
enables the achievement of greater variation 

A. CSA Implementation for Οptimization 

The step-wise procedure for the implementation of CSA is 
given in this section. 

Step 1: Initialize parameters AP, flight length fl , randomly 

initialize the control variable. 

Step 2: Initialize the crows’ position and memory. 

Step 3: Estimate fitness (objective) function. 

Step 4: Generate new position using (14). 

Step 5: Inspect the possibility of new positions. 

Step 6: Update fitness of new positions 

Step 7: Update the memory 

Step 8: Verify that the end criteria has been met 

Repeat steps 4–7 as many times as necessary until the 
maximum number of iterations is reached. After that, an 
optimal memory position in terms of the objective function’s 
value is provided to solve an optimization problem. 

B. Crow search Αlgorithm Pseudocode 

Initialize the parameters 

Randomly initialize the position of N 

crows flows in the search space 

Assess position, performance, and fitness 

State the crow memory 

while Termination conditions not satisfied 

for N of the flock's crows 

Pick a crow at random from the group 

State awareness probability 

if rand()>AP , 

Update the position using (13) 

else 

Update the position randomly 

end if 

end for 

Assess the new performance and fitness 

with the new crow’s position  

Update the crow’s memory  

end while 

 

IV. SIMULATION RESULTS AND DISCUSSION  

Optimal control problems can’t be solved by a single search 
algorithm. Another way to put it is that one algorithm may 
answer some problems better and others worse than other 
algorithms. For a fair evaluation of the proposed CSA, 
problems are discussed and solved. CSA has been run 
successfully on a laptop with an i5 processor and 16GB of 
RAM in MATLAB environment. The flowchart of CSA 
implementation can be seen in [24]. 

A. CSA Paramater Setting for Implementation Optimization 

The CSA's parameter settings have been optimized in a 
number of ways for 50 runs and 450 iterations. According to 
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Tables I-III, the best performance index obtained by CSA is 
0.001985 and 0.001982 for the single link flexible manipulator. 
Fair AP values produce better results, nevertheless, bigger 
values of AP are suggested to avoid becoming trapped in local 

optima. If AP remains constant (AP = 0.1) and the value of fl  

is increased from 0.3 to 4, it is projected that the overall 
performance of CSA will be improved on average.  

In Table I, the impact of the AP is shown to assess the 
CSA’s performance. AP and fl have been set to 0.1 and 2, 
respectively, in CSA. CSA is also analyzed to see how different 
parameter settings affect its performance. AP and fl values 
influence the results for the SLFM, as shown in Tables I and II. 
Table I shows that AP = 0.25 results in CSA poor performance. 
Figure 2 shows its impact. In Table II, it can be seen that when 

the value of AP is adjusted to 0.1, and the value of fl is 
increased from 0.3 to 4, the overall performance of the CSA 
improves. As a result, fine tuning CSA, like other optimization 
methods, is a process best accomplished by trial and error. The 
impact of the flight length can be observed in Figure 3.  

TABLE I.  IMPACT OF VARYING AP VALUES FOR fl=2 

Performance 

index (J) 
AP = 0.1 AP = 0.25 AP = 0.5 AP = 0.75 

Best value 0.00200 0.002645 0.001985 0.001998 

Worst value 5.1851 18.591 17.1683 8.839 

Mean 0.0967 0.3692 0.1079 0.038 

Standard deviation 0.4213 1.4912 0.8261 0.5583 
 

TABLE II.  THE EFFECT OF fl ON THE PERFORMANCE OF CSA 

Index 
fl = 0.3 

AP = 0.1 

fl = 0.5 

AP = 0.1 

fl = 1 

AP = 0.1 

fl = 1.5 

AP = 0.1 

fl = 1.75 

AP = 0.1 

fl = 2 

AP = 0.1 

fl = 3 

AP = 0.1 

fl = 4 

AP = 0.1 

Best value 0.0073622 0.007324 0.016931 0.00496991 0.00883244 0.00200153 0.00256202 0.00250375 

Worst value 10.1884 11.9041 5.5145 15.0302 8.1574 5.1851 21.1613 10.3002 

Mean 0.9474 0.2573 0.3259 0.0733 0.1488 0.0967 0.129 0.1551 

Standard deviation 1.6151 1.1226 0.7193 0.6806 0.7486 0.4213 1.3639 0.7575 

TABLE III.  THE EFFECT OF ITERATION NUMBER ON THE PERFORMANCE OF CSA 

Index 500 1000 1500 2000 2500 3000 3500 4000 5000 

Best Value 0.002002 0.001982 0.002217 0.001985 0.00198 0.001989 0.002019 0.001994 0.001988 

Worst Value 5.1851 12.3677 16.9836 22.2053 9.3461 16.9836 8.2768 8.2161 16.9836 

Mean 0.0967 0.1526 0.0845 0.08 0.0196 0.0433 0.0181 0.0316 0.0268 

Std 0.4213 1.0856 0.8877 0.777 0.2444 0.636 0.3138 0.2933 0.493 

 

 
Fig. 2.  The impact of varying AP values on CSA performance. 

 

Fig. 3.  Effect of fl on the performance of the CSA. 

 

Fig. 4.  Effect of iteration number on the performance of CSA. 

From Table III we can note that by increasing the iteration 
number more than 2000 and by keeping the AP as 0.1 and fl as 
2, the performance remains almost the same, showing poor 
performance which can be clearly seen in Figure 4. 

B. Comparison Analysis of DE, PSO, GWO, and CSA  

Optimal control problem can be solved by using the CSA 
parameters as shown in Table IV. The statistical findings 
produced using CSA are compared in Table V. In comparison 
to the other methods on the SLFM, the results suggest that 
CSA delivers promising results. When it comes to the best 
index, CSA surpasses DE, PSO, and GWO. In this example, 
CSA’s results are roughly 45% more accurate than the other 
methods used in terms of performance. 
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TABLE IV.  UTLIZIED CSA PARAMETERS 

Parameter Value 

Flight Length 2 

Awareness probability 0.1 

Number of population 50 

Number of iteration 450 

TABLE V.  SLFM RESULT COMPARISON ACHIEVED BY 
CSA AND OTHER ALGORITHMS 

Algorithm Worst Mean Best Std. 
Convergence 

iteration 

DE 1.3561 0.039259 0.0041536 0.15383 435 

PSO 1.8147 0.040232 0.003053 0.19363 363 

CSA 5.1851 0.0967 0.002109 0.4213 261 

GWO 0.0709 0.0515 0.042707 0.0073 448 

 

 

Fig. 5.  Algorithm comparison graph. 

 
Fig. 6.  Convergence graph of CSA of SLFM. 

 
Fig. 7.  Arm axis position (z1) versus time (s) of CSA. 

CSA shows encouraging performance in terms of worst and 
mean indices. The std indicates the CSA’s substantial 
flexibility. The CSA's performance index value is minimum. 
The convergence rate of the CSA for identifying the optimum 
SLFM solution is shown in Figures 5 and 6. The CSA 
algorithm exhibits an excellent convergence rate. 

Figure 7 explains the arm end position of the SLFM which 
became stable 0.12 at nearly 0.7s and minimum position 0.088 
at nearly 0.26s. Figure 8 shows the comparison graph between 
the CSA, DE, PSO, and BWO and it is clearly observed that 
there is more disturbance in GWO, which is unstable. 

TABLE VI.  COMPARISON OF DE, PSO, GWO, AND CSA FOR 
ARM END POSITION 

Value CSA DE GWO PSO 

Maximum 0.1506 0.1238 1.4439 0.1239 

Minimum 0.0882 5.5226e-4 -0.2679 4.9009e-4 

Mean 0.1143 0.0293 0.5935 0.0290 

 

 
Fig. 8.  Comparison graph of arm axis position for DE, PSO, GWO, and 

CSA. 

 

Fig. 9.  Arm axis position (z2) versus time (s) of CSA. 

Table VI shows the minimum, maximum, and mean 
positions attained by the algorithm comparison. DE, PSO, and 
CSA gave almost the same results of attained angular position, 
which can be observed clearly in Figure 8.  
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Fig. 10.  Comparison graph of arm axis velocity for DE, PSO, GWO, and 

CSA. 

Figure 9 explains the arm axis velocity of the SLFM. It can 
be seen that less velocity was required to move the SLFM. 
Figure 10 shows the comparison graph between the CSA, DE, 
PSO, and GWO. Table VIII shows the minimum, maximum, 
and mean velocity attained by the algorithm comparison. 

TABLE VII.  COMPARISON OF DE, PSO, GWO, AND CSA FOR 
ARM AXIS VELOCITY 

Value CSA DE GWO PSO 

Maximum 0.0900  0.0900  0.5039  0.0900  

Minimum -0.0644  -0.0515  -0.7292  -0.0510  

Mean -0.0127 -0.0018 -0.0070 -0.0017 

 

 

Fig. 11.  Applied torque versus time curve. 

TABLE VIII.  COMPARSION OF DE, PSO, GWO, AND CSA FOR 
THE APPLIED TORQUE 

Value CSA DE GWO PSO 

Maximum 0.1389  0.0018  10  0.0528  

Minimum 0.1196  -0.1874  -9.9246  -0.1862  

Mean 0.1295 -0.0398 0.0805 -0.0385 

 

Table VIII compared the minimum, maximum, and mean 
torque applied to SLFM by the considered algorithms. Figure 
11 gives an idea of how much torque is applied to SLFM and 

we can see that for a small torque driven by SLFM, it attains its 
position. Figure 12 shows the comparison graph between the 
CSA, DE, PSO, and GWO, in the presence of negative torque 
which leads the manipulator to brake on in order to move to the 
desired position. At the same time, CSA has a positive torque 
which leads the manipulator to move to the desired position 
during the simulated period of time.  

 

 
Fig. 12.  Comparison of DE, PSO, GWO, and CSA for the applied torque 

and time. 

V. CONCLUSION 

In this paper, Crow Search Algorithm (CSA), is proposed to 
solve OCP, i.e. SLFM. The two regulating factors in CSA are 
flight duration and awareness probability. CSA is simpler to 
utilize and has fewer factors to adjust than DE, PSO, and 
GWO. The simulation results show that the CSA performance 
is promising since it provided results that were competitive 
with those of the other methods. Despite the reputation of the 
PSO as a quick approach among population-based algorithms, 
CSA's performance surpasses PSO along with the other 
algorithms.  
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